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Abstract. We variationally characterize the profile curves of rotational lin-
ear Weingarten surfaces as planar p-elastic curves. Moreover, by evolving
these planar p-elasticae under the binormal flow with prescribed velocity, we
describe a procedure to construct all rotational linear Weingarten surfaces,
locally. Finally, we apply our findings to two well-known family of surfaces.
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1. Introduction

These notes are a printed version of the talk given by the author at the Interna-
tional Conference on Geometry, Integrability and Quantization held in Varna in
June 2018. The purpose of the talk was to present some results included in the
works [2], [3], [12] and [16]. Here, ideas and arguments are only sketched while
proofs are omitted. Interested readers are going to be referred to [2], [3], [12] or
[16], respectively, for a complete and more general treatment.
In classical Differential Geometry of surfaces, the intrinsic information of a sur-
face, S, is encoded in the first fundamental form. On the other hand, for a surface
immersed in the Euclidean 3-space, R3, the most important extrinsic invariant is,
probably, the mean curvature, H , which can be computed with the aid of the sec-
ond fundamental form. Moreover, the combination of these two fundamental forms
of the immersion of S into R3 gives rise to the shape operator. The shape operator
is symmetric (and, therefore, diagonalizable) and its eigenvalues are usually called
principal curvatures.
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Now, it can be checked that the mean curvature, H , verifies 2H = κ1 +κ2, κ1 and
κ2 being the principal curvatures. In [3], constant mean curvature (from now on,
CMC) invariant surfaces in any Riemannian or Lorentzian 3-space form have been
considered. Notice that the CMC condition expressed in terms of the principal cur-
vatures gives rise to a relation of the type Υ(κ1, κ2) = 0, for a smooth function Υ.
Surfaces verifying a certain relation Υ(κ1, κ2) = 0 between their principal curva-
tures are usually called Weingarten surfaces. These surfaces were introduced by
Weingarten in [21] and its study occupies an important role in classical Differential
Geometry.
The simplest relation of the type Υ(κ1, κ2) = 0 which extends the CMC condition
is the affine relation, often called linear relation in the literature. That is,

a κ1 + b κ2 = c ,

where a, b and c are three real constants, such that, a2 + b2 6= 0. We are going to
call linear Weingarten surfaces to the surfaces whose principal curvatures verify
this linear relation. Trivial examples appear whenever a and c (or, equivalently, b
and c) are both zero, or, also when the surface has one constant principal curvature.
If κ1 = 0 (equivalently, if κ2 = 0), then the surface is developable. Moreover, if
κ1 is a non-zero constant (equivalently, κ2), these surfaces were classified in [20].
In particular, since we are just concerned with rotational surfaces, then they must
be either spheres or torus of revolution.
After these examples, without loss of generality, we can rewrite above linear rela-
tion as

κ1 = a κ2 + b , (1)
where a, b ∈ R and a 6= 0. Well-known families of linear Weingarten surfaces are
the following;

• Totally Umbilical Surfaces. This is the case where a = 1 and b = 0.
• Isoparametric Surfaces. In this case both principal curvatures are constant.

Besides the umbilical surfaces, the surface may be a spherical cylinder.
• Constant Mean Curvature Surfaces. This is the case when a = −1 and

the surface has CMC H = b/2. Observe that in [3] invariant CMC sur-
faces have also been studied in Riemannian and Lorentzian 3-space forms
by considering H = Ho ∈ R instead of above linear relation, (1).

Under this definition, a first result due to Chern proves that the sphere is the only
ovaloid with the property that κ1 is a decreasing function of κ2 [6] (this happens,
for example, if a < 0). Later, Hopf proved in [14] that there are no closed analytic
surfaces of genus greater or equal than 2 unless a = −1, that is, the surface has
CMC and if the genus is 0 and the surface is analytic and rotational, then a or 1/a
must be an odd integer. Indeed, for each a > 1, Hopf proved the existence of
non-spherical closed convex rotational C2-surfaces.
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Moreover, he also proved in [14] the existence of convex closed rotational surfaces
for any a > 0. When a = 2 and b = 0, Mladenov and Oprea have named this
surface as the Mylar balloon [17] and [18]. If a > 0 and b = 0, they have also given
parametrizations of the closed surfaces in terms of elliptic and hypergeometric
functions and show that the surface is a critical point of a variational problem
[17]. For any a and b = 0, Barros and Garay proved that all the parallels of these
rotational surfaces are critical points for an energy functional involving the normal
curvature and acting on the space of closed curves immersed in the surface [4].
In this setting, one of the oldest variational problems over curves was to determine
the shape of an ideal elastic rod, which goes back to 1691. Based on D. Bernoulli’s
approach, an elastic curve is a minimizer of the bending energy, that is, considering
a regular curve γ with curvature κ, its bending energy is given by

