

Minimal Surfaces Bounded by Elastic Curves

Álvaro Pámpano Llarena

Elastic Curves and Surfaces with Applications and Numerical Representations 18th International Conference of Numerical Analysis and Applied Mathematics

Lubbock, September 19 (2020)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let Σ be a compact, connected surface with boundary and $X: \Sigma \to \mathbb{R}^3$ a class \mathcal{C}^4 embedding.

Let Σ be a compact, connected surface with boundary and $X : \Sigma \to \mathbb{R}^3$ a class \mathcal{C}^4 embedding.

Euler-Willmore Energy

The Euler-Willmore energy is defined by

$$\mathcal{W}[X] := \mathsf{a} \int_{\Sigma} \mathsf{H}^2 \, \mathsf{d}\Sigma + \oint_{\partial \Sigma} \left(lpha \kappa^2 + eta
ight) \, \mathsf{d} \mathsf{s} \, ,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where a > 0, $\alpha > 0$ and $\beta \in \mathbb{R}$.

Let Σ be a compact, connected surface with boundary and $X : \Sigma \to \mathbb{R}^3$ a class \mathcal{C}^4 embedding.

Euler-Willmore Energy

The Euler-Willmore energy is defined by

$$\mathcal{W}[X] := \mathsf{a} \int_{\Sigma} \mathsf{H}^2 \, \mathsf{d}\Sigma + \oint_{\partial \Sigma} \left(lpha \kappa^2 + eta
ight) \, \mathsf{d}\mathsf{s} \, ,$$

where a > 0, $\alpha > 0$ and $\beta \in \mathbb{R}$. After rescaling we assume $\beta > 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let Σ be a compact, connected surface with boundary and $X : \Sigma \to \mathbb{R}^3$ a class \mathcal{C}^4 embedding.

Euler-Willmore Energy

The Euler-Willmore energy is defined by

$$\mathcal{W}[X] := \mathsf{a} \int_{\Sigma} \mathsf{H}^2 \, \mathsf{d}\Sigma + \oint_{\partial \Sigma} \left(lpha \kappa^2 + eta
ight) \, \mathsf{d}\mathsf{s} \, ,$$

where a > 0, $\alpha > 0$ and $\beta \in \mathbb{R}$. After rescaling we assume $\beta > 0$.

• Motivation. It combines two of the most interesting energies of Geometric Calculus of Variations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. We first consider compactly supported variations, obtaining $\Delta H + 2H \left(H^2 - K\right) \equiv 0, \qquad \text{on } \Sigma,$

i.e. a critical immersion must be a Willmore surface.

1. We first consider compactly supported variations, obtaining $\Delta H + 2H \left(H^2 - K\right) \equiv 0, \qquad \text{on } \Sigma,$

i.e. a critical immersion must be a Willmore surface.

2. We take now normal variations $\delta X = \psi \nu$ to get along the boundary

$$H = 0$$
, on $\partial \Sigma$,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. We first consider compactly supported variations, obtaining $\Delta H + 2H \left(H^2 - K\right) \equiv 0, \qquad \text{on } \Sigma,$

i.e. a critical immersion must be a Willmore surface.

2. We take now normal variations $\delta X = \psi \nu$ to get along the boundary

$$\begin{array}{lll} H &=& 0\,, & & \text{on }\partial\Sigma\,, \\ J'\cdot\nu-a\partial_n H &=& 0\,, & & \text{on }\partial\Sigma\,, \end{array}$$

where $J := 2\alpha T'' + (3\alpha \kappa^2 - \beta) T$.

1. We first consider compactly supported variations, obtaining $\Delta H + 2H \left(H^2 - K\right) \equiv 0, \qquad \text{on } \Sigma,$

i.e. a critical immersion must be a Willmore surface.

2. We take now normal variations $\delta X = \psi \nu$ to get along the boundary

$$H = 0,$$
 on $\partial \Sigma,$
 $J' \cdot \nu - a \partial_n H = 0,$ on $\partial \Sigma,$

where $J := 2\alpha T'' + (3\alpha \kappa^2 - \beta) T$.

