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Main Objective and Scheme

Main Objective

Study the connection between generalized elastic curves and
invariant surfaces possessing nice geometric properties.

1. Generalized Elastic Curves (Chapters 1 & 2)

• Curvature Energies
• A First Application

2. Binormal Evolution Surfaces in 3-Space Forms (Chapter 3)

3. Invariant Surfaces in Semi-Riemannian 3-Space Forms

• Constant Mean Curvature Surfaces (Chapter 4)
• Linear Weingarten Surfaces (Chapter 5)

4. Invariant Surfaces in Killing Submersions (Chapter 6)

• Willmore-Like Surfaces
• Invariant Willmore Tori
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Part I

Generalized Elastic Curves

1. Chapter 1. Preliminaries

• Curvature energies (with potential) acting on curves

• Euler-Lagrange equations, associated Killing vector
fields,...

2. Chapter 2. Generalized Elastic Curves

• Introduce them and particularize above results

• Application to visual curve completion
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Curvature Energies (with Potential)

Consider the following curvature energy functional for a potential
Φ,

Θ(γ) =

∫
γ

(P(κ)+Φ) ds

acting on a space of immersed Frenet curves of Mn
r .

Then, by
standard arguments we obtain the Euler-Lagrange operator

E(γ) = ∇̃T

(
∇̃T (ṖN) + ε1(2κṖ − P−Φ)T

)
+Ṗ R(N,T )T+ grad Φ ,

where Ṗ denotes the derivative of P with respecto to κ.

Convention

We are going to call critical curve or extremal curve to any Frenet
curve of Mn

r verifying E(γ) = 0.
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)
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+Ṗ R(N,T )T+ grad Φ ,
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Different Types of Critical Curves

• If P(κ) = κ2 and Mn
r = M2, critical curves are elasticae with

potential. And, the Euler-Lagrange equation boils down to

2κss + κ
(
κ2 + 2K − Φ

)
+ N(φ) = 0 .

• If instead of Φ we have µ τ(s) + λ, and Mn
r = M3

r (ρ), critical
curves are called generalized Kirchhoff centerlines.

Euler-Lagrange Equations

Ṗss + ε1ε2Ṗ
(
κ2 − ε1ε3τ

2 + ε2ρ
)
− ε1ε2κ (P−µ τ + λ) = 0 ,

2τ Ṗs + τs Ṗ−ε1ε3µκs = 0 .

The εi denotes the causal characters of the Frenet frame {T ,N,B}.



I: Gen. Elastic Curves II: Binormal Evolution III: Constant Mean Curvature III: Linear Weingarten IV: Willmore Tori

Different Types of Critical Curves

• If P(κ) = κ2 and Mn
r = M2, critical curves are elasticae with

potential. And, the Euler-Lagrange equation boils down to

2κss + κ
(
κ2 + 2K − Φ

)
+ N(φ) = 0 .

• If instead of Φ we have µ τ(s) + λ, and Mn
r = M3

r (ρ), critical
curves are called generalized Kirchhoff centerlines.

Euler-Lagrange Equations
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Associated Killing Vector Fields

A vector field W along a critical curve γ verifying

W (v)(s, 0) = W (κ)(s, 0) = W (τ)(s, 0) = 0

is a Killing vector field along γ. ([16]: Langer & Singer, 1984)

Proposition 1.3.3 ([31]: Garay & — , 2016)

The vector field I = ε1ε3µT + Ṗ B is a Killing vector field along
γ, if and only if, γ is a generalized Kirchhoff centerline.

Proposition 1.3.2 ([11]: Ferrández, Guerrero, Javaloyes &

Lucas, 2016)

The vector field I = Ṗ B is a Killing vector field along γ, if and
only if, γ is an extremal of

Θ(γ) =

∫
γ

(P(κ) + λ) ds.
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The vector field I = Ṗ B is a Killing vector field along γ, if and
only if, γ is an extremal of

Θ(γ) =

∫
γ

(P(κ) + λ) ds.