Θ(γ) =

∫
γ
κ2 ds (2)

where s is the arc-length parameter of γ. In 1744, Euler published his classification
of the planar elastic curves in the Euclidean plane, R2, [10].
In Section 2 we are going to analyze the critical curves of a generalized bending
energy, which is going to be called p-elastic energy along the paper, following
the terminology of [12]. Then, in Section 3, we are going to use the binormal
evolution procedure, [2], to construct some invariant surfaces from these p-elastic
curves. Indeed, we are going to evolve them under the naturally associated Killing
vector field in the direction of the binormal with prescribed velocity. It turns out
that the invariant surfaces constructed in this way are, precisely, rotational linear
Weingarten surfaces [16]. Moreover, in Section 4, we are going to describe, locally,
the profile curve of any rotational linear Weingarten surface as a planar p-elasticae
[16]. Thus, combining Section 3 and Section 4, we obtain a characterization of
rotational linear Weingarten surfaces in terms of planar p-elastic curves.
Finally, we particularize our findings to two remarkable cases. Firstly, we consider
classic elastic curves, that is, critical curves of (2), and due to our construction,
we recover the characterization of generating curves of Mylar balloons as elastic
curves. Secondly, by considering critical curves of a Blaschke’s variational prob-
lem (which we will show that they represent the roulettes of conic foci), we obtain
all CMC rotational surfaces [3].

2. The p-Elastic Energy of Curves

Let’s consider the Euclidean 3-space, R3, with metric g ≡ 〈· , ·〉 and Levi-Civita
connection ∇. If γ : Ī → R3 is a smooth immersed curve in R3, γ′(t) will
represent its velocity vector dγ(t)dt and the covariant derivative of a vector fieldX(t)
along γ will be denoted by X ′(t).
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Any curve can be parametrized by the arc-length and this natural parameter is going
to be denoted by s and, therefore, the tangent to the curve is going to be represented
by T (s) = γ′(s). The first Frenet curvature, or simply, the curvature, is defined
as the positive root of κ21 = 〈T ′(s), T ′(s)〉. A geodesic is a constant speed curve
whose tangent vector is parallel propagated along itself, that is, a curve whose
tangent, T (s), satisfies the equation T ′(s) = 0. Obviously, geodesics have zero
curvature.
Let’s denote by γ an arc-length parametrized curve immersed in R3, and let κ(s)
represent the curvature of γ. If κ(s) = 0, then γ is a geodesic in R3. On the other
hand, if γ(s) is a unit speed non-geodesic smooth curve immersed in R3, then γ(s)
is a Frenet curve of rank 2 or 3 and the standard Frenet frame along γ(s) is given
by {T,N,B}(s), where N and B are the unit normal and unit binormal to the
curve, respectively, and B is chosen so that det(T,N,B) = 1. Then the Frenet
equations

T ′(s) = κ(s)N(s) (3)

N ′(s) = −κ(s)T (s) + τ(s)B(s) (4)

B′(s) = − τ(s)N(s) (5)

define the curvature, κ(s), and torsion, τ(s), along γ(s).
Now, the following relations hold

T = N ×B , N = B × T , B = T ×N .

Notice that, even if the rank of γ is 2 (that is, τ = 0), the binormal B = T ×N is
still well defined and above formulas (3)-(5) still make sense when τ = 0. A curve
with vanishing torsion, τ = 0, is going to be referred as a planar curve.
Now, let’s consider for any p, µ ∈ R, the curvature energy functional

Θp
µ(γ) =

∫ L

o
(κ(s)− µ)p ds , (6)

where L denotes the length of γ. This functional has been studied in [12], where
its critical curves have been called p-elastic curves. Therefore, along this paper,
we are going to refer to Θp