3. Finally, from tangent variations we also get

$$J' \cdot n = 0, \qquad \text{on } \partial \Sigma.$$

Minimal Immersions

The Euler-Lagrange equations for equilibria of $\mathcal{W}[X]$ are:

$$\begin{array}{rcl} \Delta H+2H\left(H^2-K\right)&\equiv&0\,,\qquad &\text{on }\Sigma\,,\\ &H&=&0\,,\qquad &\text{on }\partial\Sigma\,,\\ J'\cdot\nu-a\partial_nH&=&0\,,\qquad &\text{on }\partial\Sigma\,,\\ &J'\cdot n&=&0\,,\qquad &\text{on }\partial\Sigma\,. \end{array}$$

Minimal Immersions

The Euler-Lagrange equations for equilibria of $\mathcal{W}[X]$ are:

$$\begin{split} \Delta H + 2H \left(H^2 - K \right) &\equiv 0, & \text{on } \Sigma, \\ H &= 0, & \text{on } \partial \Sigma, \\ J' \cdot \nu - a \partial_n H &= 0, & \text{on } \partial \Sigma, \\ J' \cdot n &= 0, & \text{on } \partial \Sigma. \end{split}$$

Boundary Curves

Let $X : \Sigma \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary $\partial \Sigma$ is composed by closed and simple elastic curves

Minimal Immersions

The Euler-Lagrange equations for equilibria of $\mathcal{W}[X]$ are:

$$\begin{split} \Delta H + 2H \left(H^2 - K \right) &\equiv 0, & \text{on } \Sigma, \\ H &= 0, & \text{on } \partial \Sigma, \\ J' \cdot \nu - a \partial_n H &= 0, & \text{on } \partial \Sigma, \\ J' \cdot n &= 0, & \text{on } \partial \Sigma. \end{split}$$

Boundary Curves

Let $X : \Sigma \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary $\partial \Sigma$ is composed by closed and simple elastic curves, i.e. critical for

$$\mathcal{E}[C] := \oint_C \left(\kappa^2 + \lambda\right) ds \,,$$

with $\lambda := \beta / \alpha > 0$.

Let $C : [0, L] \to \mathbb{R}^3$ be an elastic curve, i.e. critical curve for

$$\mathcal{E}[C] = \int_C \left(\kappa^2 + \lambda\right).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Let $C : [0, L] \to \mathbb{R}^3$ be an elastic curve, i.e. critical curve for

$$\mathcal{E}[C] = \int_C \left(\kappa^2 + \lambda\right).$$

• There exist infinitely many embedded closed elastic curves.

Let $C : [0, L] \to \mathbb{R}^3$ be an elastic curve, i.e. critical curve for

$$\mathcal{E}[C] = \int_C \left(\kappa^2 + \lambda\right).$$

• There exist infinitely many embedded closed elastic curves.

• They lie on suitable rotational tori.

Let $C : [0, L] \to \mathbb{R}^3$ be an elastic curve, i.e. critical curve for

$$\mathcal{E}[C] = \int_C \left(\kappa^2 + \lambda\right).$$

• There exist infinitely many embedded closed elastic curves.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- They lie on suitable rotational tori.
- They represent (q, p)-torus knots.

Let $C : [0, L] \to \mathbb{R}^3$ be an elastic curve, i.e. critical curve for

$$\mathcal{E}[C] = \int_C \left(\kappa^2 + \lambda\right).$$

- There exist infinitely many embedded closed elastic curves.
- They lie on suitable rotational tori.
- They represent (q, p)-torus knots.
- The natural number q represents the number of periods

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $C : [0, L] \to \mathbb{R}^3$ be an elastic curve, i.e. critical curve for

$$\mathcal{E}[C] = \int_C \left(\kappa^2 + \lambda\right).$$

- There exist infinitely many embedded closed elastic curves.
- They lie on suitable rotational tori.
- They represent (q, p)-torus knots.
- The natural number *q* represents the number of periods, while *p* is the number of rounds.

Let $C : [0, L] \to \mathbb{R}^3$ be an elastic curve, i.e. critical curve for

$$\mathcal{E}[C] = \int_C \left(\kappa^2 + \lambda\right).$$

- There exist infinitely many embedded closed elastic curves.
- They lie on suitable rotational tori.
- They represent (q, p)-torus knots.
- The natural number *q* represents the number of periods, while *p* is the number of rounds.

