
LECTURE NOTES

Math 6331, Riemannian Geometry

Álvaro Pámpano Llarena

1 Preliminaries: Smooth Manifolds

(For more details, see Chapters 1-2 of [8] and/or Chapters 1-3 of [10].)

Definition 1.1 Let M be a set of points. A collection of subsets τ ⊆ P(M) is a topology on

the set M if:

(i) Both the empty set ∅ and M belong to τ ,

(ii) Any arbitrary (finite or infinite) union of elements of τ belongs to τ , and

(iii) The intersection of any finite number of elements of τ belongs to τ .

*Stereographic projection of the Hopf torus in S3 based on a critical point γ in S2 of the Blaschke’s functional.
More details can be found in Exercise 4 of Section 6.4 and in [16]. (This figure was obtained from: Website.)

1

https://www.math.ttu.edu/~apampano/index.html


The elements of τ are called open sets. A set is said closed if its complement is an open set.

The pair (M, τ) is a topological space.

Remark 1.2 For convenience, we will simply denote topological spaces by their set M (the

topology τ will always be clearly understood). Roughly speaking, the topology describes all the

open sets of M .

Definition 1.3 A topological space M is said to be:

(i) A Hausdorff space (or T2 space) if any two distinct points can be separated by disjoint

open subsets.

(ii) A second-countable space if its topology has a countable basis, that is, a countable collection

of open subsets such that any arbitrary open subset (in this collection or not) can be written

as a union of these basic subsets.

(iii) A topological manifold if it is Hausdorff, second-countable, and locally Euclidean, that is,

there exists a natural number n (called the dimension of M) such that every point p ∈M

has a neighborhood homeomorphic1 to an open subset of Rn. To explicitly denote the

dimension of a topological manifold we will often write Mn.

Remark 1.4 Although the definition of a topological manifold M does not require connect-

edness, throughout this course we will assume that all the manifolds under consideration are

connected (if needed, restricting ourselves to the connected components). Due to the locally

Euclidean property of topological manifolds M , being connected means that every pair of points

in M can be joined by a path in M .

Definition 1.5 For each point p ∈M in a topological manifold, we have an open neighborhood

U of p and a homeomorphism x : U ⊆ M −→ x(U) ⊆ Rn. The pair (U, x) is called a

local chart (or, coordinate chart) on M . The component functions (x1, ..., xn) of x are called

local coordinates. The inverse map x−1 : x(U) ⊆ Rn −→ U ⊆ M is a local parameterization of

the subset U of M .

Definition 1.6 Let M be a topological manifold. A smooth atlas A for M is a collection of

local charts A = {(Uα, xα) |α ∈ I} such that A covers the whole M , that is, M = ∪α∈IUα, and

such that for all α, β ∈ I the transition maps

xβ ◦ x−1
α |xα(Uα∩Uβ): xα(Uα ∩ Uβ) ⊆ Rn −→ xβ(Uα ∩ Uβ) ⊆ Rn ,

are smooth.

1. An homeomorphism is a continuous invertible map with continuous inverse. Two topological spaces are

homeomorphic if there exists an homeomorphism between them.
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Remark 1.7 Of course, we can consider atlases with less regularity by allowing transition maps

that are only of class Cr. However, throughout this course we will only consider the smooth case.

Definition 1.8 A local chart (U, x) on M is compatible with a smooth atlas A on M if A ∪
{(U, x)} is also a smooth atlas. A smooth atlas A is maximal if it contains all the local charts

compatible with it.

Definition 1.9 A smooth manifold (or, differentiable manifold) is a topological manifold M

together with a maximal smooth atlas.

Remark 1.10 The maximal atlas defines a smooth structure on the topological manifold and

allows us to employ the techniques coming from calculus.

Example 1.11 In Rn+1 define the hyperquadric

Sn = {(x1, ..., xn+1) ∈ Rn+1 |x21 + ...+ x2n+1 = 1} .

Use the stereographic projections from the north pole (0, ..., 0, 1) and the south pole (0, ..., 0,−1)

to obtain a smooth atlas on Sn. The smooth manifold consisting of Sn and the atlas constructed

this way is called the standard n-dimensional sphere.

1.1 Diffeomorphisms

Remark 1.12 There are “different” smooth structures that can be defined over Sn. These

are called exotic spheres. For instance, the 7-dimensional sphere S7 has exactly 28 “different”

smooth structures (Milnor et al.).

Definition 1.13 Let Mn and M̃m be two smooth manifolds with atlases A and Ã, respectively.

A map ϕ : Mn −→ M̃m is smooth (or, differentiable) if for all local charts (U, x) ∈ A and

(Ũ , x̃) ∈ Ã the maps

x̃ ◦ ϕ ◦ x−1|x(U∩ϕ−1(Ũ)): x(U ∩ ϕ−1(Ũ)) ⊆ Rn −→ x̃(Ũ ∩ ϕ(U)) ⊆ Rm ,

are smooth.

Definition 1.14 Two smooth manifolds are said to be diffeomorphic if there exists a smooth

map, with smooth inverse, between them. Such a map is called a diffeomorphism.

Definition 1.15 A smooth map f : M −→ R is a smooth function on M . The set of all

smooth functions on M is denoted by C∞(M).
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1.2 The Tangent Bundle

Remark 1.16 Note that the standard sphere Sn defined in Example 1.11 may be defined without

involving the ambient space Rn+1. Nevertheless, we can define its tangent space.

Definition 1.17 Let M be a smooth manifold and p ∈M . A tangent vector Xp at p ∈M is a

derivation, that is, a map Xp : C∞(M) −→ R satisfying:

(i) Linearity: Xp (af + bg) = aXp(f) + bXp(g),

(ii) Leibniz Property: Xp(fg) = Xp(f) g(p) + f(p)Xp(g),

for all a, b ∈ R and f, g ∈ C∞(M). The set of all tangent vectors at p is called the tangent space

at p and it is denoted by TpM .

Definition 1.18 Let ϕ : M −→ M̃ be a smooth map. The differential dϕp of ϕ at p ∈ M is

the linear map dϕp : TpM −→ Tϕ(p)M̃ such that for all Xp ∈ TpM and f ∈ C∞(M̃),

dϕp(Xp)[f ] = Xp(f ◦ ϕ) .

Definition 1.19 Let Mn be a smooth manifold. Define the set

TM = {(p,Xp) | p ∈M,Xp ∈ TpM} ,

and consider the projection map π : TM −→ M given by π(p,Xp) = p. In a standard way,

TM is a smooth manifold of dimension 2n. Moreover, the triple (TM,M, π) is a smooth vector

bundle2 called the tangent bundle of M .

Definition 1.20 A smooth vector field is a section of the tangent bundle, that is, a smooth

map X : M −→ TM such that π(X(p)) = p for all p ∈ M . The set of all smooth vector fields

is denoted by X(M).

2. A (real) vector bundle is a triple (E,M, π) where:

(i) E and M are topological spaces, known as total space and base space, respectively,

(ii) π : E −→ M is a continuous surjective map, called the bundle projection, and

(iii) For every p ∈ M , π−1(p) is a finite-dimensional (real) vector space,

such that the following compatibility condition is satisfied: for every p ∈ M , there exists an open neighborhood

U ⊆ M of p, a natural number n, and an homeomorphism φ : U × Rn −→ π−1(U), such that for all p ∈ U :

1. π ◦ φ(p, v) = p for all v ∈ Rn,

2. The map v ∈ Rn 7−→ φ(p, v) ∈ π−1(U) is a linear isomorphism.
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Remark 1.21 In other words, a smooth vector field X on M is a smooth assignment of a

tangent vector Xp to each point p ∈M .

Remark 1.22 Let (U, x) be a local chart on a smooth manifold Mn. This defines an isomor-

phism TpM ∼= Rn for every p ∈ U . The tangent space TpM at p ∈ U is then spanned by

the coordinate (or, canonical) basis {∂x1|p, ..., ∂xn|p}. We call ∂xi
|p, i = 1, ..., n, the coordinate

vectors at p ∈ U . The set {∂x1 , ..., ∂xn} is a local frame of the tangent bundle, defined by the

property that for each p ∈ U , their restriction gives the coordinate basis.
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2 Riemannian Manifolds

(For more details, see Chapters 1-2 and 4 of [5] and/or Chapters 2-5 and 7 of [9].)

2.1 Riemannian Metrics

Definition 2.1 Let M be a smooth manifold. A symmetric tensor field Φ on M of type (0, 2)

is a map Φ : X(M)× X(M) −→ C∞(M) satisfying:

(i) Φ(X, Y ) = Φ(Y,X),

(ii) Φ(X, fY + gZ) = fΦ(X, Y ) + gΦ(X,Z),

for all X, Y, Z ∈ X(M) and f, g ∈ C∞(M).

Definition 2.2 Let M be a smooth manifold. A Riemannian metric g is a symmetric positive

definite3 tensor field of type (0, 2).

Remark 2.3 A Riemannian metric g on M determines an inner product gp at each tangent

space TpM , which varies smoothly from point to point. When necessary, we will denote the

Riemannian metric, simply, by g ≡ ⟨·, ·⟩.

Definition 2.4 A Riemannian manifold is a smooth manifold M endowed with a Riemannian

metric.

Remark 2.5 If we relax the requirement that the symmetric tensor field g of type (0, 2) is defi-

nite positive and we simply ask that it is everywhere non-degenerate, we obtain that M endowed

with g is a pseudo-Riemannian (or, semi-Riemannian) manifold, [3, 14]. These manifolds are

the framework for relativity theory, [14].

Theorem 2.6 Every smooth manifold admits a Riemannian metric.

Example 2.7 The followings are examples of Riemannian manifolds:

(i) Consider the space Rn with the standard coordinates (x1, ..., xn). Define the Euclidean

metric ḡ by

ḡ =
n∑

i=1

dx2i .

Then, Rn endowed with this Riemannian metric is the Euclidean space of dimension n.

3. A tensor field Φ of type (0, 2) on M is positive definite if Φ(X,X) ≥ 0 for all X ∈ X(M) and with

equality holding if and only if X = 0 identically.
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(ii) Let Sn be the standard n-dimensional sphere defined in Example 1.11 and consider the

restriction4 of the Euclidean metric ḡ to the vector fields tangent to Sn. The sphere Sn

endowed with this metric is the round sphere of dimension n.

(iii) Consider the (interior of the) ball of radius one in Rn, that is, the set of points (x1, ..., xn) ∈
Rn satisfying x21 + ...+ x2n < 1, with the metric

g =
4

(1−
∑n

i=1 x
2
i )

2

n∑
i=1

dx2i .

This is the Poincaré disc model of the n-dimensional hyperbolic space Hn.

2.2 Isometries

Remark 2.8 Consider the standard sphere of dimension two S2 defined in Example 1.11 with

the spherical coordinates (θ, φ), where θ represents the longitude and φ is colatitude. Together

with the metric

g = dφ2 + sin2 φdθ2

we have the 2-dimensional round sphere. (It is “the same” as in previous example.)

Definition 2.9 Let (M, g) and (M̃, g̃) be two Riemannian manifolds. A diffeomorphism ϕ :

M −→ M̃ is said to be an isometry if ϕ∗g̃ = g. In other words, if

g|p(Xp, Yp) = g̃|ϕ(p)(dϕp(Xp), dϕp(Yp))

for all X, Y ∈ X(M) and p ∈M . (Recall that dϕp is the differential defined in Definition 1.18.)

Definition 2.10 Two Riemannian manifolds are isometric if there exists an isometry between

them.

Remark 2.11 Among the class of Riemannian manifolds, being isometric defines an equiva-

lence relation.

2.3 The Levi-Civita Connection

Definition 2.12 Let M be a smooth manifold. An affine connection on M is a map ∇ :

X(M)× X(M) −→ X(M) defined by (X, Y ) 7−→ ∇XY such that:

4. The restriction of a Riemannian metric on a smooth manifold to a submanifold is a standard procedure

which we will see in detail in Chapter 2.
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(i) The map ∇ is lineal in X over C∞(M), that is,

∇fX+gYZ = f∇XZ + g∇YZ ,

for all f, g ∈ C∞(M).

(ii) The map ∇ is lineal in Y over R, that is,

∇X (aY + bZ) = a∇XY + b∇XZ ,

for all a, b ∈ R.

(iii) The map ∇ satisfies the product rule

∇X (fY ) = f∇XY + (Xf)Y ,

for all f ∈ C∞(M).

The vector field ∇XY is referred to as the covariant derivative of Y in the direction of X.

Remark 2.13 The concept of affine connection is local.

Definition 2.14 An affine connection ∇ defined over a smooth manifold is symmetric (or,

torsion-free) if

∇XY −∇YX = [X, Y ] ,

where [·, ·] represents the Lie bracket (or, commutator) of vector fields, which is defined by

[X, Y ](f) = X (Y f)− Y (Xf) ,

for all f ∈ C∞(M).

Remark 2.15 If (U, x) is a local chart for the smooth manifold Mn, the fact that the affine

connection ∇ is symmetric implies that

∇∂xi
∂xj

−∇∂xj
∂xi

= [∂xi
, ∂xj

] = 0 ,

for all i, j = 1, ..., n. This is the reason why such a connection is called symmetric.

Remark 2.16 An affine connection is defined over a smooth manifold. The Riemannian met-

ric does not play any role yet. However, we will see that for Riemannian manifolds there is a

preferred choice of affine connection.

Definition 2.17 Let M be a Riemannian manifold. An affine connection ∇ is compatible with

the Riemannian metric g ≡ ⟨·, ·⟩ if it satisfies

X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ ,

for all X, Y, Z ∈ X(M).
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Theorem 2.18 (Fundamental Theorem of Riemannian Geometry) For every Rieman-

nian manifold M , there exists a unique symmetric affine connection ∇ defined over M which

is compatible with the metric.

Definition 2.19 The unique symmetric affine connection compatible with the Riemannian

metric is called the Levi-Civita connection.