I: Gen. Elastic Curves II: Binormal Evolution III: Constant Mean Curvature III: Linear Weingarten IV: Willmore Tori

Generalized Elastic Curves

In this memory we have considered the curvature energy functional

Θε,p
−Φ(γ) =

∫
γ

(κε + Φ)p ds.

• If p = 1 and ε = 2, we recover elastic curves with potential.
For the last part.

• First assume Φ = −µ, thus, we obtain Θε,p
µ .

Associated Killing Vector Field

In any semi-Riemannian 3-space form, M3
r (ρ), critical curves of

Θε,p
µ , have a naturally associated Killing vector field defined by

I = ε p κε−1 (κε − µ)p−1 B.

And it extends to a Killing vector field in the whole M3
r (ρ).
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Visual Curve Completion

For some applications see ([36]: Arroyo, Garay & — , submitted).

Problem: How to recover a covered or damaged image?

In our brain, the primary visual cortex, V 1, gives us an intuitive
answer.
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Unit Tangent Bundle

Unit Tangent Bundle ([23]: Petitot, 2003)

The unit tangent bundle of the plane, R2 × S1, can be used as an
abstraction to study the organization and mechanisms of V1.

• Each point (x , y , θ) represents a column of cells associated
with a point of retinal data (x , y) ∈ R2, all of which are
adjusted to the orientation given by the angle θ ∈ S1.

• The vector (cos θ, sin θ) is the direction of maximal rate of
change of brightness of the picture seen by the eye.

• When the cortex cells are stimulated by an image, the border
of the image gives a curve inside the space R2 × S1, but
restricted to be tangent to a specific distribution.
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Sub-Riemannian Structure on R2 × S1

We consider the topological product space R2 × S1.

• Take the distribution D = Ker(sin θdx − cos θdy).

• The distribution D is spanned by

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
and X2 =

∂

∂θ
.

• The distribution D is bracket-generating.

• Finally, define the inner product 〈·, ·〉 by making X1 and X2

everywhere orthonormal.

Visual Curve Completion ([5]: B-Yosef & B-Shahar, 2012)

If a piece of the contour of a picture is missing to the eye vision,
then the brain tends to complete the curve by minimizing some
kind of energy. ([30]: Arroyo, Garay & — , 2016)

• Here, we consider the length functional.
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Projections of Sub-Riemannian Geodesics

Consider the sub-Riemannian manifold M3 =
(
R2 × S1,D, 〈·, ·〉

)
.

Projections of Geodesics ([30]: Arroyo, Garay & — , 2016)

Geodesics in M3 are obtained by lifting minimizers (more generally,
critical curves) in R2 of

Θ
2,1/2
−1 (γ) =

∫
γ

√
1 + κ2(s) ds .

It may be more accurate to consider the functional

Θ
2,1/2
−a2 (γ) =

∫
γ

√
κ2(s) + a2 ds .

• If a = 0 we get the total curvature functional, and therefore

we call Θ
2,1/2
−a2 a total curvature type energy.

• We completely solve the variational problem, geometrically.
([29]: Arroyo, Garay & — , 2015)
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Direct Approach to Minimize Length

XEL-Platform (www.ikergeometry.org)

A gradient descent method useful for families of functionals
defined on certain spaces of curves satisfying both affine and
isoperimetric constraints. ([42]: Arroyo, Garay, Menćıa & — , preprint)
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Part II

Binormal Evolution Surfaces

1. Chapter 3. Binormal Evolution Surfaces in 3-Space Forms

• Definition of Binormal Evolution Surfaces

• Traveling Wave Solutions of Gauss-Codazzi Equations

• Evolution with Planar Filaments

• Evolution with Non-Vanishing Constant Torsion

• Particular Cases
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Binormal Evolution Surfaces

Definiton

A surface immersed in M3
r (ρ), x(s, t), is a binormal evolution

surface with velocity F(κ, τ) if

1. The initial condition γ(s) = x(s, 0) is arc-length parametrized.

2. All the filaments γto (s) = x(s, to) are Frenet curves.

3. The following evolution equation is verified

xt = F(κ, τ)B .