• The parameters satisfy $0 \le 2p < q$.

Let $C : [0, L] \rightarrow \mathbb{R}^3$ be an elastic curve, i.e. critical curve for

$$\mathcal{E}[C] = \int_C \left(\kappa^2 + \lambda\right).$$

- There exist infinitely many embedded closed elastic curves.
- They lie on suitable rotational tori.
- They represent (q, p)-torus knots.
- The natural number *q* represents the number of periods, while *p* is the number of rounds.
- The parameters satisfy 0 ≤ 2p < q.

https://www.youtube.com/watch?v=49CeK8g1RAo

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be the minimal immersion of a topological disc $\Sigma \cong D$ critical for $\mathcal{W}[X]$.

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be the minimal immersion of a topological disc $\Sigma \cong D$ critical for $\mathcal{W}[X]$.

Theorem

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary $\partial \Sigma$ is either a circle of radius $\sqrt{\alpha/\beta}$

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be the minimal immersion of a topological disc $\Sigma \cong D$ critical for $\mathcal{W}[X]$.

Theorem

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary $\partial \Sigma$ is either a circle of radius $\sqrt{\alpha/\beta}$ or a closed and simple elastic curve of type G(q, 1) for q > 2.

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be the minimal immersion of a topological disc $\Sigma \cong D$ critical for $\mathcal{W}[X]$.

Theorem

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary $\partial \Sigma$ is either a circle of radius $\sqrt{\alpha/\beta}$ or a closed and simple elastic curve of type G(q, 1) for q > 2.

Idea of the proof:

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be the minimal immersion of a topological disc $\Sigma \cong D$ critical for $\mathcal{W}[X]$.

Theorem

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary $\partial \Sigma$ is either a circle of radius $\sqrt{\alpha/\beta}$ or a closed and simple elastic curve of type G(q, 1) for q > 2.

Idea of the proof:

• The minimal surface is a Seifert surface, which has genus zero.

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be the minimal immersion of a topological disc $\Sigma \cong D$ critical for $\mathcal{W}[X]$.

Theorem

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary $\partial \Sigma$ is either a circle of radius $\sqrt{\alpha/\beta}$ or a closed and simple elastic curve of type G(q, 1) for q > 2.

Idea of the proof:

- The minimal surface is a Seifert surface, which has genus zero.
- The boundary is a torus knot and its genus is

$$\frac{1}{2}(p-1)(q-1).$$

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be the minimal immersion of a topological disc $\Sigma \cong D$ critical for $\mathcal{W}[X]$.

Theorem

Let $X : \Sigma \cong D \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary $\partial \Sigma$ is either a circle of radius $\sqrt{\alpha/\beta}$ or a closed and simple elastic curve of type G(q, 1) for q > 2.

Idea of the proof:

- The minimal surface is a Seifert surface, which has genus zero.
- The boundary is a torus knot and its genus is

$$\frac{1}{2}(p-1)(q-1).$$

- ロ ト - 4 回 ト - 4 □ - 4

• We compare the genus of this particular Seifert surface with the genus of the boundary knot, obtaining p = 1.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

FIGURE: $C \cong G(4,1)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

FIGURE: $C \cong G(5,1)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

FIGURE: $C \cong G(6,1)$

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be the minimal immersion of a topological annulus $\Sigma \cong A$ critical for $\mathcal{W}[X]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be the minimal immersion of a topological annulus $\Sigma \cong A$ critical for $\mathcal{W}[X]$.

Proposition

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary components of $\partial \Sigma$ are closed and simple elastic curves

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be the minimal immersion of a topological annulus $\Sigma \cong A$ critical for $\mathcal{W}[X]$.

Proposition

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary components of $\partial \Sigma$ are closed and simple elastic curves of the same knot type G(q, p) for $0 \le 2p < q$.

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be the minimal immersion of a topological annulus $\Sigma \cong A$ critical for $\mathcal{W}[X]$.