Remark 2.20 The Levi-Civita connection is given by the Koszul formula

⟨∇XY, Z⟩ =
1

2
(X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X, Y ⟩+ ⟨[X, Y ], Z⟩ − ⟨[Y, Z], X⟩ − ⟨[X,Z], Y ⟩) .

Remark 2.21 Let (U, x) be a local chart for the Riemannian manifold Mn and consider the

local frame {∂xi
}ni=1 of the tangent bundle. Then,

∇∂xi
∂xj

=
n∑

k=1

Γk
ij ∂xk

,

for all i, j = 1, ..., n. Hence, the Levi-Civita connection ∇ defines n3 functions Γk
ij : U ⊆

Mn −→ R. From Koszul formula we deduce the explicit expressions

Γk
ij =

1

2

n∑
m=1

(
∂gjm
∂xi

+
∂gmi

∂xj
− ∂gij
∂xm

)
gmk ,

where gij = ⟨∂xi
, ∂xj

⟩ and gmk = (g−1)mk.

Definition 2.22 The functions Γk
ij defined above are the Christoffel symbols of the connection

∇ with respect to the local chart (U, x).

Example 2.23 Compute the Christoffel symbols of the Riemannian manifolds of Example 2.7

for dimension two.

2.4 Curvature

Definition 2.24 Let M be a Riemannian manifold with Levi-Civita connection ∇. The (Rie-

mann) curvature tensor is the map R : X(M)× X(M)× X(M) −→ X(M) defined by

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z ,

where [·, ·] is the Lie bracket.

Remark 2.25 The Riemann curvature tensor may be found in the literature with the opposite

sign.
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Remark 2.26 Let (U, x) be a local chart for Mn and consider the local frame {∂xi
}ni=1 of the

tangent bundle. Then,

R
(
∂xi
, ∂xj

)
∂xk

=
(
∇∂xj

∇∂xi
−∇∂xi

∇∂xj

)
∂xk

,

for all i, j, k = 1, ..., n. Hence, the Riemann curvature tensor measures the non-commutativity

of the covariant derivative.

Remark 2.27 The Riemann curvature tensor is a tensor field of type (1, 3). Employing the

Riemann metric, we may identify tensor fields of type (1, 3) with tensor fields of type (0, 4).

Definition 2.28 The Riemann curvature of a Riemannian manifold (M, g ≡ ⟨·, ·⟩) is the ten-

sor field of type (0, 4) defined by

Rm(X, Y, Z, T ) = ⟨R(X, Y )Z, T ⟩ ,

for all X, Y, Z, T ∈ X(M) and where R is the Riemann curvature tensor.

Proposition 2.29 (Bianchi’s First Identity) Let Rm be the Riemann curvature of a Rie-

mannian manifold M . Then,

Rm(X, Y, Z, T ) + Rm(Y, Z,X, T ) + Rm(Z,X, Y, T ) = 0 ,

for all X, Y, Z, T ∈ X(M).

Proposition 2.30 Let M be a Riemannian manifold and X, Y, Z, T ∈ X(M). The Riemann

curvature Rm satisfies the following properties:

(i) Rm(X, Y, Z, T ) = −Rm(Y,X,Z, T ).

(ii) Rm(X, Y, Z, T ) = −Rm(X, Y, T, Z).

(iii) Rm(X, Y, Z, T ) = Rm(Z, T,X, Y ).

Remark 2.31 Even though the Riemann curvature tensor R may be defined with opposite sign,

the choice of definition and the above symmetries of the Riemann curvature Rm will make them

coincide.

Definition 2.32 The Ricci tensor Ric is the tensor field of type (0, 2) defined as the trace of

the Riemann curvature Rm in the second and last indexes.
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Remark 2.33 In other words, let X, Y ∈ X(M) and {ei}ni=1 be any local orthonormal (that is,

⟨ei, ej⟩ = δij where δij is the Kronecker delta5) frame for the tangent bundle. Then,

Ric(X, Y ) =
n∑

i=1

Rm(X, ei, Y, ei) =
n∑

i=1

⟨R(X, ei)Y, ei⟩ .

It follows from the symmetries of the Riemann curvature Rm that the Ricci tensor is symmetric,

that is, Ric(X, Y ) = Ric(Y,X).

Definition 2.34 Let M be a Riemannian manifold and consider a unitary tangent vector Xp ∈
TpM of the tangent space at p ∈M . The Ricci curvature is defined by

Ricp(Xp) = Ric(Xp, Xp) .

Definition 2.35 Let M be a Riemannian manifold and π ⊆ TpM be a two-dimensional linear

subspace spanned by Xp, Yp ∈ π. The sectional curvature of π at p ∈M is

K(π) =
Rm(Xp, Yp, Xp, Yp)

⟨Xp, Xp⟩⟨Yp, Yp⟩ − ⟨Xp, Yp⟩2
.

Proposition 2.36 For every p ∈M and every two-dimensional linear subspace π ⊆ TpM , the

sectional curvature K(π) is independent of the choice of bases for π.

Remark 2.37 Knowing the sectional curvature of every two-dimensional linear subspace is

enough to recover the Riemann curvature Rm. First, we need to compute Rm(X+Z, Y,X+Z, Y )

and then Rm(X + Z, Y + T,X + Z, Y + T ).

Example 2.38 Compute the sectional curvature of the Riemannian manifolds of Example 2.7

for dimension two.

Remark 2.39 If the Riemannian manifold is a regular surface, the sectional curvature is just

the classical Gaussian curvature. Details will be explained in the next chapter.

Definition 2.40 The scalar curvature λ of a Riemannian manifold is the function defined as

the trace of the Ricci tensor.

Remark 2.41 Let (U, x) be a local chart for M and {ei}ni=1 any local orthonormal frame for

the tangent bundle. Then, the scalar curvature λ ∈ C∞(M) is given by

λ(p) =
n∑

i=1

Ric(ei, ei) =
n∑

i=1

n∑
j=1

Rm(ei, ej, ei, ej) .

5. The Kronecker delta δij is defined to be 1 if i = j, and 0 otherwise.
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2.5 Exercises

1. * Let H = {(u, v) ∈ R2 | v > 0} be the upper half-plane endowed with the metric

g =
1

v2
(
du2 + dv2

)
.

If H2 denotes the hyperbolic plane (defined as in Example 2.7), prove that the map

ϕ : H2 −→ H given by

ϕ : (x, y) 7−→ 1

x2 + (y − 1)2
(
2x, 1− x2 − y2

)
,

is an isometry. The Riemannian manifold (H, g) is the upper half-plane model for the

hyperbolic plane.

2. * Let (Mn, g) be a Riemannian manifold and f ∈ C∞(M). The gradient of f is the vector

field grad f defined by the property

dfp(Xp) = ⟨gradpf,Xp⟩ ,

for all p ∈Mn and Xp ∈ TpM
n.

i) Show that, in the local coordinates (U, x) the expression of grad f is

grad f =
n∑

i=1

(
n∑

j=1

gij
∂f

∂xj

)
∂xi

.

ii) Prove that if {ei}ni=1 is any local orthonormal frame then the components of grad f

are the same of the differential df .

iii) Show that if Mn = Rn is the Euclidean space (defined in Example 2.7), then

grad f =
n∑

i=1

∂f

∂xi
∂xi

.

3. * Let (M, g) be a Riemannian manifold, X ∈ X(M) and f ∈ C∞(M). We define the

divergence of X as the smooth function divX : M −→ R so that divpX is given by the

trace of the linear map Yp 7−→ ∇YX|p for every p ∈ M . The Laplacian of M is the

operator ∆ : C∞(M) −→ C∞(M) defined by

∆f = div (grad f) ,

for every f ∈ C∞(M), where grad f is the gradient of f (see the previous exercise).

i) Show that

∆(f · g) = f∆g + g∆f + 2⟨grad f, grad g⟩ ,

holds for all f, g ∈ C∞(M).
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ii) Let (U, x) be a local chart for M and consider the local frame {∂xi
}ni=1 of the tan-

gent bundle. Show that the divergence and the Laplacian are given in these local

coordinates by

divX = div

(
n∑

i=1

Xi∂xi

)
=

1√
det g

n∑
i=1

∂

∂xi

(
Xi

√
det g

)
,

and

∆f =
1√
det g

n∑
i=1

∂

∂xi

(
n∑

j=1

gij
√
det g

∂f

∂xj

)
.

iii) Prove that if M = Rn is the Euclidean space (defined in Example 2.7), then

divX = div

(
n∑

i=1

Xi∂xi

)
=

n∑
i=1

∂Xi

∂xi
,

and

∆f =
n∑

i=1

∂2f

∂x2i
.

4. * LetM be a Riemannian manifold and X ∈ X(M). Consider a smooth map ϕ : (−ϵ, ϵ)×
U −→ M , where U is a neighborhood of a point p ∈ M , such that for any q ∈ U ,

t 7−→ ϕ(t, q) is a trajectory of X passing through q at t = 0. The vector field X ∈ X(M)

is called a Killing vector field (or, an infinitesimal isometry) if for each to ∈ (−ϵ, ϵ), the
map ϕto : U ⊆M −→M is an isometry. Show that a vector field X ∈ X(M) is a Killing

vector field if and only if

⟨∇YX,Z⟩+ ⟨∇ZX, Y ⟩ = 0 ,

for all Y, Z ∈ X(M).

5. Prove Bianchi’s First Indentity (Proposition 2.29).

6. Prove the symmetries of the Riemann curvature Rm described in Proposition 2.30.

7. * Let L3 denote the Lorentz-Minkowski 3-space, that is, R3 endowed with the Lorentzian

metric (semi-Riemannian metric of index one, [3])

g = dx2 + dy2 − dz2 .

Define the quadric H = {(x, y, z) ∈ R3 |x2 + y2 − z2 = −1, z > 0} and endow it with the

metric obtained by restricting g to H, namely, g|H.

i) Prove that g|H is a Riemannian metric and so (H, g|H) is a Riemannian manifold.

ii) Compute the sectional curvature of (H, g|H).
iii) Prove that (H, g|H) is isometric to the hyperbolic plane H2 (defined as in Example

2.7). (Hint: Use the stereographic projection from (0, 0,−1).)
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The Riemannian manifold (H, g|H) is the hyperboloid model for the hyperbolic plane.

8. Let M be a Riemannian manifold of constant sectional curvature K. Prove that the

Riemann curvature tensor R is given by

R(X, Y )Z = K (⟨X,Z⟩Y − ⟨Y, Z⟩X) ,

for all X, Y, Z ∈ X(M).

9. Let Mn be a Riemannian manifold of constant sectional curvature K. Prove that the

scalar curvature λ is given by

λ = n(n− 1)K .

10. * A Riemannian metric is said to be an Einstein metric if at every point the Ricci tensor

is a scalar multiple of the metric, that is, if

Ric = f g ,

holds for some function f ∈ C∞(M). A Riemannian manifold whose metric is Einstein is

called an Einstein manifold, [2]. Prove that Riemannian manifolds with constant sectional

curvature are Einstein manifolds.
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3 Riemannian Submanifolds

(For more details, see Chapter 6 of [5] and/or Chapter 8 of [9].)

3.1 Immersions and Embeddings

Definition 3.1 A smooth map ϕ : M −→ M̃ between smooth manifolds is said to be an

immersion if for each p ∈M , the differential6 dϕp : TpM −→ Tϕ(p)M̃ is injective.

Definition 3.2 An embedding is an immersion which is a homeomorphism onto its image.

Remark 3.3 Since every immersion is locally an embedding and our computations are going

to be local, throughout this course we may think our maps in either way.

Theorem 3.4 (Whitney) Every smooth manifold Mn can be embedded into R2n+1.

Remark 3.5 Up to now, we have not used the Riemannian metric.

Definition 3.6 Let (M̃, g̃) be a Riemannian manifold, M a smooth manifold, and ϕ : M −→
M̃ an immersion. We define the induced metric on M as g = ϕ∗g̃. That is,

g|p(Xp, Yp) = g̃|ϕ(p)(dϕp(Xp), dϕp(Yp)) ,

for all X, Y ∈ X(M) and p ∈M . IfM is endowed with the induced metric g, then ϕ :M −→ M̃

is said to be an isometric immersion.

Theorem 3.7 (Nash) Every Riemannian manifold can be isometrically embedded into Rn,

for n sufficiently large.

Remark 3.8 The condition that n is sufficiently large is essential. For instance:

(i) Hilbert’s Theorem ([4], Section 5-11). Complete regular surfaces of constant negative

Gaussian curvature cannot be isometrically embedded in R3.

(ii) Flat tori cannot be isometrically embedded in R3 since every compact regular surface must

have elliptic points, [4].

(iii) The projective plane cannot be isometrically embedded in R3 (even though it has constant

positive Gaussian curvature) because it is not orientable ([4], Page 436).

6. See the definition of the differential (Definition 1.18).
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Definition 3.9 Let ϕ : Mn −→ M̃m be an isometric immersion. We say that Mn is a

Riemannian submanifold of M̃m and M̃m is referred to as the ambient space. The natural

number m− n is the codimension.

Remark 3.10 If M is a Riemannian submanifold of M̃ , we will identify M and ϕ(M) ⊆ M̃ .

We will also denote the metrics g and g̃, simply, by ⟨·, ·⟩.

Example 3.11 The round sphere Sn defined in Example 2.7 is a Riemannian submanifold of

Rn+1.

3.2 Second Fundamental Form

Definition 3.12 Let M be a Riemannian submanifold of M̃ . For every p ∈ M , we call TpM̃

the ambient tangent space and

TM̃ |M= {(p, X̃p) | p ∈M, X̃p ∈ TpM̃}

the ambient tangent bundle.

Remark 3.13 The ambient tangent bundle TM̃ |M and the tangent bundle of the ambient space

TM̃ are not the same. However, every smooth vector field on M̃ can be restricted to TM̃ |M
and, conversely, every section of TM̃ |M can be locally extended to TM̃ . With some abuse of

notation, we will denote both vector fields with the same letter.

