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Euler-Willmore Variational Problem

Let Σ be a compact, connected surface with boundary and
X : Σ→ R3 a class C4 embedding.

Euler-Willmore Energy

The Euler-Willmore energy is defined by

W[X ] := a

∫
Σ
H2 dΣ +

∮
∂Σ

(
ακ2 + β

)
ds ,

where a > 0, α > 0 and β ∈ R. After rescaling we assume β > 0.

• Motivation. It combines two of the most interesting energies
of Geometric Calculus of Variations.
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Euler-Lagrange Equations

1. We first consider compactly supported variations, obtaining

∆H + 2H
(
H2 − K

)
≡ 0 , on Σ ,

i.e. a critical immersion must be a Willmore surface.

2. We take now normal variations δX = ψν to get along the
boundary

H = 0 , on ∂Σ ,

J ′ · ν − a∂nH = 0 , on ∂Σ ,

where J := 2αT ′′ +
(
3ακ2 − β

)
T .

3. Finally, from tangent variations we also get

J ′ · n = 0 , on ∂Σ .
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Minimal Immersions

The Euler-Lagrange equations for equilibria of W[X ] are:

∆H + 2H
(
H2 − K

)
≡ 0 , on Σ ,

H = 0 , on ∂Σ ,

J ′ · ν − a∂nH = 0 , on ∂Σ ,

J ′ · n = 0 , on ∂Σ .

Boundary Curves

Let X : Σ→ R3 be a minimal immersion critical for W[X ], then
the boundary ∂Σ is composed by closed and simple elastic curves,
i.e. critical for

E [C ] :=

∮
C

(
κ2 + λ

)
ds ,

with λ := β/α > 0.
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Closed Elastic Curves

Let C : [0, L]→ R3 be an elastic curve, i.e. critical curve for

E [C ] =

∫
C

(
κ2 + λ

)
.

• There exist infinitely many embedded closed elastic curves.

• They lie on suitable rotational tori.

• They represent (q, p)-torus knots.

• The natural number q represents the number of periods, while
p is the number of rounds.

• The parameters satisfy 0 ≤ 2p < q.

https://www.youtube.com/watch?v=49CeK8g1RAo
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Topological Discs

Let X : Σ ∼= D → R3 be the minimal immersion of a topological
disc Σ ∼= D critical for W[X ].

Theorem

Let X : Σ ∼= D → R3 be a minimal immersion critical for W[X ],
then the boundary ∂Σ is either a circle of radius

√
α/β or a closed

and simple elastic curve of type G (q, 1) for q > 2.

Idea of the proof:

• The minimal surface is a Seifert surface, which has genus zero.

• The boundary is a torus knot and its genus is

1

2
(p − 1)(q − 1).

• We compare the genus of this particular Seifert surface with
the genus of the boundary knot, obtaining p = 1.
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Disc Type Surfaces

Figure: C ∼= G (3, 1)
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Disc Type Surfaces

Figure: C ∼= G (6, 1)



Topological Annuli

Let X : Σ ∼= A→ R3 be the minimal immersion of a topological
annulus Σ ∼= A critical for W[X ].

Proposition

Let X : Σ ∼= A→ R3 be a minimal immersion critical for W[X ],
then the boundary components of ∂Σ are closed and simple elastic
curves of the same knot type G (q, p) for 0 ≤ 2p < q.

There are many examples:

• Suitable symmetric domains in a catenoid.

• Domains in Riemann’s minimal examples.

• A construction involving the Plateau problem:
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Annular Type Surfaces

Figure: Ci
∼= G (5, 2)



Minimization Problem

Recall the expression of the Euler-Willmore energy,

W[X ] = a

∫
Σ
H2 dΣ +

∮
∂Σ

(
ακ2 + β

)
ds ,

where a > 0, α > 0 and β > 0.

1. Since aH2 ≥ 0, we get

W[X ] ≥
∮
∂Σ

(
ακ2 + β

)
ds .

2. An argument involving Wirtinger’s inequality shows

W[X ] ≥ Wn := 4π n
√
αβ .

3. For topological discs, the minimum is attained at a planar disc
bounded by a circle of radius

√
α/β. For annuli, multiple

solutions (catenoid, Riemann’s minimal examples,...).
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THE END

• B. Palmer and A. Pámpano, Minimizing Configurations for
Elastic Surface Energies with Elastic Boundaries, submitted.
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