µ, (6), as the p-elastic energy.
Notice that the case p = 0 corresponds with the length functional. On the other
hand, the case p = 1 is, basically, the total curvature functional, [1] (check also the
references therein). From now on, we discard these two cases, so p 6= 0, 1. The
curvature energy functional (6) generalizes more classical variational problems, for
instance, if µ = 0 and p = 2, we recover the bending energy (2) whose critical
curves are usually called elastic curves. This is the reason why we call p-elastic
curves to extremals of the generalized case (6). Finally, we recall that the particular
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case given by µ = 0 and p = 1/2 was studied by Blaschke in [5], obtaining that
the critical curves are catenaries.
It is clear form (6) that for any p > 0, curves with κ = µ will be global minima
among all the curves with (κ− µ)p ∈ L1 ([0, L]). Then, for all the cases, we
consider Θp

µ(γ) ≥ 0 acting on the following space of planar curves satisfying
given boundary conditions with κ greater than µ. We shall denote by Ωpop1 to the
space of smooth immersed Frenet curves of rank 2 joining two given points and
verifying that κ > µ, that is,

Ωpop1 = {β : [0, 1]→ R2 ; β(i) = pi, i ∈ {0, 1}, β′(t) 6= 0,∀t ∈ [0, 1], κ > µ},

where pi ∈ R2, i ∈ {0, 1} are arbitrary given points.
Then, by standard arguments involving integration by parts we obtain the Euler-
Lagrange equation of Θp

µ acting on Ωpop1 ,

d2

ds2
(
(κ− µ)p−1

)
+ κ2(κ− µ)p−1 − 1

p
κ(κ− µ)p = 0 . (7)

From now on, we will call critical curve (or, also, extremal curve) to any curve
γ ⊂ Ωpop1 , whose curvature κ verifies the Euler-Lagrange equation (7).
Observe that above Euler-Lagrange equation, (7), can be directly integrated once.
Moreover, after some manipulations we have the following expression for the de-
rivative of the curvature(

κ′
)2

=
(κ− µ)2

p2(p− 1)2

(
d (κ− µ)2(1−p) − ((p− 1)κ+ µ)2

)
,

where d is a positive real constant.

3. Binormal Evolution of p-Elasticae

Along this section we are going to consider that γ is any critical Frenet curve of
rank 2 of Θp

µ acting on Ωpop1 , and we are going to evolve it under the associated
Killing vector field in the direction of the binormal. For this purpose, we are going
to consider that R2 is contained in R3.
A vector field W along γ, which infinitesimally preserves unit speed parametriza-
tion is said to be a Killing vector field along γ (in the sense of [15]) if γ evolves
in the direction of W without changing shape, only position. In other words, the
following equations must hold

W (v)(s, 0) = W (κ)(s, 0) = 0 , (8)

(v = |γ′| being the speed of γ) for any variation of γ having W as variation field.
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It turns out that p-elastic curves of Θp
µ have naturally associated Killing vector

fields defined along them. Let us define the following vector field, I, along γ

I = p (κ− µ)p−1B . (9)

Now, as proved for instance in [11], combining both the Euler-Lagrange equation
of a planar p-elastic curve, (7), and the definition of Killing vector fields along
curves, (8), we obtain

Proposition 1. Assume that γ is a planar p-elastic curve and consider the vector
field I, (9), defined on γ. Then I is a Killing vector field along γ.

Then, following the arguments of [15], this vector field along γ, I, can be uniquely
extended to the whole R3. We are going to use ξ to represent this extension and
we are going to denote by {φt ; t ∈ R} the one-parameter group of isometries
associated to ξ, that is, the flow of ξ.
Now, we locally define the binormal evolution surface (for more details see [2] and
references therein)

Sγ := {x(s, t) = φt (γ(s))} .
Then, we have the following result

Proposition 2 ([3]). Let γ be a critical curve of Θp
µ acting on Ωpop1 . Then, the

binormal evolution surface with initial condition γ defined above is a rotational
surface.

Moreover, if γ is a critical curve of Θp
µ acting on Ωpop1 with constant curvature,

then Sγ defined as above is a flat isoparametric surface and, as a consequence, it
trivially verifies the linear relation (1) for some suitable real constants a and b.
On the other hand, for the non-constant curvature case, we have

Theorem 3 ([16]). Let γ be a critical curve of Θp
µ acting on Ωpop1 with non-

constant curvature. Then, the binormal evolution surface with initial condition γ,
Sγ , is a rotational linear Weingarten surface where

a =
p

p− 1
and b =

µ

p− 1
.