Remark 3.14 The metric g̃ on M̃ gives us the notion of orthogonality and, hence, we can split

TpM̃ as the orthogonal direct sum

TpM̃ = TpM ⊕NpM ,

where TpM is the tangent space of M at p and

NpM = {X̃p ∈ TpM̃ | g̃(X̃p, Yp) = 0 for all Yp ∈ TpM} .

Definition 3.15 The vector space NpM = (TpM)⊥ is called the normal space of M at p ∈M .

The normal bundle of M in M̃ is

NM = {(p, ξp) | p ∈M, ξp ∈ NpM} .

We denote by N(M) the set of all smooth vector fields of M̃ normal to M .

Remark 3.16 According to the orthogonal split of the ambient tangent space, we can decompose

the covariant derivative as

∇̃XY =
(
∇̃XY

)⊤
+
(
∇̃XY

)⊥
,

where ∇̃ is the Levi-Civita connection of M̃ and X, Y ∈ X(M) denote as well their local

extensions to M̃ (cf. Remark 3.13).
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Proposition 3.17 Let M be a Riemannian submanifold of M̃ and denote the Levi-Civita con-

nection of M̃ by ∇̃. The affine connection ∇ defined over M by

∇XY =
(
∇̃XY

)⊤
,

for every X, Y ∈ X(M) and their arbitrary local extensions, is the Levi-Civita connection of

M .

Definition 3.18 LetM be a Riemannian submanifold of (M̃, ∇̃). The second fundamental form

of M is the map II : X(M)× X(M) −→ N(M) given by

II(X, Y ) =
(
∇̃XY

)⊥
,

where X, Y ∈ X(M) denote as well their arbitrary local extensions to M̃ .

Proposition 3.19 The second fundamental form II is independent of the extensions of X, Y ∈
X(M) and it is symmetric, that is,

II(X, Y ) = II(Y,X) ,

for all X, Y ∈ X(M).

Theorem 3.20 (Gauss Formula) Let (M,∇) be a Riemannian submanifold of (M̃, ∇̃). Then,

∇̃XY = ∇XY + II(X, Y ) ,

for all X, Y ∈ X(M) and their arbitrary local extensions.

Remark 3.21 Let X ∈ X(M) and ξ ∈ N(M). The covariant derivative ∇̃Xξ in M̃ can be

decomposed into the tangential and normal components as

∇̃Xξ =
(
∇̃Xξ

)⊤
+
(
∇̃Xξ

)⊥
.

We denote by DXξ to the normal component, which defines an affine connection on the normal

bundle NM .

Definition 3.22 Let M be a Riemannian submanifold of (M̃, ∇̃). For every ξ ∈ N(M), we

define the Weingarten endomorphism Aξ : X(M) −→ X(M) by

AξX = −
(
∇̃Xξ

)⊤
,

for every X ∈ X(M).
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Theorem 3.23 (Weingarten Formula) Let M be a Riemannian submanifold of M̃ . Then,

∇̃Xξ = −AξX +DXξ ,

for all X ∈ X(M) and ξ ∈ N(M).

Theorem 3.24 (Weingarten Equation) Let M be a Riemannian submanifold of M̃ and

consider X, Y ∈ X(M) and ξ ∈ N(M). Then,

⟨∇̃Xξ, Y ⟩ = −⟨II(X, Y ), ξ⟩ ,

holds along M , where II is the second fundamental form.

Remark 3.25 Employing the Weingarten formula, the Weingarten equation may be rewritten

as

⟨AξX, Y ⟩ = ⟨II(X, Y ), ξ⟩ .
We then deduce from the symmetry of the second fundamental form II that the Weingarten

endomorphism Aξ is self-adjoint, that is,

⟨AξX, Y ⟩ = ⟨X,AξY ⟩ .

3.3 Fundamental Equations

Theorem 3.26 (Gauss Equation) Let M be a Riemannian submanifold of M̃ . Then,

R̃m(X, Y, Z, T ) = Rm(X, Y, Z, T )− ⟨II(X,Z), II(Y, T )⟩+ ⟨II(Y, Z), II(X,T )⟩ ,

for all X, Y, Z, T ∈ X(M).

Proof. Let X, Y, Z ∈ X(M) and assume they are arbitrarily extended to vector fields on M̃

tangent to M . Then, from the definition of the Riemann curvature tensors of M̃ and M , R̃

and R respectively, and Gauss formula, we have

R̃(X, Y )Z = ∇̃Y ∇̃XZ − ∇̃X∇̃YZ + ∇̃[X,Y ]Z

= ∇̃Y (∇XZ + II(X,Z))− ∇̃X (∇YZ + II(Y, Z)) +
(
∇[X,Y ]Z + II([X, Y ], Z)

)
.

Employing now the linearity of the Levi-Civita connection and once again the Gauss formula,

R̃(X, Y )Z = ∇̃Y∇XZ + ∇̃Y II(X,Z)− ∇̃X∇YZ − ∇̃XII(Y, Z) +∇[X,Y ]Z + II([X, Y ], Z)

= R(X, Y )Z + II(Y,∇XZ) + ∇̃Y II(X,Z)− II(X,∇YZ)− ∇̃XII(Y, Z)

+II([X, Y ], Z).

Let T ∈ X(M) be arbitrarily extended to M̃ . Then, since T is tangent to M , we conclude from

the definition of the Riemann curvatures R̃m and Rm, respectively, that

R̃m(X, Y, Z, T ) = ⟨R̃(X, Y )Z, T ⟩
= ⟨R(X, Y )Z, T ⟩+ ⟨∇̃Y II(X,Z), T ⟩ − ⟨∇̃XII(Y, Z), T ⟩
= Rm(X, Y, Z, T ) + ⟨∇̃Y II(X,Z), T ⟩ − ⟨∇̃XII(Y, Z), T ⟩.

Finally, the proof follows applying the Weingarten equation to the last two terms above. □
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Remark 3.27 The Gauss equation relates the Riemann curvature R̃m of the ambient space

M̃ with the Riemann curvature Rm of the submanifold M . Note also that all the vector fields

involved are tangent to the submanifold M .

Theorem 3.28 (Codazzi Equation) Let M be a Riemannian submanifold of M̃ . Then, for

every X, Y, Z ∈ X(M),(
R̃(X, Y )Z

)⊥
=
(
∇Y II

)
(X,Z)−

(
∇XII

)
(Y, Z) ,

where ∇ represents the Van Der Warden-Bortolotti connection defined as

∇XII(Y, Z) = DXII(Y, Z)− II(∇XY, Z)− II(Y,∇XZ) .

Proof. Following with the computation of R̃(X, Y )Z of the proof of the Gauss equation and

employing Weingarten formula, it is easy to check that(
R̃(X, Y )Z

)⊥
= II(Y,∇XZ) +DY II(X,Z)− II(X,∇YZ)−DXII(Y, Z) + II([X, Y ], Z) ,

since we are only considering the normal component to M . We then use in the last term that

the Levi-Civita connection is symmetric to draw the conclusion. □

Remark 3.29 The Codazzi equation computes the Riemann curvature R̃m of the ambient space

M̃ when one of the vector fields involved is normal to M (which one does not matter due to the

symmetries of R̃m).

Theorem 3.30 (Ricci Equation) Let M be a Riemannian submanifold of M̃ . Then, for

every X, Y ∈ X(M) and ξ, ν ∈ N(M),

R̃m(X, Y, ξ, ν) = RmD(X, Y, ξ, ν) + ⟨II(X,AξY ), ν⟩ − ⟨II(Y,AξX), ν⟩ ,

where RmD denotes the Riemann curvature of the normal bundle NM (that is, with respect to

the affine connection D).

Proof. Let X, Y ∈ X(M) and ξ, ν ∈ N(M) and consider their arbitrary extensions to M̃ . From

the definition of R̃ and the Weingarten formula, we compute

R̃(X, Y )ξ = ∇̃Y ∇̃Xξ − ∇̃X∇̃Y ξ + ∇̃[X,Y ]ξ

= −∇̃YAξX + ∇̃YDXξ + ∇̃XAξY − ∇̃XDY ξ −Aξ[X, Y ] +D[X,Y ]ξ .

Then, applying the Gauss formula to the terms in the first and third positions and the Wein-

garten formula to the second and fourth terms (and only considering the normal components),

we obtain

R̃m(X, Y, ξ, ν) = −⟨II(Y,AξX), ν⟩+ ⟨DYDXξ, ν⟩+ ⟨II(X,AξY ), ν⟩
−⟨DXDY ξ, ν⟩+ ⟨D[X,Y ]ξ, ν⟩

= RmD(X, Y, ξ, ν) + ⟨II(X,AξY ), ν⟩ − ⟨II(Y,AξX), ν⟩ ,

proving the result. □
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Remark 3.31 The Ricci equation computes R̃m when two of the vector fields are normal to

the submanifold.

Definition 3.32 The equations of Gauss, Codazzi and Ricci are known as the fundamental

equations.

3.4 Surfaces in the Euclidean Space R3

(For the classical theory of surfaces, see [4] and/or [13]. An approach to surface theory via

moving frames can be found in [6].)

Definition 3.33 A regular surface S in R3 is a Riemannian submanifold of the Euclidean

space R3 whose codimension is one.

Remark 3.34 The notion of surface may be more general. It can be used to refer to Rie-

mannian manifolds of diemnsion two. However, in our definition we are also requesting these

2-dimensional Riemannian manifolds to be isometrically immersed in R3 (cf. Remark 3.8).

Remark 3.35 Let S be a regular surface in R3. By definition, S carries the induced metric

from R3. If (u, v) is a system of local coordinates, the coefficients of the metric are (in the

notation of the classical theory of surfaces)

E = ⟨∂u, ∂u⟩ , F = ⟨∂u, ∂v⟩ , G = ⟨∂v, ∂v⟩ .

Since the codimension of S in R3 is one, for every point p ∈ S there exist two possible unit

normal vectors. Locally, every surface is orientable and, hence, we can pick up the unit normal

so that it gives the positive orientation. In the coordinates (u, v), this unit normal is given by

ξ =
∂u × ∂v√

⟨∂u × ∂v, ∂u × ∂v⟩
,

where × denotes the usual vector product in R3.

We introduce the scalar second fundamental form by

h(X, Y ) = ⟨II(X, Y ), ξ⟩ ,

for all X, Y ∈ X(S). The coefficients of this form with respect to the coordinates (u, v) are

denoted (in the classical theory of surfaces) by

e = h(∂u, ∂u) , f = h(∂u, ∂v) , g = h(∂v, ∂v) .

Theorem 3.36 Let S be a regular surface in R3. Then, for every X, Y ∈ X(S),

∇R3

X Y = ∇XY + h(X, Y )ξ ,

where ∇R3
is the Levi-Civita connection of R3 and ∇ is the Levi-Civita connection of S.
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Remark 3.37 Theorem 3.36 is just a particular case of the Gauss formula (Theorem 3.20).

Applying it to ∂u and ∂v, we obtain the following expressions of the coefficients of the second

fundamental form:

e = ⟨∂2uu, ξ⟩ , f = ⟨∂2uv, ξ⟩ , g = ⟨∂2vv, ξ⟩ .

Remark 3.38 In the classical theory of surfaces, the Weingarten endomorphism Aξ is usually

denoted by S and called the shape operator, which we know it is a self-adjoint endomorphism

(cf. Remark 3.25). For every p ∈ S, the shape operator at p (denoted by Sp) is diagonalizable

and has two real eigenvalues κ1 ≤ κ2.

Definition 3.39 The real eigenvalues κ1 ≤ κ2 of the shape operator Sp are called the principal

curvatures of the surface S at p.

Definition 3.40 Let S be a regular surface in R3. The Gaussian curvature of S at a point

p ∈ S is the quantity

K(p) = det(Sp) = κ1κ2 ,

where Sp denotes the shape operator at p and κ1 ≤ κ2 are the principal curvatures of S at p.

A surface S in R3 is flat if the Gaussian curvature K is zero at every point p ∈ S.

Remark 3.41 A flat surface is not necessarily a part of a plane. For instance, a cylinder is

flat but it is not contained in a plane.

Definition 3.42 Let S be a regular surface in R3. The mean curvature of S at a point p ∈ S

is defined as

H(p) =
1

2
trace(Sp) =

1

2
(κ1 + κ2) ,

where Sp denotes the shape operator at p and κ1 ≤ κ2 are the principal curvatures of S at p.

A surface S in R3 is minimal if the mean curvature H is zero at every point p ∈ S.

Remark 3.43 There are several equivalent definitions of minimal surfaces. One such a defi-

nition is that minimal surfaces are those that locally minimize area. This approach to minimal

surfaces as solutions of a variational problem is closely related to Chapter 5. The literature

about the theory of minimal surfaces is vast. For example, in [15], more details about the topic

can be found, while details about its direct extension to constant mean curvature surfaces appear

in [11].

Theorem 3.44 Let S be a regular surface in R3. Then, for every X ∈ X(S),

∇R3

X ξ = −SX ,

where S denotes the shape operator and ξ is the unit normal to S.
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Remark 3.45 The Weingarten equation provides us with an alternative way of interpreting the

shape operator. Let S be a regular surface in R3. We define the Gauss map ξ : S ⊂ R3 −→ S2

such that it associates to every point in the surface its unit normal vector. Then, the shape

operator at p ∈ S is

Sp = −dξp ,
where dξp is the differential of the Gauss map at p ∈ S.

Remark 3.46 From the Weingarten equation and the Weingarten formula, we obtain that the

scalar second fundamental form h can be expressed as

h(X, Y ) = ⟨SX, Y ⟩ .

It then follows that the matrix form of the shape operator S is given by S = g−1h and, hence,

the Gaussian curvature of S at p can be computed as

K(p) =
deth

det g
=

eg − f 2

EG− F 2
.

Theorem 3.47 Let S be a regular surface in R3 and consider the local coordinates (u, v) in S.

Then, the sectional curvature of TpS is given by

K(TpS) =
eg − f 2

EG− F 2
,

where E,G, F and e, g, f are the coefficients of the metric and second fundamental form, re-

spectively.