The Gauss-Codazzi equations for these evolutions are given by

κt = −2Fsτ − τsF ,

τt = ε1ε3κFs + ε2

(
F
κ

(
ε3
Fss

F
− ε2τ

2 + ε1ε3ρ

))
s

.
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Traveling Wave Solutions

A function u(s, t) of the form u(s, t) = ψ(s −$ t) with $ ∈ R is
said to be a traveling wave.

Theorem 3.1.3. ([31]: Garay & — , 2016)

Traveling wave solutions of Gauss-Codazzi equations correspond to
the Euler-Lagrange equations of generalized Kirchhoff centerlines.

Moreover, they evolve under the binormal flow by isometries and
slippage.
In particular,

• Corollary 3.1.4. ([31]) A Frenet curve evolves under the
binormal flow by isometries, if and only if, it is an extremal of

Θ(γ) =

∫
γ

(P(κ) + λ) ds ,

where F(κ, τ) = Ṗ(κ).
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Evolution with τ = 0

Proposition 3.2.1. ([32]: Arroyo, Garay & —, 2017)

If the initial filament γ(s) = x(s, 0) is planar, then it is an extremal
curve for

Θ(γ) =

∫
γ

(P(κ) + λ) ds

and the binormal evolution surface can be written as Sγ = {φt(γ)}
where {φt , t ∈ R} is a one-parameter group of isometries of M3

r (ρ).

Moreover, as proved in ([34]: Arroyo, Garay & — , 2018)

• Proposition 3.2.3. ([34]) If γ has constant curvature, then
Sγ is a flat isoparametric surface.

• Proposition 3.2.4. ([34]) For general curvature, if
Sγ ⊂ M3(ρ), then it is a rotational surface.
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Fibers of Evolutions with τ = 0

Proposition 3.2.2. ([32]: Arroyo, Garay & — , 2017)

The fibers δso (t) = x(so , t) of Sγ have constant curvature and zero
torsion in M3

r (ρ).

In particular, in a Riemannian 3-space form

Proposition 3.2.5. ([41]: Arroyo, Garay & — , preprint)

There are three different types of fibers,

1. If d > 0, δso is an Euclidean circle and Sγ is a spherical
rotational surface. (Always the case in R3 and S3(ρ))

2. If d = 0, δso is an horocycle and Sγ is a parabolic rotational
surface.

3. If d < 0, δso is an hypercycle and Sγ is a hyperbolic rotational
surface.
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Closure Conditions in M3(ρ)

Let Sγ be a binormal evolution surface with planar filaments for
some d > 0

, and assume that the profile curve γ does not meet
the axis of rotation.
Then,

Corollary 3.2.7. ([41]: Arroyo, Garay & — , preprint)

The surface Sγ is closed, if and only if,

1. The curvature of γ is periodic of period %.

2. The function defined by

Λ(d) =

∫ %

o

κ Ṗ − P

d − ρ Ṗ2
ds

equals 2π n
m
√
ρ d

in S3(ρ); or, Λ(d) vanishes for ρ ≤ 0.
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Evolution with τ = τo 6= 0

Take now τ(s, t) = τo 6= 0 (the torsion of the filaments).

• If filaments have also constant curvature, then

Proposition 3.3.1. ([34]: Arroyo, Garay & — , 2018)

The surface generated by evolving a Frenet helix under the
binormal flow by congruences is a flat isoparametric surface.

• On the other hand, if κ(s, t) is not constant,

Proposition 3.3.2. ([32]: Arroyo, Garay & — , 2017)

Call ι = s − ε1ε3µ t and assume that γ(ι) is an extremal of

Θ(γ) =

∫
γ

(
ε1ε3µ

4τo
κ2 + λκ+ µ τ + ν

)
dι .

Then, there exists a one-parameter group of isometries of M3
r (ρ)

such that a suitable parametrization of the surface Sγ is a solution
of the binormal flow with F(κ(s, t)) = ε1ε3µ

2τo
κ+ λ.
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Particular Cases

1. Hopf Cylinders

• Choose a constant velocity. (We may assume that xt = B)

• If γ is a Frenet helix, then Sγ is a flat isoparametric surface.