Proposition

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary components of $\partial \Sigma$ are closed and simple elastic curves of the same knot type G(q, p) for $0 \le 2p < q$.

There are many examples:

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be the minimal immersion of a topological annulus $\Sigma \cong A$ critical for $\mathcal{W}[X]$.

Proposition

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary components of $\partial \Sigma$ are closed and simple elastic curves of the same knot type G(q, p) for $0 \le 2p < q$.

There are many examples:

• Suitable symmetric domains in a catenoid.

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be the minimal immersion of a topological annulus $\Sigma \cong A$ critical for $\mathcal{W}[X]$.

Proposition

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary components of $\partial \Sigma$ are closed and simple elastic curves of the same knot type G(q, p) for $0 \le 2p < q$.

There are many examples:

- Suitable symmetric domains in a catenoid.
- Domains in Riemann's minimal examples.

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be the minimal immersion of a topological annulus $\Sigma \cong A$ critical for $\mathcal{W}[X]$.

Proposition

Let $X : \Sigma \cong A \to \mathbb{R}^3$ be a minimal immersion critical for $\mathcal{W}[X]$, then the boundary components of $\partial \Sigma$ are closed and simple elastic curves of the same knot type G(q, p) for $0 \le 2p < q$.

There are many examples:

- Suitable symmetric domains in a catenoid.
- Domains in Riemann's minimal examples.
- A construction involving the Plateau problem:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

FIGURE: $C_i \cong G(3,1)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

FIGURE: $C_i \cong G(4, 1)$

FIGURE: $C_i \cong G(5,1)$

FIGURE: $C_i \cong G(6,1)$

FIGURE: $C_i \cong G(5,2)$

Recall the expression of the Euler-Willmore energy,

$$\mathcal{W}[X] = a \int_{\Sigma} H^2 \, d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) \, ds \,,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where a > 0, $\alpha > 0$ and $\beta > 0$.

Recall the expression of the Euler-Willmore energy,

$$\mathcal{W}[X] = a \int_{\Sigma} H^2 \, d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) \, ds \,,$$

where a > 0, $\alpha > 0$ and $\beta > 0$.

1. Since $aH^2 \ge 0$, we get

$$\mathcal{W}[X] \ge \oint_{\partial \Sigma} \left(lpha \kappa^2 + eta
ight) ds$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recall the expression of the Euler-Willmore energy,

$$\mathcal{W}[X] = a \int_{\Sigma} H^2 \, d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) \, ds \,,$$

where a > 0, $\alpha > 0$ and $\beta > 0$.

1. Since $aH^2 \ge 0$, we get

$$\mathcal{W}[X] \ge \oint_{\partial \Sigma} \left(lpha \kappa^2 + eta
ight) ds$$
 .

2. An argument involving Wirtinger's inequality shows

$$\mathcal{W}[X] \geq \mathcal{W}_n := 4\pi n \sqrt{\alpha \beta}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall the expression of the Euler-Willmore energy,

$$\mathcal{W}[X] = a \int_{\Sigma} H^2 \, d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) \, ds \,,$$

where a > 0, $\alpha > 0$ and $\beta > 0$.

1. Since $aH^2 \ge 0$, we get

$$\mathcal{W}[X] \ge \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds$$
.

2. An argument involving Wirtinger's inequality shows

$$\mathcal{W}[X] \geq \mathcal{W}_n := 4\pi n \sqrt{\alpha \beta}$$

3. For topological discs, the minimum is attained at a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$.

Recall the expression of the Euler-Willmore energy,

$$\mathcal{W}[X] = a \int_{\Sigma} H^2 \, d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) \, ds \,,$$

where a > 0, $\alpha > 0$ and $\beta > 0$.

1. Since $aH^2 \ge 0$, we get

$$\mathcal{W}[X] \ge \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds$$
.

2. An argument involving Wirtinger's inequality shows

$$\mathcal{W}[X] \geq \mathcal{W}_n := 4\pi n \sqrt{\alpha \beta}$$

3. For topological discs, the minimum is attained at a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$. For annuli, multiple solutions (catenoid, Riemann's minimal examples,...).

THE END

 B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, *submitted*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

THE END

• B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, *submitted*.

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