Remark 3.48 Above result follows directly from the Gauss equation (Theorem 3.26) and shows

that the Gaussian curvature of a surface S in R3 is, precisely, the sectional curvature of S viewed

as a Riemannian manifold of dimension two. Furthermore, since the sectional curvature is

defined intrinsically (observe that in Definition 2.35 there is no ambient space), above result

also shows Gauss’ Theorema Egregium.

Theorem 3.49 (Gauss’ Theorema Egregium) The Gaussian curvature of a surface in R3

is invariant under local isometries.

Remark 3.50 Roughly speaking, this means that the Gaussian curvature K does not depend

on how the surface might be immersed in R3. To the contrary, it can be determined entirely by

measuring distances and angles on the surface itself. Indeed, in the local coordinates (u, v) it

can be computed employing, for instance, the following equation:(
Γ1
11

)
v
−
(
Γ1
12

)
u
= Γ1

12Γ
2
12 − Γ2

11Γ
1
22 − F K ,

where Γk
ij, i, j, k = 1, 2, are the Christoffel symbols and F = ⟨∂u, ∂v⟩. In the classical theory of

surfaces above equation is known as the Gauss equation for surfaces7.

7. The Gauss equation for surfaces is not the Gauss equation of Theorem 3.26. To the contrary, it comes

from the definition of the sectional curvature (Definition 2.35).
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Theorem 3.51 (Codazzi-Mainardi-Peterson Equations) Let S be a regular surface in R3

and consider the local coordinates (u, v) in S. Then the following equations hold,

ev − fu = eΓ1
21 + f

(
Γ2
21 − Γ1

11

)
− gΓ2

11 ,

fv − gu = eΓ1
22 + f

(
Γ2
22 − Γ1

12

)
− gΓ2

12 ,

where Γk
ij, i, j, k = 1, 2, are the Christoffel symbols and e, f, g are the coefficients of the second

fundamental form.

Remark 3.52 The Codazzi-Mainardi-Peterson equations for surfaces follow directly from the

Codazzi equation of Riemannian submanifolds (Theorem 3.28).

Remark 3.53 In the classical theory of surfaces, the Gauss-Codazzi-Mainardi-Peterson equa-

tions (also known as the compatibility equations) are obtained from the identities(
∂2uu
)
v
−
(
∂2uv
)
u

= 0 ,(
∂2vv
)
u
−
(
∂2uv
)
v

= 0 ,

ξuv − ξvu = 0 .

These identities follow from the symmetry of the second order mixed partial derivatives (see

Clairaut-Schwarz’s Theorem). The verification of these compatibility equations is necessary,

and locally sufficient, to have a regular surface in R3 (see Bonnet’s Theorem, Page 236 of [4]).

On the other hand, the Ricci equation in the case of surfaces in R3 is an identity since the

codimension of S in R3 is one.

3.5 Exercises

1. Let M be a Riemannian submanifold of M̃ and denote by ∇̃ the Levi-Civita connection

of M̃ .

i) Check that the tangential projection of the covariant derivative ∇̃XY to M , for all

X, Y ∈ X(M) defines an affine connection ∇ over M .

ii) Prove that this affine connection ∇ defined over M is, precisely, the Levi-Civita

connection of M .

This proves Proposition 3.17.

2. Prove Weingarten equation (Theorem 3.24).

3. Explain why EG− F 2 > 0 at every point of a surface in R3.

4. Consider the surface of revolution S in R3 obtained by rotating the curve γ given by

γ(s) = (f(s), 0, g(s)), f(s) > 0, (assume that s is the arc length parameter of the curve,

that is, f ′(s)2 + g′(s)2 = 1 holds) around the z-axis. Compute the Gaussian and mean

curvatures of S.
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5. Consider the surface S in R3 given, locally, by the graph z = f(x, y). Compute the

Gaussian and mean curvatures of S.

6. * Let S be a regular surface in R3 with Gaussian curvature K and mean curvature H.

i) Obtain a explicit expression of the principal curvatures κ1 ≤ κ2 of a surface S at a

point p ∈ S in terms of the Gaussian and mean curvatures.

ii) Prove that

H2 −K ≥ 0 ,

holds at every point p ∈ S.

iii) Show that minimal surfaces have non-positive Gaussian curvature.

iv) The points p ∈ S such that H2(p) = K(p) are called umbilical points. Show that the

principal curvatures at a point are equal if and only if the point is umbilical.

v) A surface S is said to be totally umbilical if all points of S are umbilical. Show that

if S is totally umbilical, then S is a part of a plane (if H2 = K = 0) or a part of a

sphere (if H2 = K > 0).

7. * Let ξ : S −→ S2 ⊂ R3 be the Gauss map of the regular surface S in R3. The

third fundamental form of S is defined by

III = ⟨dξ, dξ⟩ .

i) Show that

III = 2Hh−Kg ,

where H and K are the mean and Gaussian curvatures of S, respectively, and h is

the scalar second fundamental form of S.

ii) Compute the characteristic polynomial of the shape operator S.
iii) Apply the Cayley-Hamilton’s Theorem to the above polynomial and the shape oper-

ator matrix.

8. * Let S be a regular surface in R3 and ϕ : S −→ R3 the isometric immersion. A system

of local coordinates (u, v) in S is called an isothermal coordinate system if

⟨∂u, ∂u⟩ = ⟨∂v, ∂v⟩ = µ2 , ⟨∂u, ∂v⟩ = 0 ,

hold.

i) Show that for a isothermal coordinate system,

∂2uu + ∂2vv = 2µ2H ξ ,

where H is the mean curvature of S and ξ is the unit normal.
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ii) Show that if x−1 is the local parameterization of S given by the isothermal coordinate

system (u, v), then

∆
(
ϕ ◦ x−1

)
= 2µ2H ξ ,

and, hence, S is minimal if and only if the coordinate functions ϕ◦x−1 are harmonic.

(Recall that an harmonic function f is a solution of the Laplace equation ∆f = 0.)

The heat equation in the plane is the partial differential equation ∂tf = ∆f . In the

plane, the Laplacian vanishes when applied to isothermal coordinates and, hence, these

coordinates are a steady solution to the heat equation. In other words, the temperature

remains constant along time and so the name isothermal.

9. Obtain alternative expressions of the Gauss equation for surfaces in R3 (cf. Remark 3.50).

10. * Let S be a regular surface in R3. The surface S is isoparametric if its principal curvatures

are constant functions, that is, for every p ∈ S the values κi(p), i = 1, 2, are the same.

i) Show that S is isoparametric if all its parallel surfaces Sr = {p + rξ | p ∈ S}, for
|r| < ϵ small enough, have constant mean curvature. Here, ξ denotes the unit normal

to S.

ii) Prove that isoparametric surfaces in R3 are parts of either totally umbilical surfaces

or spherical cylinders.
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4 Geodesics in Riemannian Manifolds

(For more details, see Chapter 3 of [5] and/or Chapter 6 of [9].)

4.1 Curves in Riemannian Manifolds

Definition 4.1 A smooth immersed curve in a Riemannian manifold is a Riemannian sub-

manifold of dimension one.

Remark 4.2 Smooth immersed curves in M are denoted by γ : J ⊆ R −→M where J will be

assumed to be the maximal interval of definition and, unless explicitly mentioned, we will not

distinguish between the map γ and its trajectory (or, trace) γ(J) ⊆M . Both will be referred to

as curves.

Remark 4.3 In the classical theory, curves are defined in the following equivalent way. A

smooth parameterized curve in a Riemannian manifold M is a smooth map γ : J ⊆ R −→ M .

These curves may have cusps which, for our purposes, are undesired. To avoid them, the notion

of regular curves is introduced. A smooth parameterized curve is said to be regular if γ̇(t) ̸= 0

for every t ∈ J . Here, the upper dot denotes the derivative with respect to the parameter t ∈ J .

Definition 4.4 Let γ : J = (a, b) ⊆ R −→ M be a smooth immersed curve in a Riemannian

manifold M . The length of γ is defined by

L(γ) =

∫ b

a

√
⟨γ̇(t), γ̇(t)⟩ dt ,

where γ̇ = dγ/dt and t ∈ J = (a, b) is the parameter of γ.

Definition 4.5 Let M be a Riemannian manifold and p, q ∈ M be two points. The Riemann

distance between p and q, d(p, q), is the infimum of the lengths of all smooth immersed curves

joining p to q. That is,

d(p, q) = inf
γ
L(γ) ,

among all γ : J = (a, b) ⊆ R −→M such that γ(a) = p and γ(b) = q.

Remark 4.6 Since M is connected (recall our assumption of Remark 1.4), every pair of points

in M can be joined by a smooth immersed curve and, hence, the Riemann distance is well

defined.

Theorem 4.7 Let M be a Riemannian manifold. Endowed with the Riemann distance, M

becomes a metric space whose induced topology is the same as the one that M carries as a

topological manifold.
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Remark 4.8 So far, we have used an arbitrary parameter t ∈ J for smooth immersed curves.

However, these curves admit a reparameterization by a natural parameter that makes their speed

V (t) =
√

⟨γ̇(t), γ̇(t)⟩ to be constant one, namely, the arc length parameter.

Definition 4.9 A smooth immersed curve γ : I ⊆ R −→ M is said to be parameterized by

the arc length if ⟨γ′(s), γ′(s)⟩ = 1 for all s ∈ I. The parameter s ∈ I is called the arc length

parameter (or, natural parameter). Curves parameterized by the arc length may be referred to

as unit speed curves.

Remark 4.10 To distinguish from an arbitrary parameter t ∈ J = (a, b), the derivative with

respect to the arc length parameter s ∈ I = (0, L) is denoted by ( )′.

Proposition 4.11 Let γ : J = (a, b) ⊆ R −→ M be a smooth immersed curve. Define the

function s : J −→ I by

s(t) =

∫ t

a

√
⟨γ̇(u), γ̇(u)⟩ du ,

and denote by t to its inverse. Then, the curve γ : I ⊆ R −→ M given by γ(s) = γ(t(s)) is a

smooth curve parameterized by the arc length.

Remark 4.12 In other words, γ(s) = γ(t(s)) is a reparameterization of γ(t) by arc length.

Both curves have the same trajectory (or, trace).

Definition 4.13 Let γ : I ⊆ R −→ M be a smooth immersed curve parameterized by the arc

length s ∈ I. The unit tangent vector field along γ is T (s) = γ′(s). The curvature κ(s) of γ is

the function

κ(s) =
√

⟨∇TT (s),∇TT (s)⟩ ,

where ∇ is the Levi-Civita connection of M .

Remark 4.14 Our definition for the curvature of a curve implies that κ(s) is a non-negative

smooth function. However, in the particular case of a Riemannian manifold of dimension two,

it is possible to give the curvature a sign and define what is known as the signed curvature k.

For that we define the (oriented) unit normal N(s) by requiring that {T (s), N(s)} is a positively

oriented basis of the tangent plane for all s ∈ I. The signed curvature k(s) is then defined as

∇TT (s) = k(s)N(s) ,

and might be either positive, negative or both. In this context, the points γ(so), so ∈ I, such

that k(so) = 0 are called inflection points.

Definition 4.15 An arc length parameterized smooth immersed curve γ : I ⊆ R −→ Mn is

called a Frenet curve of rank one if its curvature κ(s) is identically zero. It is said a Frenet curve

of rank m, 2 ≤ m ≤ n, if m is the largest integer for which there exists an orthonormal frame
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defined along γ, {e1(s) = T (s), e2(s), ..., em(s)} and non-negative smooth functions defined on

γ, κi(s), 1 ≤ i ≤ m− 1, called Frenet curvatures, such that,

∇T e1(s) = κ1(s)e2(s) ,

∇T eh(s) = −κh−1(s)eh−1(s) + κh(s)eh+1(s) , h = 2, ...,m− 1 ,

∇T em(s) = −κm−1(s)em−1(s) .

These equations are known as the Frenet-Serret equations.

Remark 4.16 For a Frenet curve of rank m < n, the Frenet curvatures of index larger than

m−1 are considered to be zero. The first Frenet curvature κ1(s) ≡ κ(s) is, simply, the curvature

of γ. The second Frenet curvature κ2(s) ≡ τ(s) is usually called the torsion of γ. A curve with

vanishing torsion, τ(s) = 0 for all s ∈ I (in other words, a Frenet curve of rank two), is called

a planar curve.

Definition 4.17 A smooth immersed curve whose Frenet curvatures are all constant functions

is called a Frenet helix.

Remark 4.18 If M is a Riemannian manifold of dimension three, the Frenet-Serret equations

along γ are usually expressed as

∇TT (s) = κ(s)N(s) ,

∇TN(s) = −κ(s)T (s) + τ(s)B(s) ,

∇TB(s) = −τ(s)N(s) ,

where N(s) is the unit normal8 vector field along γ and B(s) is the unit binormal. Even if the

curve γ is planar (τ(s) = 0 for all s ∈ I or, equivalently, the rank of γ is two), the binormal

B(s) is still well defined as B = T ×N , where × is the usual vector product of R3.

4.2 Geodesics

Definition 4.19 A smooth immersed curve γ : J ⊆ R −→M is a geodesic if for all t ∈ J ,

∇γ̇ γ̇(t) = 0 ,

where ∇ is the Levi-Civita connection of M and γ̇ is extended arbitrarily to a neighborhood of

γ(J).

Remark 4.20 A vector field V along a curve γ is said parallel along γ if ∇γ̇V = 0. Therefore,

a geodesic is a curve whose velocity γ̇(t) is parallel along γ. The vector field ∇γ̇ γ̇(t) along the

curve γ is sometimes referred to as the acceleration of γ. With this notion, a geodesic is a

curve with vanishing acceleration.

8. Do not confuse with the oriented unit normal N defined in Remark 4.14.

28



Proposition 4.21 Let γ : J ⊆ R −→ M be a geodesic. Then, the speed V (t) =
√

⟨γ̇(t), γ̇(t)⟩
of γ is constant. That is, geodesics are parameterized with constant speed.