• If κ(s, t) is not constant and τ(s, t) = τo 6= 0, congruence
solutions come from µ = 0.

• In this case, ρ = (−1)r τ2
o , that is we are in S3(ρ) or H3

1(ρ).
(Assume τo = 1)

Proposition 3.4.1. ([32]: Arroyo, Garay & — , 2017)

The corresponding binormal evolution surface evolving under
xt = B by rigid motions is a Hopf cylinder of S3(1) or H3

1(−1).
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Particular Cases

2. Hasimoto Surfaces

• Choose the binormal evolution equation xt = ε2ε3κB.

• The binormal evolution surfaces are known as Hasimoto
surfaces. ([13]: Hasimoto, 1972)

Gauss-Codazzi Equations ([28]: Garay, — & Woo, 2015)

κt = −ε2ε3 (2κsτ + κτs)

τt = ε2

(
ε2
κss
κ
− ε3τ

2 +
1

2
ε1κ

2 + ε1ε2ρ

)
s

• In R3 (that is, εi = 1 and ρ = 0) they are the Da Rios
equations. ([26]: Da Rios, 1906)

• They describe the movement of a vortex filament according to
the localized induction equation.
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• Via the Hasimoto transformation, we get both the focusing
and the defocusing nonlinear Schrodinger equation. ([13]:

Hasimoto, 1972)

• Finally, traveling wave solutions correspond with centerlines of
Kirchhoff elastic rods.
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Part III (Chapter 4)

Invariant Surfaces in 3-Space Forms

1. Chapter 4. Invariant Constant Mean Curvature Surfaces

• Characterization as Binormal Evolution Surfaces

• Relation with Solutions of the Ermakov-Milne-Pinney
Equation

• Critical Curves of Blaschke’s Curvature Type Energy

• Binormal Evolution of These Extremals

• Bour’s Families of Invariant CMC Surfaces

• Delaunay Surfaces in Riemannian 3-Space Forms
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Characterization as BES

Theorem 4.1.1. ([34]: Arroyo, Garay & — , 2018)

Let Sγ be an invariant CMC surface of M3
r (ρ). Then, locally, Sγ is

either a ruled surface

or it is a binormal evolution surface with
initial condition a critical curve of

Θµ(γ) =

∫
γ

√
κ− µ ds

where µ = −ε1ε2H.

Idea of the proof:

• Take a geodesic coordinate system in Sγ .

• Observe that solutions of the corresponding Gauss-Codazzi
equations imply criticality of γ.
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Ermakov-Milne-Pinney Equation

Notice that the velocity of previous binormal evolution surface is
given by

G (s) =
1

2
√
κ− µ

.

Moreover, Sγ is a warped product surface with warping function
G (s).
Thus, Sγ is completely determined by G (s) and

Theorem 4.1.2. ([34]: Arroyo, Garay & — , 2018)

The warping function G (s) is a solution of the following EMP
equation

G ′′(s) + αG (s) =
$

G 3(s)
.
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Blaschke’s Curvature Type Energy

For a fixed µ ∈ R, consider the curvature energy functional

Θµ(γ) =

∫
γ

√
κ− µ ds

acting on a suitable space of curves immersed in M3
r (ρ).

• The case µ = 0 in R3 was studied in ([6]: Blaschke, 1930)

• It can be completely solved geometrically, obtaining the
curvatures of critical curves. (Proposition 4.2.1. ([34]))

Corollary 4.2.4. ([31]: Garay & — , 2016)

In R2, critical curves of Θµ are the roulettes of conic foci.

Corollary 4.2.5. ([33]: — , 2017)

In L2, the locus of the origin when a part of a spacelike quadratic
curve is rolled along a spacelike line is a spacelike critical curve.
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Binormal Evolution of These Extremals

Take γ any critical curve of Θµ.

1. Consider the one-parameter group of isometries determined by
the flow of the extension of

I =
1

2
√
κ− µ

B .

Since M3
r (ρ) is complete we can denote it by {φt , t ∈ R}.

2. Define the invariant surface Sγ := {x(s, t) = φt (γ(s))}.

Theorem 4.2.6. ([34]: Arroyo, Garay & — , 2018)

The binormal evolution surface Sγ has CMC H = −ε1ε2 µ.