4. Characterization of Rotational Linear Weingarten Surfaces

Notice that in previous section we have given a way of constructing rotational
linear Weingarten surfaces by evolving planar p-elastic curves under the binormal
flow with prescribed velocity |I|, see (9).
Moreover, the converse is almost true. Indeed, in this section we are going to show
that for any rotational linear Weingarten surfaces with a 6= 1 it is possible to find a
local coordinate system, such that, the orthogonal curve to the rotation is a planar
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p-elasticae and, therefore, all rotational linear Weingarten surfaces with a 6= 1 can
be locally described as binormal evolution surfaces with planar p-elastic curves as
initial condition and with velocity given by |I|, see (9).
Let S be a rotational linear Weingarten surface. Then, there exists a planar curve γ
in R3 such that S can be seen as the set {φt(γ(s)) ; t ∈ R}, where now {φt ; t ∈
R} represents a one-parameter group of rotations. Therefore, along this section we
are going to use the notation S = Sγ , and we are going to say that γ is the profile
curve.
Let us assume first that γ is a geodesic of R3. Then, it is clear that γ is a global
minima of Θp

µ since κ = 0, as explained in Section 2. Moreover, it can easily be
checked that the rotational surface with profile curve γ, Sγ , is a flat ruled isopara-
metric surface.
Therefore, we assume now that γ is not a geodesic of R3, then we have

Theorem 4 ([16]). Let Sγ be a rotational surface with profile curve γ and such
that its principal curvatures verify the linear relation (1) for a 6= 1. Then, γ is an
extremal curve of Θp

µ for

µ =
b

a− 1
and p =

a

a− 1
.

Finally, for the sake of completeness, we summarize the complete description of
rotational linear Weingarten surfaces and of their corresponding profile curves (see
Figures 1 to 3). The complete geometric classification depending on the values of
the constants a and b in the linear relation (1), can be found in [16], where it has
been proved using a different tool.

Figure 1. From left to right: Ovaloid (a > 0), Catenoid-Type Surface
with a ∈ [−1, 0) and Catenoid-Type Surface with a < −1.

If the surface does not meet the axis of rotation, we have the next type of surfaces;

• Catenoid-Type Surfaces. The profile curve γ is a concave graph on some
interval I of the axis. These surfaces only appear when a < 0 and b = 0.
There are two types depending if I = R (−1 ≤ a < 0) or if I is a bounded
interval (a < −1). The plane is included here as a limit case.
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• Unduloid-Type Surfaces. Embedded surfaces which are periodic in the di-
rection of the axis. Circular cylinders belong to this family.
• Nodoid-Type Surfaces. Non embedded surfaces which are periodic in the

direction of the axis and the profile curve γ has loops towards the axis.
• Antinodoid-Type Surfaces. Non embedded surfaces which are periodic in

the direction of the axis and the profile curve γ has loops facing away from
the axis.
• Cylindrical Antinodoid-Type Surfaces. Non embedded surfaces asymptotic

to a circular cylinder. The profile curve γ has a single loop facing away
from the axis.

Figure 2. From left to right: Cylindrical Antinodoid-Type Surface,
Antinodoid-Type Surface, Unduloid-Type Surface and Nodoid-Type
Surface.

Then, we turn to those surfaces that meet (necessarily orthogonally) the axis of
rotation. All the surfaces have genus 0 except in one case that the surface touches
the axis at exactly one point (pinched spheroids).

• Ovaloids. They are convex surfaces. The shape is like an oblate spheroid
being more flat close to the axis as the parameter a gets bigger. This case
only occurs when a > 0. Round spheres are included here.
• Vesicle-Type Surfaces. Embedded closed surfaces where the two poles of

the profile curve are close so the profile curve presents two inflection points.
These surfaces have concave regions around the poles.
• Pinched Spheroids. Limit case of vesicle-type surfaces when the two poles

coincide. The surface is tangentially immersed on the axis and bounds a
solid three-dimensional torus.
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• Immersed Spheroids. Closed surfaces of genus 0 that appear when the two
poles of the vesicle-type surface pass their-self through the axis.

Figure 3. From left to right: Vesicle-Type Surface, Pinched Spheroid
and Immersed Spheroid.

5. Application to Two Remarkable Families

To end up this article, we are going to illustrate this characterization by applying
our findings to two well-known classical families of surfaces, Mylar balloons and
Delaunay surfaces.