Proof. To prove the result is enough to check that the speed of a geodesic γ is constant. For

this, we will see that its derivative (more precisely, the derivative of its square) is zero. Denote

by

V 2(t) = ⟨γ̇(t), γ̇(t)⟩ ,

the square of the speed. Then,

d

dt

(
V 2(t)

)
=

d

dt
⟨γ̇(t), γ̇(t)⟩ = 2⟨∇γ̇ γ̇(t), γ̇(t)⟩ = 0 ,

because ∇γ̇ γ̇(t) = 0 holds for geodesics. □

Remark 4.22 The previous result shows that the choice of parameterization is essential to

have geodesics. An arbitrary reparameterization of a geodesic curve may not be a geodesic,

although their trajectories are the same.

Example 4.23 Constant speed parameterized straight lines in the Euclidean plane R2 are

geodesics. However, the straight line parameterized by γ(t) = (t3, 0), t ∈ R, is not a geodesic.

Proposition 4.24 Let γ : J ⊆ R −→ M be a smooth immersed curve parameterized with

constant speed. Then, γ is a geodesic if and only if its curvature κ vanishes identically.

Proof. Since γ has constant speed, V 2(t) = ⟨γ̇(t), γ̇(t)⟩ = c2, for some positive constant c ∈ R+.

It then follows that (cf. Proposition 4.11)

s(t) =

∫ t

a

√
⟨γ̇(u), γ̇(u)⟩ du =

∫ t

a

c du = c(t− a) ,

and its inverse is t(s) = s/c+ a. In other words, the parameter t ∈ J of a geodesic is an affine

function of the arc length parameter s ∈ I.

We then reparameterize γ by the arc length as γ(s) = γ(t(s)) = γ(s/c+a) and obtain, from

the chain rule, that

T (s) = γ′(s) =
1

c
γ̇(t) .

Finally, from the definition of the curvature, this relation between the velocity vector fields,

and the properties of an affine connection (see Definition 2.12),

κ2(s) = ⟨∇TT (s),∇TT (s)⟩ = ⟨∇γ̇/cγ̇(t)/c,∇γ̇/cγ̇(t)/c⟩ =
1

c4
⟨∇γ̇ γ̇(t),∇γ̇ γ̇(t)⟩ .

The equivalence of the statement follows directly from this. □

Remark 4.25 In particular, if γ : I ⊆ R −→ M is an arc length parameterized smooth

immersed curve, the notions of geodesic and Frenet curve of rank one are equivalent.
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Theorem 4.26 (Local Equations for Geodesics) Let (U, x) be a local chart for a Rieman-

nian manifold M and consider a smooth immersed curve γ : J ⊆ R −→M such that γ(J) ⊂ U .

Then, γ is a geodesic if and only if locally its coordinate functions xk(t), k = 1, ..., n, satisfy

the system of second order ordinary differential equations

ẍk(t) +
n∑

i=1

n∑
j=1

ẋi(t)ẋj(t)Γ
k
ij (x(t)) = 0 ,

where Γk
ij are the Christoffel symbols of the Levi-Civita connection with respect to (U, x).

Proof. By definition, the curve γ is a geodesic if and only if ∇γ̇ γ̇(t) = 0 for every t ∈ J . In the

local chart (U, x) we write

γ̇(t) =
n∑

i=1

ẋi(t)∂xi
,

where {∂xi
}ni=1 is the local frame of the tangent bundle ofM . It then follows from the properties

of the affine connection ∇ (see Definition 2.12) that

∇γ̇ γ̇(t) = ∇γ̇

(
n∑

i=1

ẋi(t)∂xi

)
=

n∑
i=1

∇γ̇ (ẋi(t)∂xi
) =

n∑
i=1

(ẍi(t)∂xi
+ ẋi(t)∇γ̇∂xi

)

=
n∑

i=1

ẍi(t)∂xi
+

n∑
i=1

n∑
j=1

ẋi(t)ẋj(t)∇∂xj
∂xi

=
n∑

i=1

ẍi(t)∂xi
+

n∑
i=1

n∑
j=1

n∑
k=1

ẋi(t)ẋj(t)Γ
k
ij(x(t))∂xk

=
n∑

k=1

(
ẍk(t) +

n∑
i=1

n∑
j=1

ẋi(t)ẋj(t)Γ
k
ij(x(t))

)
∂xk

,

where in the last equality we have reorganized the terms of the first sum. Consequently, γ is a

geodesic if and only if all the components of the vector field above are zero. □

Example 4.27 Compute all the geodesics of the Euclidean space Rn.

Theorem 4.28 (Existence and Uniqueness of Geodesics) LetM be a Riemannian man-

ifold. For every p ∈ M and Xp ∈ TpM , there exists an open interval J ⊆ R and a unique

geodesic γ : J ⊆ R −→M such that γ(to) = p and γ̇(to) = Xp, for some to ∈ J .

Proof. From the local equations for geodesics, we know that γ is a geodesic if and only if its

coordinate functions xk(t), k = 1, ..., n satisfy

ẍk(t) +
n∑

i=1

n∑
j=1

ẋi(t)ẋj(t)Γ
k
ij (x(t)) = 0 .
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We transform these second order differential equations into a system of first order equations by

introducing the variables vk(t) = ẋk(t), k = 1, ..., n. With these new variables, above second

order equations read 
ẋk(t) = vk(t)

v̇k(t) = −
n∑

i=1

n∑
j=1

vi(t)vj(t)Γ
k
ij(x(t))

.

Together with the initial conditions specified in the statement, these are initial value problems

whose local existence and uniqueness follows from the standard theory of systems of first order

ordinary differential equations. □

Remark 4.29 Observe that shifting the parameter t ∈ J , if necessary, we may assume that

to = 0. For every X = (p,Xp) ∈ TM we will denote by γX the unique geodesic with initial

conditions γX(0) = p and γ̇X(0) = Xp. We will also use the notation JX for the maximal

interval of definition of γX .

4.3 Exponential Map

Definition 4.30 Let M be a Riemannian manifold and consider U ⊆ TM defined by

U = {X ∈ TM | [0, 1] ⊆ JX} .

The exponential map exp : U −→M is given by

exp(X) = γX(1) .

For every p ∈ M , we denote by Up = U ∩ TpM and refer to expp : Up −→ M as the

(restricted) exponential map.

Proposition 4.31 Let exp be the exponential map of a Riemannian manifold M . Then, the

followings hold:

1. The subset U is open in TM and it contains the zero section (p, 0). Moreover, for every

p ∈M , Up is star-shaped with respect to the origin.

2. For every X ∈ TM , the geodesic γX is given by

γX(t) = exp(tX) ,

for every t ∈ JX .

3. The exponential map is a smooth map.

4. Rescaling Lemma. For every X ∈ TM and c ∈ R,

γcX(t) = γX(c t) ,

as long as t ∈ JcX and c t ∈ JX .
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Remark 4.32 From Point 3 above, we have that the exponential map expp is smooth. However,

even if expp is defined on the entire tangent space TpM , it may not be a diffeomorphism.

Nonetheless, its differential at the origin is the identity and, hence, by the Inverse Function

Theorem, expp is a local diffeomorphism. The injectivity radius of M at p ∈ M is the largest

radius of a ball that can be diffeomorphically map via expp.

Definition 4.33 Let M be a Riemannian manifold M and p ∈M . For every two-dimensional

linear subspace π ⊆ TpM , the planar section determined by π is

Sπ = expp (π ∩ Vp) ,

where Vp ⊆ TpM is a neighborhood of the zero where expp is a diffeomorphism.

Remark 4.34 The planar section Sπ is a Riemannian submanifold of M of dimension two

which contains the point p ∈ M and is composed by the geodesics starting at p ∈ M and with

initial velocity in the subspace π ⊆ TpM . Extending in a standard way the notion of Gaussian

curvature (cf. Definition 3.40) to surfaces in M , not necessarily in R3, we obtain that the

sectional curvature of π at p ∈ M (defined in M) is, precisely, the Gaussian curvature of the

planar section.

Lemma 4.35 (Gauss’ Lemma) Let M be a Riemannian manifold and p ∈ M . The image

of a sphere of sufficiently small radius via the exponential map expp is perpendicular to all

geodesics starting at p ∈M .

Definition 4.36 A Riemannian manifold is said to be geodesically complete if the maximal

interval of definition of every geodesic is the entire real line R.

Theorem 4.37 (Hopf-Rinow) A Riemannian manifold is geodesically complete if and only

if it is complete as a metric space.

Corollary 4.38 Let M be a Riemannian manifold. If there exists a point p ∈M such that the

exponential map expp is defined in all the tangent space TpM , then M is complete.

Remark 4.39 A compact Riemannian manifold M is complete. Hence, every geodesic can be

defined in the entire real line R.

Remark 4.40 A Riemannian manifold M is complete if and only if every two points of M

can be joined by a minimizing geodesic. A minimizing geodesics is, roughly speaking, a geodesic

that minimizes the length between the two points. We will study this concept with more detail

in the next chapter.

32



4.4 Exercises

1. Show that the notion of a smooth parameterized regular curve in a Riemannian manifold

(cf. Remark 4.3) is equivalent to that of a smooth immersed curve (cf. Definition 4.1).

2. Show that every smooth immersed curve in a Riemannian manifold admits a reparame-

terization by the arc length. (Proposition 4.11.)

3. Let γ : J ⊆ R −→ R3 be a smooth immersed curve in the Euclidean space R3 parameter-

ized by an arbitrary parameter t ∈ J .

i) Show that the curvature κ of γ is given by

κ(t) =
∥γ̇(t)× γ̈(t)∥

∥γ̇(t)∥3
,

where ∥u∥ =
√

⟨u, u⟩ is the norm of a vector u ∈ R3.

ii) Show that the torsion τ of γ is given by

τ(t) =
⟨γ̇(t)× γ̈(t),

...
γ (t)⟩

⟨γ̇(t)× γ̈(t), γ̇(t)× γ̈(t)⟩
.

iii) Assume now that γ : I ⊆ R −→ R3 is parameterized by the arc length s ∈ I. Show

that the torsion τ of γ is then

τ(s) =
⟨γ′(s)× γ′′(s), γ′′′(s)⟩

κ2(s)
,

where κ(s) is the curvature of γ.

iv) Let γ : I ⊆ R −→ R3 be an arc length parameterized planar curve (that is, τ = 0

identically). Then, the curve γ may be understood as γ : I ⊆ R −→ R2. Consider a

fixed direction v in R2 and define θ(s) as the angle between γ′(s) and v. Show that

κ(s) = |θ′(s)| ,

holds.

4. Show that the geodesics of the hyperbolic plane H2 in the upper half-plane model, that

is, H = {(x, y) ∈ R2 | y > 0} endowed with the metric

g =
1

y2
(
dx2 + dy2

)
,

are circles and straight lines (properly parameterized) which meet the x-axis at right

angles.

5. * Prove that the geodesics of a sphere Sn are parts of great circles parameterized with

constant speed.
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6. * Let M be a Riemannian submanifold of M̃ and consider a smooth immersed curve

γ : J ⊆ R −→M parameterized with constant speed.

i) Show that γ is a geodesic if and only if the acceleration vector field along γ is normal

to M .

ii) The Riemannian submanifold M is called totally geodesic if any geodesic of M is

also a geodesic of M̃ . Show that a submanifold M is totally geodesic if and only if

its second fundamental form is identically zero.

iii) Classify all totally geodesic submanifolds of the Euclidean space Rn.

iv) Prove that the equator Sn−1 is a totally geodesic submanifold of Sn.

7. * Consider the surface of revolution S in R3 given locally by

x−1(s, θ) = (f(s) cos θ, f(s) sin θ, g(s)) ,

where f(s) > 0 and f ′(s)2 + g′(s)2 = 1.

i) Show that all the meridians θ = θo constant are geodesics.

ii) Show that a parallel s = so constant parameterized by the arc length is a geodesic if

and only if so is a critical point of the function f .

iii) Prove Clairaut’s relation: If γ(t) is a geodesic of a surface of revolution, then

r(t) cosψ(t) = c ∈ R ,

where r(t) represents the radius of the parallel intersecting γ at γ(t) and ψ(t) is the

angle made by γ and that parallel.

8. * Let M be a Riemannian manifold and f ∈ C∞(M) such that ⟨grad f, grad f⟩ = 1 at

every point p ∈M (for the definition of the gradient vector field see Exercise 2 of Section

2.5). Show that the integral curves of grad f are geodesics.

9. * Let S be a regular surface in R3 and consider a smooth immersed curve γ : I ⊆ R −→
S ⊂ R3 parameterized by the arc length s ∈ I. The normal curvature κn of γ is defined

by

κn = ⟨∇R3

T T, ξ⟩ ,

where T = γ′ is the unit tangent vector field along γ. A curve whose normal curvature is

identically zero is an asymptotic curve.

i) Denote by θ ∈ [−π, π] the oriented angle between the unit normal N along γ (as a

curve in R3) and the normal ξ to the surface. Show that

κn = κ cos θ ,

where κ is the curvature of γ as a curve in R3.
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ii) Define the conormal n(s) as the vector field along γ given by n = T × ξ, where ×
denotes the usual vector product in R3. The positively oriented frame {n, T, ξ} along

γ is called the Darboux frame. The geodesic curvature9 κg of γ is

κg = ⟨∇R3

T T, n⟩ .

Show that κg = κ sin θ (where θ is as in the previous case) and, hence, κ2 = κ2g + κ2n
holds.

iii) Use the Gauss formula for surfaces (Theorem 3.36) to obtain κ2 = κ2g + κ2n, in a

different way. Deduce that

κn = h(γ′, γ′) ,

where h is the scalar second fundamental form of S, and that κg is, in absolute value,

the curvature of γ as a curve in S.

iv) Consider an orthonormal frame {e1, e2} of the tangent bundle to S. Show that for a

unit vector field X, the normal curvature in the direction of X is given by

κn = κ1 cos
2 ψ + κ2 sin

2 ψ ,

where ψ is the angle between e1 and X, and κ1 ≤ κ2 are the principal curvatures of

S. This is known as the Euler’s formula.

v) Show that the maximum and minimum normal curvatures are the principal curva-

tures.

vi) Denote by κn(ψ) the normal curvature in the direction X making an angle ψ with a

fixed direction. Prove that the mean curvature H of S is given by

H =
1

π

∫ π

0

κn(ψ) dψ .