In conclusion, CMC invariant surfaces of M3
r (ρ) are, locally, either

• Ruled surfaces Sγ (γ being a geodesic), or

• Surfaces Sγ swept out by extremals γ of Θµ.
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Bour’s Families

In particular, when γ has non-constant curvature, we have a
two-parameter family of invariant surfaces in M3

r (ρ), Fd ,e , with the
same CMC H = −ε1ε2µ.

Theorem 4.2.7. ([34]: Arroyo, Garay & — , 2018)

Consider the conic Cν in the (d , e)-plane defined by

Cν ≡ 1 + ε1ε3e
2 = ν(2d + ε1µ)2 .

Assume that one of the following conditions is satisfied

1. d 6= −ε1
µ
2 and 1 + ε1ε2aν > 0.

2. ε1ρ < −ε1ε2µ
2, d 6= −ε1

µ
2 and 1 + ε1ε2aν < 0.

Then, the family Fd ,e ≡ Fνd represents a one-parameter isometric
deformation of invariant surfaces with the same CMC.

• Moreover, for the κ(s) = κo case, we obtain “limit” surfaces
of the family Fνd .
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Lawson’s Type Correspondence

There exists a correspondence between CMC surfaces in different
3-space forms.

• They are usually called cousin surfaces.
• In Riemannian case it was described in ([17]: Lawson, 1970)

• In Lorentzian case ([21]: Palmer, 1990; and, [12]: Fujioka &

Inoguchi, 2003)

From our computations the following version can be obtained

Theorem 4.2.8. ([34]: Arroyo, Garay & — , 2018)

Assume that the following relation is verified

ρ+ ε µ2 = ρ̂ + ε µ̂ 2 .

Then, there exists a warped product surface Sν admitting a
one-parameter family of isometric immersions in both

1. M3
r (ρ) with CMC |H| = |µ|,

2. M3
r (ρ̂) with CMC |Ĥ| = |µ̂|.
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I: Gen. Elastic Curves II: Binormal Evolution III: Constant Mean Curvature III: Linear Weingarten IV: Willmore Tori

Lawson’s Type Correspondence

There exists a correspondence between CMC surfaces in different
3-space forms.
• They are usually called cousin surfaces.
• In Riemannian case it was described in ([17]: Lawson, 1970)

• In Lorentzian case ([21]: Palmer, 1990; and, [12]: Fujioka &

Inoguchi, 2003)

From our computations the following version can be obtained

Theorem 4.2.8. ([34]: Arroyo, Garay & — , 2018)

Assume that the following relation is verified

ρ+ ε µ2 = ρ̂ + ε µ̂ 2 .

Then, there exists a warped product surface Sν admitting a
one-parameter family of isometric immersions in both

1. M3
r (ρ) with CMC |H| = |µ|,

2. M3
r (ρ̂) with CMC |Ĥ| = |µ̂|.
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Rotational CMC Surfaces in M3(ρ)

• A complete immersed CMC surface in R3 is helicoidal, if and
only if, it is in the Bour’s family of a rotational CMC surface.
([9]: Do Carmo & Dajczer, 1982)

R3 and H3(ρ) S3(ρ) and H3(ρ) M3
1 (ρ)

Theorem 4.2.9. ([34]: Arroyo, Garay & — , 2018)

All CMC invariant surfaces of Riemannian 3-space forms can be
isometrically deformed into rotational surfaces with the same CMC.
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I: Gen. Elastic Curves II: Binormal Evolution III: Constant Mean Curvature III: Linear Weingarten IV: Willmore Tori

Rotational CMC Surfaces in M3(ρ)

• A complete immersed CMC surface in R3 is helicoidal, if and
only if, it is in the Bour’s family of a rotational CMC surface.
([9]: Do Carmo & Dajczer, 1982)

R3 and H3(ρ) S3(ρ) and H3(ρ) M3
1 (ρ)

Theorem 4.2.9. ([34]: Arroyo, Garay & — , 2018)

All CMC invariant surfaces of Riemannian 3-space forms can be
isometrically deformed into rotational surfaces with the same CMC.