5.1. Mylar Balloons

As mentioned in the introduction, one of the oldest variational problems over
curves was to find the critical curves of the bending energy, (2). These curves
are usually called elasticae and they were described by Euler in [10]. Later, it
was discovered that, by using the Jacobi cosine, cn, elastic curves could be ei-
ther geodesics or characterized, up to rigid motions, by the following family of
curvatures

κ(s) = κo cn

(
κo√

2
s ,

√
2

2

)
,

where κo is a constant representing the maximum curvature. Following the notation
of previous sections, this constant, κo, is related with our constant of integration,
d, so that the first integral of the Euler-Lagrange equation is verified.
On the other hand, in 1906 Da Rios, [7], modeled the self-induced movement of a
thin vortex filament in a viscous fluid traveling without stretching. For this model,
Da Rios used the motion of a curve, which represents the filament, propagating
according to the localized induction equation. Then, Hasimoto related this motion
with elastic curves proving that the evolution of the curve is done under the binor-
mal flow, [13]. Therefore, the binormal evolution surfaces with elastic curves as
initial conditions are called Hasimoto surfaces.
In our particular case, combining the results of Theorem 3 and Theorem 4 we
obtain
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Theorem 5. The binormal evolution surface generated from a planar elastic curve
is a rotational Hasimoto surface verifying that

κ1 = 2κ2

κi, i ∈ {1, 2} denoting the principal curvatures. Furthermore, the converse is also
true.

Observe that the rotational surfaces verifying the relation, κ1 = 2κ2, between their
principal curvatures are essentially unique, up to translations and homotheties, as
pointed out in [17] (see also [16]). Moreover, in [17], Mladenov and Oprea named
Mylar balloon to this surface. The term Mylar balloon was first introduced by
Paulsen, [19], to denote the resulting object of a physical experiment when trying
to understand the shape of the surface made by Mylar (a non-stretchable material)
that encloses the maximum volume, (see Figure 1 on the left).
Therefore, as a consequence of Theorem 5, we recover the following result

Corollary 6. The profile curve of the Mylar balloon is a planar elastic curve.

In the literature, this result is attributed to Gibbons (see, for instance, [9] and ref-
erences therein).

5.2. Delaunay Surfaces

We consider now the particular p-elastic energy given by the choice p = 1/2. That
is,

Θ1/2
µ (γ) =

∫
γ

√
κ− µds . (10)

If κ = µ, then γ is an absolute minima provided we are considering L1([0, L])

as the space of curves, see Section 2. On the other hand, if Θ
1/2
µ is acting on

Ωpop1 , then by solving the Euler-Lagrange equation we get the curvature of the
critical curves. We distinguish two cases; if the curvature is constant, then γ is a
curve verifying κ = 2µ. On the other hand, for the non-constant curvature case we
obtain for every d > 0 (see [3])

κ(s) =
4d

1 + 16d2s2
,

if µ = 0. And, if µ 6= 0,

κ(s) =
2µ
(
w2 + w sin (2µs)

)
1 + w2 + 2w sin (2µs)

,

where w2 = 1 + µ/d.
Therefore, the following result can be computed directly, since the curvature of
planar curves completely determines them, up to rigid motions.



Planar p-Elasticae and Rotational Linear Weingarten Surfaces 11

Proposition 7 ([3]). Critical curves of the extended Blaschke’s variational prob-
lem, Θ1/2

µ , are precisely the roulettes of conic foci.

Indeed, if the curvature is constant, then the critical curve may be a line or a circle,
depending if the parameter µ is zero or not. Moreover, for the other cases we get
a catenary for µ = 0 (recovering the result of Blaschke, [5]), a nodary for µ 6= 0
and w < 1 and an undulary for µ 6= 0 and w > 1.
Furthermore, this property serves as a geometric characterization of critical curves
of Θ1/2

µ as roulettes of conics. In fact, the loci of a focus of a conic as the point of
contact rolls along a straight line without slipping in a plane are roulettes of conics
in R2. A line is generated when the conic is a circle, since its focus coincides with
its center. If the conic is a parabola, its focus traces a catenary. For a hyperbola,
we get a nodary; for a proper ellipse, an undulary; and, finally, if our conic is
degenerate we obtain a circle.
Notice that already in 1841, Delaunay introduced a way of constructing rotational
CMC surfaces in R3, by proving that, basically, a rotational surface in R3 is a CMC
surface, if and only if, its profile curve is the roulette of a conic, [8]. Therefore, we
conclude with

Theorem 8 ([3]). A Delaunay surface is, precisely, a binormal evolution surface
with a critical curve for the extended Blaschke’s energy, Θ1/2

µ , as initial condition.
Moreover, the CMC is H = −µ.

This result can be proved directly from our variational characterization introduced
in previous sections. For this proof and more detailed explanations see [3].
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