10. * Let γ : I ⊆ R −→ S ⊂ R3 be an arc length parameterized smooth immersed curve in

a regular surface S in R3 and denote by n(s) the conormal vector field along γ (see the

previous exercise for its definition). The geodesic torsion τg of γ is defined by

τg = ⟨∇R3

T n, ξ⟩ .

i) Let θ ∈ [−π, π] be the oriented angle between the unit normal N along γ (as a curve

in R3) and ξ. Prove that

τg = θ′ − τ ,

where τ is the torsion of γ (as a curve in R3).

9. Observe that most authors define κg with the opposite sign.
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ii) A principal direction is such that the normal curvature κn of γ in that direction is

one of the principal curvatures κi, i = 1, 2, of S. Denote by {e1, e2} the orthonormal

frame of the tangent bundle giving the principal directions. Show that

τg = (κ1 − κ2) cosψ sinψ ,

where ψ is the angle between T and e1.

iii) A line of curvature is a curve whose tangent is always a principal direction. Prove

that lines of curvature are characterized by having identically zero geodesic torsion.
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5 Introduction to Calculus of Variations

(For more details about the variation formulas of the length and energy functionals, see Chapter

9 of [5] and/or Chapters 6 and 10 of [9]. For a deeper understanding of the Calculus of

Variations, see [7].)

5.1 Length and Energy Functionals

Definition 5.1 Let γ : J = (a, b) ⊆ R −→ M be a smooth immersed curve in a Riemannian

manifold M . The length of γ is

L(γ) =

∫ b

a

√
⟨γ̇(t), γ̇(t)⟩ dt ,

while the energy of γ is defined by

E(γ) =

∫ b

a

⟨γ̇(t), γ̇(t)⟩ dt .

Remark 5.2 The reason why we introduce the energy and will work with it instead of with the

length is based on two facts: on one hand, we avoid working with square roots, which make

computations tedious, and on the other hand, we will obtain that critical points are parameter-

ized with constant speed, which we recall here that it is essential to have geodesics (Proposition

4.21).

Proposition 5.3 Let γ : J = (a, b) ⊆ R −→M be a smooth immersed curve. Then,

L2(γ) ≤ (b− a)E(γ) ,

holds between the length L and the energy E of γ. Moreover, equality holds if and only if γ has

constant speed V (t) =
√

⟨γ̇(t), γ̇(t)⟩.

Proof. The first part of the proof is just a direct application of the Cauchy-Schwarz inequality,

L2(γ) =

(∫ b

a

√
⟨γ̇(t), γ̇(t)⟩ dt

)2

=

(∫ b

a

1 ·
√

⟨γ̇(t), γ̇(t)⟩ dt
)2

≤
∫ b

a

dt

∫ b

a

⟨γ̇(t), γ̇(t)⟩ dt = (b− a)E(γ) .

For the second part, note that the equality holds if and only if V (t) =
√
⟨γ̇(t), γ̇(t)⟩ and 1 are

linearly dependent, which means that the speed V (t) of γ must be constant. □
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5.2 First Variation Formula

Definition 5.4 Let γ : J ⊆ R −→ M be a smooth immersed curve in a Riemannian manifold

M . A variation of γ is a map Γ : (−ϵ, ϵ) × J −→ M such that Γ(0, t) = γ(t) for every t ∈ J .

The vector field W along γ defined as the partial derivative W (t) = ∂Γ/∂w(0, t) is called the

variational vector field.

Remark 5.5 A variation of a curve can be understood as a family of curves {Γ(w, t)}w∈(−ϵ,ϵ)

defined on the interval J . Similarly, Γ(w, t) may be interpreted as a surface in M with param-

eters (w, t) ∈ (−ϵ, ϵ)× J .

Definition 5.6 A variation Γ of γ : J = (a, b) ⊆ R −→ M is called a proper variation if it

fixes the end points of γ. That is, if Γ(w, a) = γ(a) and Γ(w, b) = γ(b) for all w ∈ (−ϵ, ϵ).

Remark 5.7 Equivalently, a proper variation of γ is a variation whose variational vector field

W vanishes at the end points of γ. That is, W (a) = W (b) = 0. Such a variational vector field

along γ is called a proper variational vector field.

Theorem 5.8 (First Variation Formula) Let γ : J = (a, b) ⊆ R −→ M be a smooth im-

mersed curve and Γ(w, t) a proper variation of γ with variational vector field W (t). Consider

the energy functional E acting on the variation curves Γ(w, t). Then,

δE(γ) = δ|w=0E(Γ) = −2

∫ b

a

⟨∇γ̇ γ̇(t),W (t)⟩ dt ,

where ∇ represents the Levi-Civita connection of M .

Proof. We begin by proving the variation of the square of the speed of γ. Denote by V 2(w, t) =

⟨Γ̇(w, t), Γ̇(w, t)⟩ where Γ̇ = ∂Γ/∂t. (Throughout this proof, for simplicity, we will avoid ex-

plicitly writing the dependence on w and t). Then,

W (V 2) = W
(
⟨Γ̇, Γ̇⟩

)
= 2⟨∇W Γ̇, Γ̇⟩ ,

where ∇ is the Levi-Civita connection of M . Hence, since ∇ is symmetric,

∇W Γ̇−∇Γ̇W = [W, Γ̇] = 0 .

Using this in W (V 2), we have

W (V 2) = 2⟨∇Γ̇W, Γ̇⟩ .

We next compute the first variation formula of the energy functional,

δE (Γ) =
∂

∂w
E (Γ) =

∂

∂w

∫ b

a

⟨Γ̇, Γ̇⟩ dt =
∫ b

a

W
(
⟨Γ̇, Γ̇⟩

)
dt =

∫ b

a

W (V 2) dt

= 2

∫ b

a

⟨∇Γ̇W, Γ̇⟩ dt = −2

∫ b

a

⟨∇Γ̇Γ̇,W ⟩ dt ,
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where in the last equality we have integrated by parts and use that Γ is a proper variation.

Finally, evaluating above expression at w = 0, we conclude that

δE(γ) = δ|w=0E (Γ) = −2

∫ b

a

⟨∇γ̇ γ̇,W ⟩ dt ,

as claimed. □

Definition 5.9 A smooth immersed curve γ is a critical point of the energy functional E if for

every proper variation of γ, δE(γ) = 0 holds.

Corollary 5.10 A smooth immersed curve γ : J ⊆ R −→ M is a geodesic if and only if γ is

a critical point of the energy functional E.

Proof. Let γ be a geodesic. By definition, ∇γ̇ γ̇(t) = 0 holds for every t ∈ J . Consequently,

for every proper variation of γ, the first variation formula δE(γ) (see Theorem 5.8) vanishes.

Hence, according to Definition 5.9, γ is a critical point of the energy functional E.

Conversely, let γ be a critical point of the functional E. This means that δE(γ) = 0 for

every proper variation of γ. In other words, for every proper variational vector field W (t).

Consider proper variations of the type W (t) = φ(t)∇γ̇ γ̇(t), where φ ∈ C∞
o (J) is any smooth

function which has compact support in J . We then have,

0 = −2

∫ b

a

⟨∇γ̇ γ̇(t),∇γ̇ γ̇(t)⟩φ(t) dt ,

for every compactly supported smooth function φ ∈ C∞
o (J). It then follows from the Funda-

mental Lemma of Calculus of Variations that

⟨∇γ̇ γ̇(t),∇γ̇ γ̇(t)⟩ = 0 ,

for all t ∈ J . Therefore, ∇γ̇ γ̇(t) = 0 for all t ∈ J and γ is a geodesic. □

Remark 5.11 In general, the Fundamental Lemma of Calculus of Variations gives us the

equations characterizing the critical points10 of the corresponding functional. These equations

are known as the Euler-Lagrange equations. In our particular case, the Euler-Lagrange equa-

tion associated with the energy functional E is nothing but the equation of geodesics, namely,

∇γ̇ γ̇(t) = 0 for all t ∈ J .

Definition 5.12 A smooth immersed curve γ : J ⊆ R −→ M in a Riemannian manifold is

a (length) minimizing curve if L(γ) ≤ L(γ̃) for any other curve γ̃ with the same endpoints.

The curve γ is a locally minimizing curve if for every to ∈ J , there exists a neighborhood

U = (to − ϵ, to + ϵ) ⊆ J such that the restriction of γ to U , γ|U , is a minimizing curve among

every pair of points.

10. Critical points are also known as stationary points.
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Remark 5.13 It follows directly from the definitions that every minimizing curve is locally

minimizing.

Theorem 5.14 Every geodesic in a Riemannian manifold is locally minimizing.

Remark 5.15 Geodesics may not be (globally) minimizing curves. For a counterexample, see

Exercise 4 of Section 5.4.

Proposition 5.16 Let p, q ∈ M be two arbitrary points of a Riemannian manifold M and

consider a minimizing geodesic γ : J = (a, b) ⊆ R −→ M joining p to q, that is, γ(a) = p and

γ(b) = q. Then, for any other curve γ̃ joining p to q,

E(γ) ≤ E(γ̃) ,

where E is the energy functional. Moreover, equality holds if and only if γ̃ is also a minimizing

geodesic.

Proof. From the Cauchy-Schwarz inequality, we obtained in Proposition 5.3 that L2(γ) ≤
(b − a)E(γ) for every smooth immersed curve γ : J = (a, b) ⊆ R −→ M . Moreover, in the

case that γ has constant speed we had the equality. Combining this with γ being a minimizing

geodesic, we obtain

(b− a)E(γ) = L2(γ) ≤ L2(γ̃) ≤ (b− a)E(γ̃) .

Observe that the first relation is an equality because geodesics have constant speed (see Propo-

sition 4.21), while L2(γ) ≤ L2(γ̃) follows from the definition of a minimizing curve. This proves

the first part of the statement.

For the second part, assume that E(γ) = E(γ̃). This means that all the inequalities above

are, indeed, equalities. From L2(γ̃) = (b − a)E(γ̃) and Proposition 5.3, we deduce that γ̃

is parameterized with constant speed. Furthermore, L2(γ) = L2(γ̃), and so γ̃ is a length

minimizing curve. Therefore, from the first variation formula we conclude that it must be a

geodesic. □

5.3 Second Variation Formula

Theorem 5.17 (Second Variation Formula) Let γ : J = (a, b) ⊆ R −→ M be a geodesic

and Γ(w, t) a proper variation of γ with variational vector field W (t). Consider the energy

functional E acting on the variation curves Γ(w, t). Then,

δ2E(γ) = δ|w=0(δE) (Γ) = −2

∫ b

a

⟨∇2
γ̇W (t) +R(γ̇(t),W (t))γ̇(t),W (t)⟩ dt ,

where ∇ is the Levi-Civita connection and R is the Riemann curvature tensor of M .

40



Proof. Following with the computations of the first variation formula (see Theorem 5.8) and

differentiating again, we obtain

δ2E (Γ) = δ (δE) (Γ) = −2
∂

∂w

∫ b

a

⟨∇Γ̇Γ̇,W ⟩ dt = −2

∫ b

a

W
(
⟨∇Γ̇Γ̇,W ⟩

)
dt

= −2

∫ b

a

(
⟨∇W∇Γ̇Γ̇,W ⟩+ ⟨∇Γ̇Γ̇,∇WW ⟩

)
dt .

At this point, we notice that the second term in the last integral will not play any role since it

will vanish at w = 0. Indeed, at w = 0 we will get ⟨∇γ̇ γ̇,∇WW ⟩ = 0 because γ is a geodesic.

On the other hand, for the first term we will employ the definition of the Riemann curvature

tensor R (Definition 2.24), from which we deduce that

∇W∇Γ̇Γ̇ = ∇Γ̇∇W Γ̇−∇[Γ̇,W ]Γ̇ +R(Γ̇,W )Γ̇

= ∇Γ̇∇W Γ̇ +R(Γ̇,W )Γ̇ ,

where we have used that the second term is zero since [Γ̇,W ] = 0. Moreover, in the first term

above we use that ∇ is symmetric (as in the first variation formula), to get

∇Γ̇∇W Γ̇ = ∇Γ̇∇Γ̇W = ∇2
Γ̇
W .

Combining everything and evaluating δ2E(Γ) at w = 0, we obtain

δ2E(γ) = δ2|w=0E(Γ) = −2

∫ b

a

⟨∇2
γ̇W +R(γ̇,W )γ̇,W ⟩ dt ,

proving the result. □

Definition 5.18 A vector field J along a geodesic γ that satisfies the Jacobi equation

∇2
γ̇J +R(γ̇,J )γ̇ = 0 ,

is called a Jacobi field.

Theorem 5.19 Let γ be a geodesic and J a vector field along γ. If J is the variational vector

field of a variation Γ(w, t) through geodesics (that is, Γ(w, t) is a geodesic for every w ∈ (−ϵ, ϵ)),
then J is a Jacobi field.

Proof. Let J be the variational vector field of Γ(w, t) through geodesics. From the definition

of the Riemann curvature tensor (Definition 2.24), we have

R(Γ̇,J )Γ̇ = ∇J∇Γ̇Γ̇−∇Γ̇∇J Γ̇ +∇[Γ̇,J ]Γ̇ ,

where, as usual, Γ̇ = ∂Γ/∂t. The first term is zero since all the curves in the variation are

geodesics and so ∇Γ̇Γ̇ = 0. On the other hand, [Γ̇,J ] = 0 and, hence, the last term is also zero.

It remains to work just with the second term.
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We will use that the Levi-Civita connection ∇ is symmetric to obtain,

R(Γ̇,J )Γ̇ = −∇Γ̇∇J Γ̇ = −∇Γ̇

(
∇Γ̇J + [J , Γ̇]

)
= −∇2

Γ̇
J ,

where we have used once again that J and Γ̇ commute, that is, [Γ̇,J ] = 0.

Finally, we evaluate at w = 0, to conclude that

R(γ̇,J )γ̇ = −∇2
γ̇J ,

and, therefore, the Jacobi equation is satisfied. □

Remark 5.20 Every Jacobi field can be understood as the variational vector field of a variation

through geodesics.

Theorem 5.21 (Existence and Uniqueness of Jacobi Fields) Let γ : J = (a, b) ⊆ R −→
M be a geodesic and p = γ(a). For every pair of vectors Xp, Yp ∈ TpM , there exists a unique

Jacobi field J along γ satisfying the initial conditions

J (a) = Xp , ∇γ̇J (a) = Yp .

Definition 5.22 Let γ be a geodesic joining two points p, q ∈ M . We will say that q is a

conjugate point to p along γ if there exists a Jacobi field along γ vanishing at p and q but not

identically zero. The dimension of the space of such Jacobi fields is the multiplicity (or, order)

of the conjugacy.

Theorem 5.23 Let p ∈ M be a point in a Riemannian manifold M and Xp ∈ TpM . Then,

the exponential map expp is a local diffeomorphism in a neighborhood of Xp if and only if

q = expp(Xp) is not a conjugate point to p along the geodesic γ(t) = expp(tXp), t ∈ [0, 1].

Theorem 5.24 (Bonnet-Myers’ Theorem) LetM be a complete Riemannian manifold and

assume that its Ricci curvature satisfies

Ricp (Xp) ≥
1

R2
> 0 ,

for all p ∈M and every unitary vector Xp ∈ TpM . Then, M is compact and its diameter (that

is, the supremum of the distances among every pair of points) is smaller or equal πR.

Theorem 5.25 (First Jacobi Theorem) Let γ : J = (a, b) ⊆ R −→ M be a geodesic such

that γ(b) is not a conjugate point to γ(a). Then, γ is a minimizing curve, among all the

variation curves for every proper variation of γ, if and only if it has no conjugate points in the

interval (a, b].
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Remark 5.26 It is essential to highlight that, under the lack of conjugate points, the geodesic

γ minimizes the length among all curves which can be obtained by varying γ, that is, is a

local minimum of the length functional. It may not be a (globally) minimizing curve. For a

counterexample, consider any parallel on a cylinder and recall that surfaces with non-positive

Gaussian curvature do not have conjugate points (see Exercise 4 of Section 5.4).

Remark 5.27 The fact that γ(b) is not conjugate to γ(a) makes the geodesic γ an strict local

minimum of the length functional. On the contrary, consider the sphere S2. The north and

south poles are conjugate points and any meridian (which are geodesics as shown in Exercise 7

of Section 4.4) joining these poles have the same length. Meridians can be deformed one into

another and, hence, none of them is an strict local minimum of the length functional.

5.4 Exercises

1. * Let γ : J = (a, b) ⊆ R −→M be a smooth immersed curve and Γ(w, t) a proper variation

of γ with variational vector field W (t). Consider the length functional L (Definition 5.1)

acting on the variation curves Γ(w, t).

i) Compute the first variation formula δL(γ) for the length functional L.

ii) Show that a curve is a critical point of the length functional (δL(γ) = 0 for every

proper variation of γ) if and only if

∇γ̇

(
γ̇√
⟨γ̇, γ̇⟩

)
= 0 ,

holds.

iii) Prove that a curve γ is a geodesic if and only if it is a constant speed critical point

of the length functional. (Cf. Corollary 5.10.)

2. * Let γ : J = (a, b) ⊆ R −→ R2 be a smooth immersed curve and Γ(w, t) a proper

variation of γ with variational vector field W (t). Consider the functional

G(γ) =

∫ b

a

⟨γ(t), ∂y⟩
√

⟨γ̇(t), γ̇(t)⟩ dt ,

where (x, y) are the standard coordinates of R2, acting on the variation curves. The

functional G measures the gravitational potential energy of a chain, supported at its

ends, in a constant gravitational field. Note that the height is computed with respect to

the x-axis, that is, ⟨γ(t), ∂y⟩. The critical points of G(γ) are called catenaries.

i) Compute the first variation formula δG(γ) for the functional G.

ii) Show that a curve γ is a critical point of G (that is, a catenary) if and only if the

curvature κ of its arc length reparameterization satisfies

κ =
⟨N, ∂y⟩
⟨γ, ∂y⟩

,
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where N is the unit normal.

iii) Let S be the surface of revolution in R3 obtained by rotating a catenary around the

x-axis. Show that S is minimal. The surface S is known as the catenoid.

3. * Let γ : J = (a, b) ⊆ R −→ R2 be a smooth immersed curve and Γ(w, t) a proper

variation of γ with variational vector field W (t). Consider the functional

T (γ) =

∫ b

a

1√
⟨γ(t), ∂y⟩

√
⟨γ̇(t), γ̇(t)⟩ dt ,

acting on the variation curves. According to the conservation of energy, the kinetic energy

and the gravitational potential energy must be equal at each point of the trajectory, that

is, mV 2/2 = mg⟨γ(t), ∂y⟩, which implies V (t) =
√

2g⟨γ(t), ∂y⟩. Consequently, since

the speed is ds/dt = V , the functional T measures the time needed to travel from one

point to another when only constant gravity is acting. The critical points of T are called

brachistochrone curves (roughly speaking, the curves with shortest time).

i) Compute the first variation formula δT (γ) for the functional T .

ii) Compute the Euler-Lagrange equation associated with T and show that critical points

(that is, brachistochrone curves) are cycloids.

4. Let S be a circular cylinder in R3 parameterized by

x−1(θ, z) = (cos θ, sin θ, z) ,

where θ ∈ (0, 2π) and z ∈ R.

i) Show that the curves z = zo constant (parallels) are geodesics. (Cf. Exercise 7 of

Section 4.4.)

ii) Compute the length of the curve γ given by z = zo constant between every two points

in that parallel.

iii) Prove that the curve γ minimizes the length (is a globally minimizing curve) if and

only if the length of the curve is smaller or equal π.

5. * Let M be a Riemannian manifold and f ∈ C∞(M) such that ⟨grad f, grad f⟩ = 1 at

every point p ∈ M (the gradient vector field grad f was defined in Exercise 2 of Section

2.5). The integral curves of grad f are geodesics (see Exercise 8 of Section 4.4). Show

that for every pair of points p, q ∈M , they are indeed minimizing geodesics.

6. Let (U, x) be a local chart for a Riemannian manifold M and consider a geodesic γ : J ⊆
R −→M such that γ(J) ⊂ U .

i) Write the local equations (in terms of the coordinate functions xk(t), k = 1, ..., n, of

γ) for the Jacobi fields along γ.

ii) Transform the second order differential equations into a system of first order equations

by introducing suitable new variables.
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Then, the standard theory of ordinary differential equations shows the local existence and

uniqueness of Jacobi fields (Theorem 5.21).
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6 Application to Image Reconstruction

(For more details about sub-Riemannian geometry, see [12]. For more details about the applica-

tion to image reconstruction, see [1] and references therein. For more details about functionals

depending on the curvature, see [16].)

6.1 Sub-Riemannian Manifold

Definition 6.1 Let M be a smooth manifold. A sub-bundle of the tangent bundle TM is called

a distribution D on M . A distribution D is bracket-generating if for every p ∈M , the sections

of D near p together with all their Lie brackets span the tangent space TpM .

Definition 6.2 Let M be a smooth manifold and D a distribution on M . A sub-Riemannian

metric is a smoothly varying positive definite bilinear form ⟨·, ·⟩ on D.

Definition 6.3 A smooth manifold M equipped with a sub-Riemannian metric ⟨·, ·⟩ on a

bracket-generating distribution D is a sub-Riemannian manifold.

Remark 6.4 If the distribution D is equal to the whole tangent bundle TM , then ⟨·, ·⟩ is a

Riemannian metric and M is a Riemannian manifold. Having a sub-Riemannian manifold (in

contrast to a Riemannian manifold) just means, roughly speaking, that we can only compute

the magnitude of some vector fields and, hence, the length of some special curves.

Definition 6.5 Let M be a sub-Riemannian manifold. A D-curve on M is a smooth immersed

curve δ : J = (a, b) ⊆ R −→ M which is always tangent to the distribution D. That is,

δ̇(t) ∈ Dδ(t) for all t ∈ J .

Remark 6.6 The notion of a D-curve does not need that the distribution is bracket-generating

and, indeed, we can consider D-curves simply on a smooth manifold M with a (not necessarily

bracket-generating) distribution. The Theorem of Chow-Rashevskii (see Chapter 2 of [12]) states

that, if D is bracket-generating, then there is a D-curve joining every two points of M . Hence,

we will restrict ourselves to bracket-generating distributions.

Definition 6.7 Let M be a sub-Riemannian manifold and δ : J = (a, b) ⊆ R −→ M a D-

curve. The length of δ is

L(δ) =

∫ b

a

√
⟨δ̇(t), δ̇(t)⟩ dt .

For every p, q ∈M , the distance between p and q is the infimum of the lengths of all D-curves

joining p and q.
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6.2 Sub-Riemannian Model

Remark 6.8 Neurobiological research over the past few decades has greatly clarified the func-

tional mechanisms of the first layer V1 of the visual cortex (also known as the primary visual

cortex). Such layer contains a variety of types of cells, including the so-called simple cells.

Researchers found that V1 constitutes of orientation selective cells at all orientations for all

retinal positions, so simple cells are sensitive to orientation-specific brightness gradients.

Recently, this structure of the primary visual cortex has been modeled using sub-Riemannian

geometry. In particular, the unit tangent bundle of the plane R2×S1 can be used as an abstrac-

tion to study the organization and mechanisms of V1.

According to this model for V1, in the space R2×S1, each point (x, y, θ) represents a column

of cells associated with a point of retinal data (x, y) ∈ R2, all of which are adjusted to the

orientation given by the angle θ ∈ S1. More specifically, the vector (cos θ, sin θ) is the direction

of maximal rate of change of brightness at a point (x, y) of the picture seen by the eye. Thus,

when the cortex cells are stimulated by an image, the border of the image gives a curve inside

the 3D-space R2 × S1, but such curves are restricted to be tangent to the distribution spanned

by the vector fields

X1 = cos θ ∂x + sin θ ∂y , X2 = ∂θ .

Definition 6.9 We will call the unit tangent bundle of the plane to the sub-Riemannian man-

ifold (R2 × S1,D, ⟨·, ·⟩), where D is the (bracket-generating) distribution spanned by

X1 = cos θ ∂x + sin θ ∂y , X2 = ∂θ ,

and where ⟨·, ·⟩ is the metric on D defined by requesting that X1 and X2 are everywhere or-

thonormal.

Remark 6.10 It is believed that if a piece of the contour of a picture is missing to the eye

vision (or maybe it is covered by an object), then the brain tends to “complete” the curve

by minimizing the length between the endpoints. In other words, the brain considers a sub-

Riemannian minimizing geodesic between the endpoints of the missing data.

Theorem 6.11 Let (R2 × S1,D, ⟨·, ·⟩) be the unit tangent bundle of the plane and consider

two points po = (xo, yo, θo) and p1 = (x1, y1, θ1) in R2 × S1. The D-curves δ : J ⊆ R −→
R2 × S1 satisfying ẏ(t) = ẋ(t) cos θ(t) that cover the distance between po and p1 (that is, the

sub-Riemannian minimizing geodesics) are the lifts of curves γ : J ⊆ R −→ R2 in the plane

that minimize the functional

Θ(γ) =

∫
γ

√
κ2(s) + 1 ds ,

among all the curves in R2 joining (xo, yo) to (x1, y1) and with initial and final angles between

γ̇ and the x-axis, θo and θ1, respectively. (Recall that s denotes the arc length parameter of γ

and that κ is the curvature of γ.)
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Proof. Every D-curve given by δ(t) = (x(t), y(t), θ(t)) in the unit tangent bundle of the plane

R2 × S1 with ẏ(t) = ẋ(t) cos θ(t) is the lift of a smooth curve γ(t) = (x(t), y(t)) in the plane R2

whose tangent vector γ̇(t) makes the angle θ(t) with the x-axis, that is,

γ̇(t) = V (t) cos θ ∂x + V (t) sin θ ∂y = V (t)X1 ,

where V (t) =
√

⟨γ̇(t), γ̇(t)⟩ is the speed of γ(t).

Conversely, every curve γ(t) = (x(t), y(t)) in the plane R2 can be lifted to a D-curve

δ(t) = (x(t), y(t), θ(t)) in R2×S1 by setting θ(t) equal to the angle between γ̇(t) and the x-axis.

Now, the tangent vector δ̇(t) of the D-curve δ(t) satisfies

⟨δ̇(t), δ̇(t)⟩ = ⟨V (t)X1 + θ̇(t)X2, V (t)X1 + θ̇(t)X2⟩ = V 2(t) + θ̇2(t) ,

where X2 = ∂θ and we have used the definition of the sub-Riemannian metric ⟨·, ·⟩ of the unit

tangent bundle of the plane. (Remember that the vector fields X1 and X2 are everywhere

orthonormal.) We also recall now that for a fixed direction in R2 and a curve γ : I ⊆ R −→ R2

the derivative with respect to the arc length parameter s ∈ I of the angle between γ′(s) and

the fixed direction is the curvature of γ, perhaps up to a sign (cf. Exercise 3 of Section 4.4).

In our case, (θ′(s))2 = κ2(s) since θ is the angle between γ̇ and the x-axis. Therefore, applying

the chain rule, we have

⟨δ̇(t), δ̇(t)⟩ = V 2(t) + V 2(t)

(
θ̇(t)

V (t)

)2

= V 2(t)
(
1 + κ2(t)

)
,

where κ(t) is the curvature of γ in the parameter t ∈ J = (a, b). It then follows that

L(δ) =

∫ b

a

√
⟨δ̇(t), δ̇(t)⟩ dt =

∫ b

a

√
κ2(t) + 1 V (t) dt = Θ(γ) ,

after a change of variable.

Consequently, the D-curves δ with ẏ(t) = ẋ(t) cos θ(t) that cover the distance between two

points po and p1 in R2 × S1 are the lifts of curves γ in the plane joining (xo, yo) to (x1, y1) with

initial angle θo and final angle θ1 that minimize the functional Θ. □

Remark 6.12 The hypercolumnar organization of the primary visual cortex suggests that the

cost of moving one orientation unit is not necessarily the same as to moving spatial units, then

the image reconstruction problem should consider minimizing the more general functional

Θµ(γ) =

∫
γ

√
κ2(s) + µ2 ds ,

where µ ∈ R is a non-zero real constant.
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6.3 Total Curvature Type Energies

Theorem 6.13 Let γ : I = (0, L) ⊆ R −→ R2 be an arc length parameterized smooth im-

mersed curve and consider a proper variation of γ with variational vector field W . Consider

the functional Θµ acting on the variation curves. Then,

δΘµ(γ) =

∫
γ

⟨E(s),W (s)⟩ ds+ B (γ,W (s)|L0 ,

where

E(s) = ∇2
γ′

(
1√

κ2(s) + µ2
∇γ′γ′(s)

)
+∇γ′

(
κ2(s)− µ2√
κ2(s) + µ2

γ′(s)

)
,

is the Euler-Lagrange vector field and

B(γ,W (s)) =
1√

κ2(s) + µ2
⟨∇γ′γ′(s),∇γ′W (s)⟩ ,

is the boundary vector field.

Proof. Consider a proper variation Γ of γ. In order to compute the first variation formula

for Θµ, we need to reparameterize all the curves in the variation by an arbitrary parameter

t, so that all of them are defined on the same interval, say t ∈ J = (a, b). In other words,

Γ : (−ϵ, ϵ)× J −→ R2 and t ∈ J is arbitrary. Then,

Θµ(Γ(w, t)) =

∫ b

a

√
κ2(w, t) + µ2 V (w, t) dt ,

where V (w, t) =
√
⟨Γ̇(w, t), Γ̇(w, t)⟩ is the speed of Γ(w, t) and Γ̇ = ∂Γ/∂t. (As customary in

long computations, we will avoid writing the dependence on w and t.)

In Theorem 5.8 we computed the variation of the square of the speed of γ, obtaining

W (V 2) = 2⟨∇Γ̇W, Γ̇⟩ .

Hence, since W (V 2) = 2VW (V ), we get

W (V ) =
⟨∇Γ̇W, Γ̇⟩

V
.

We next need to understand the variation of κ2(w, t). From the definition of the curvature

of a curve (Definition 4.13),

W (κ2) = W ⟨∇TT,∇TT ⟩) = 2⟨∇W∇TT,∇TT ⟩ ,

where T = Γ̇/V is the unit tangent vector field along the variation curves Γ. We point out here

that the variational vector field W and T may not commute. In fact,

[T,W ] = [Γ̇/V,W ] =
1

V
[Γ̇,W ]−W

(
1

V

)
Γ̇ =

W (V )

V 2
Γ̇ =

W (V )

V
T ,

49



where we have used that [Γ̇,W ] = 0. We will use this relation and the definition of the

Riemann curvature tensor R (Definition 2.24) to rewrite ∇W∇TT . Recall that all our variation

curves are in the plane R2, which has curvature identically zero, that is, R(X, Y )Z = 0 for all

X, Y, Z ∈ X(R2). Consequently,

∇W∇TT = ∇T∇WT −∇[T,W ]T = ∇T∇WT − W (V )

V
∇TT

= ∇T (∇TW + [W,T ])− W (V )

V
∇TT

= ∇2
TW −∇T

(
W (V )

V
T

)
− W (V )

V
∇TT ,

where in the second line we have used the symmetry of the Levi-Civita connection∇. Therefore,

W (κ2) = 2⟨∇W∇TT,∇TT ⟩ = 2⟨∇2
TW,∇TT ⟩ − 4

W (V )

V
⟨∇TT,∇TT ⟩

= 2⟨∇2
TW,∇TT ⟩ − 4κ2⟨∇TW,T ⟩ ,

since W (V )/V = ⟨∇TW,T ⟩.
We then differentiate on Θµ to compute its associated first variation formula

δΘµ(Γ) =
∂

∂w
Θµ(Γ) =

∂

∂w

∫ b

a

√
κ2 + µ2 V dt =

∫ b

a

(
W (κ2)

2
√
κ2 + µ2

V +
√
κ2 + µ2W (V )

)
dt

=

∫ b

a

(
⟨∇2

TW,
1√

κ2 + µ2
∇TT ⟩ − ⟨∇TW,

2κ2T√
κ2 + µ2

⟩+ ⟨∇TW,
√
κ2 + µ2 T ⟩

)
V dt.

Evaluating at w = 0 and reparameterizing in terms of the arc length parameter s ∈ I = (0, L)

of γ, we have

δΘµ(γ) = δ|w=0Θµ(Γ) =

∫ L

0

(
⟨∇2

TW,
1√

κ2 + µ2
∇TT ⟩ − ⟨∇TW,

κ2 − µ2√
κ2 + µ2

T ⟩

)
ds

=

∫ L

0

(
−⟨∇TW,∇T

[
1√

κ2 + µ2
∇TT

]
⟩+ ⟨W,∇T

[
κ2 − µ2√
κ2 + µ2

T

]
⟩

)
ds

+

(
⟨∇TW,

1√
κ2 + µ2

∇TT ⟩

∣∣∣∣∣
L

0

=

∫ L

0

(
⟨∇2

T

[
1√

κ2 + µ2
∇TT

]
,W ⟩+ ⟨∇T

[
κ2 − µ2√
κ2 + µ2

T

]
,W, ⟩

)
ds

+

(
⟨∇TW,

1√
κ2 + µ2

∇TT ⟩

∣∣∣∣∣
L

0

,

where in the last two equalities we have integrated by parts and use that W is proper, that is,

W (0) = W (L) = 0. This concludes the proof. □
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Definition 6.14 A smooth immersed curve γ is a critical point of Θµ if δΘµ(γ) = 0 holds for

every proper variation of γ.

Corollary 6.15 Let γ : I ⊆ R −→ R2 be a smooth immersed curve in the plane R2 parame-

terized by the arc length s ∈ I. If γ is a critical point of Θµ, then

d2

ds2

(
κ(s)√

κ2(s) + µ2

)
− µ2 κ(s)√

κ2(s) + µ2
= 0 ,

holds along γ.

Proof. Let γ be a critical point of Θµ. Then, δΘµ(γ) = 0 holds for every proper variation of

γ. In particular, we consider variations whose variational vector field is of the type W (s) =

φ(s)T (s) + ψ(s)N(s), where T is the unit tangent to γ and N is the unit normal, and φ, ψ ∈
C∞
o (I) are compactly supported smooth functions. It then follows from the Fundamental Lemma

of the Calculus of Variations, considering first φ = 0 identically and then ψ = 0 identically,

that both the tangential and normal components of the Euler-Lagrange vector field E(s) must

be zero. Hence, the Euler-Lagrange (vector) equation is, precisely, E(s) = 0.

Now, using the expression of the vector field E and the Frenet-Serret equations (see Remark

4.18) we obtain that the tangential component of E is identically zero, while the vanishing of

the normal component gives rise to the desired ordinary differential equation. □

Remark 6.16 The above proposition gives us the Euler-Lagrange equation associated with the

functional Θµ which is a necessary, but not sufficient, condition to obtain critical points. This

Euler-Lagrange equation is a second order ordinary differential equation in the curvature κ, and

it can be explicitly solved obtaining

κ(s) =
µ (c1e

µs + c2e
−µs)√

1− (c1eµs + c2e−µs)2
,

where c1, c2 ∈ R are constants of integration.

Once the curvature is explicitly obtained it is possible to give a parameterization of the

planar curves in terms of two quadratures (parameterizations by just one quadrature are also

achievable, see Exercise 1 of Section 6.4). In fact, a planar curve with curvature κ(s) can be

parameterized in terms of the arc length parameter s ∈ I as (cf. Exercise 3 of Section 4.4)

γ(s) =

(∫
cos

[∫
κ ds

]
ds,

∫
sin

[∫
κ ds

]
ds

)
.

However, a specific determination of critical points of Θµ implies that the integration constants

must be determined. This can be done by imposing the planar curve γ, parameterized as above,

to satisfy the given boundary conditions, but this requires solving a highly nonlinear system.

51



Remark 6.17 In the following figures (obtained from [16]), we show examples of image recon-

struction using the above described method of minimum length in the unit tangent bundle of the

plane.

6.4 Exercises

1. Let γ : I = (0, L) ⊆ R −→ R2 be an arc length parameterized smooth immersed curve

and assume that γ is a critical point of the functional ([16])

Θµ(γ) =

∫
γ

√
κ2 + µ2 ds .

i) Show that the following is a parameterization of γ in terms of the arc length parameter

s ∈ I,

γ(s) =
1√
a

(
κ(s)√

κ2(s) + µ2
,−
∫

µ2√
κ2(s) + µ2

ds

)
,

where a > 0 is a constant.

ii) Consider the surface of revolution S in R3 obtained by rotating γ(s) (parameterized

as above) around the x-axis. Show that the Gaussian curvature of S is

K = −µ2 .
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iii) Prove that every surface of revolution S in R3 with constant negative Gaussian

curvature K is obtained by rotating a critical point of Θµ, with µ =
√
−K, around

a suitable axis.

2. Let γ : J = (a, b) ⊆ R −→M be a non-geodesic smooth curve immersed in a Riemannian

manifold M . Consider a proper variation Γ(w, t) of γ with variational vector field W (t).

i) Show that the variation of the speed V (w, t) =
√

⟨Γ̇(w, t), Γ̇(w, t)⟩ in γ in the direc-

tion of W is

W (V ) = ⟨∇TW,T ⟩V ,

where T is the unit tangent along γ and ∇ is the Levi-Civita connection of M ([16]).

ii) Show that the variation of the curvature κ(w, t) =
√
⟨∇TT (w, t),∇TT (w, t)⟩ in γ in

the direction of W is

W (κ) =
1

κ
⟨∇2

TW,∇TT ⟩ − 2κ⟨∇TW,T ⟩+
1

κ
⟨R(T,W )T,∇TT ⟩ ,

where R is the Riemann curvature tensor of M ([16]).

3. Let γ : I = (0, L) ⊆ R −→ M be an arc length parameterized curve immersed in a

Riemannian manifold of dimension two with constant sectional curvature K. Consider a

proper variation of γ with variational vector field W and assume that the functional

Θ(γ) =

∫
γ

(
κ2 + µ

)
ds ,

where µ ∈ R and κ is the curvature of γ, is acting on the variation curves. The functional

Θ is called the bending energy, [16].

i) Compute the first variation formula δΘ(γ) for the bending energy.

ii) Show that if a curve is a critical point of the bending energy (δΘ(γ) = 0 for every

proper variation of γ), then the Euler-Lagrange equation

κ′′ +
1

2
κ
(
κ2 − µ

)
+Kκ = 0 ,

holds along γ. Critical points of the bending energy are elastic curves.

iii) Assume that an elastic curve γ has constant curvature. Prove that then, either γ is

a geodesic or

κ2 = µ− 2K .

In particular, let M = R2 be the Euclidean plane. Show that elastic curves with

constant curvature are either straight lines or circles of radius r = 1/
√
µ for µ > 0.

iv) Assume now that γ is an elastic curve with non-constant curvature. Show that the

curvature of γ satisfies the first order ordinary differential equation

(κ′)
2
+

1

4

(
κ2 − µ

)2
+Kκ2 = a ,

for some constant of integration a ∈ R.
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4. * Let γ : I = (0, L) ⊆ R −→ M be an arc length parameterized non-geodesic smooth

immersed curve in a Riemannian manifoldM of dimension two and with constant sectional

curvature K. Consider a proper variation Γ of γ with variational vector field W , such

that none of the variation curves is a geodesic, and assume that the functional

Θ(γ) =

∫
γ

√
κ ds ,

is acting on the (non-geodesic) variation curves. This functional will be referred to as the

Blaschke’s functional, [16].

i) Compute the first variation formula δΘ(γ) for the Blaschke’s functional.

ii) Show that the curvature κ of a critical point γ for the Blaschke’s functional must

satisfy the Euler-Lagrange equation

d2

ds2

(
1√
κ

)
+

1√
κ

(
K − κ2

)
= 0 .

iii) Assume that M = R2 is the Euclidean plane. Find the explicit expression of the

curvature of a critical point and show that γ is a catenary (cf. Exercise 2 of Section

5.4).

iv) Assume thatM = S2 is the round sphere. Prove that for every pair of relatively prime

natural numbers (n,m) satisfying m < 2n <
√
2m there exists a unique closed curve

γ critical for the Blaschke’s functional Θ. The vertical lift via the Hopf fibration

of the critical curve corresponding to m = 5 and n = 3 is the surface in S3 whose

stereographic projection is illustrated on the first page.

5. * Let γ : I = (0, L) ⊆ R −→ M be an arc length parameterized non-geodesic smooth

immersed curve in a Riemannian manifoldM of dimension two and with constant sectional

curvature K. Consider a proper variation Γ of γ with variational vector field W , such

that none of the variation curves is a geodesic, and assume that the functional

Θ(γ) =

∫
γ

1

κ
ds ,

is acting on the (non-geodesic) variation curves.

i) Compute the first variation formula δΘ(γ).

ii) Show that the curvature κ of a critical point γ must satisfy the Euler-Lagrange

equation
d2

ds2

(
1

κ2

)
+
K

κ
+ 2 = 0 .

iii) Assume M = R2 is the Euclidean plane. Prove that the critical points for Θ are

cycloids (cf. Exercise 3 of Section 5.4).
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