I: Gen. Elastic Curves II: Binormal Evolution III: Constant Mean Curvature III: Linear Weingarten IV: Willmore Tori

Delaunay Surfaces in M3(ρ)

Although our characterization as binormal evolution surfaces is
local in nature, it can be used to make a global analysis of
rotational CMC surfaces in M3(ρ).

Delaunay’s Contruction ([10]: Delaunay, 1841)

A rotational surface in R3 is a CMC surface, if and only if, its
profile curve is the roulette of a conic.

• These surfaces are globally well-known.

• In particular, the only closed ones are the totally umbilical
spheres.

• Moreover, a similar result is true in H3(ρ). ([1]: Aledo &

Gálvez, 2002)

• This suggests to study Delaunay surfaces in S3(ρ).
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Local Classification in S3(ρ)

Theorem 4.3.3. ([40]: Arroyo, Garay & — , submitted ; and,

[41]: Arroyo, Garay & — , preprint)

Rotational surfaces of CMC H in S3(ρ), Sγ , must be locally
congruent to a piece of

1. The equator S2(ρ); if κ(s) = H = 0.

2. A totally umbilical sphere; if κ(s) = |H| 6= 0.

3. A Hopf torus

S1
(√

ρ+ κ2
)
× S1

(√
ρ

κ

√
ρ+ κ2

)
if κ(s) = −|H|+

√
H2 + ρ.

4. A binormal evolution surface where γ is a planar non-constant
curvature critical curve of Θµ for |µ| = |H|.
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Critical Curves of Θµ in S2(ρ)

• Surfaces Sγ of point 4 in Theorem 4.3.3 depend greatly on γ.

• The curvature of γ is periodic.

Theorem 4.3.6. ([40]: Arroyo, Garay & — , submitted)

For any µ ∈ R, there exist closed planar critical curves.

µ ' 0.312 and 4µd = 1 µ = −0.1 and d ' 1.27
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Critical Curves of Θµ in S2(ρ)

• Surfaces Sγ of point 4 in Theorem 4.3.3 depend greatly on γ.
• The curvature of γ is periodic.

• Theorem 4.3.6. ([40] & [41]) For any µ ∈ R, there exist
closed planar critical curves.

• Theorem 4.3.7. ([40] & [41]) A planar critical curve γ is
simple, if and only if, µ ≤ 0 and γ closes up in one round.

Corollary 4.3.8. ([40]: Arroyo, Garay & — , submitted)

If γ is a planar closed critical curve embedded in S2(ρ), then

µ 6= −
√

ρ
3 is negative.
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Critical Curves of Θµ in S2(ρ)

Corollary 4.3.8. ([40]: Arroyo, Garay & — , submitted)

If γ is a planar closed critical curve embedded in S2(ρ), then

µ 6= −
√

ρ
3 is negative.

µ = −1 and d ' 2.48 µ = −2 and d ' 16.19
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Binormal Evolution in This Case

Take γ a planar closed critical curve of Θµ in S2(ρ).

• The curve γ does not cut the axis of rotation.

• Thus, the binormal evolution surface Sγ is a topological torus.
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Embedded CMC Tori in S3(ρ)

If γ is also simple, then Sγ is also embedded.

m = 3 m = 4 m = 5

• ([22]: Perdomo, 2010) For any m > 1 and any H such that

|H| ∈
(
√
ρ cot

π

m
,
√
ρ

m2 − 2

2
√
m2 − 1

)
exists a non-isoparametric embedded CMC rotational tori.
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Nice Consequences

Pinkall-Sterling’s Conjecture ([24]: Pinkall & Sterling, 1989)

Any CMC tori embedded in S3(ρ) must be rotationally symmetric.
(Recently proved in ([2]: Andrews & Li, 2015))

• Therefore, once we fix the CMC H, for each m > 1, there
exist at most one embedded non-isoparametric tori of CMC.

• Ripoll’s Theorem. ([25]: Ripoll, 1986) For any H 6= 0, ±
√

ρ
3 ,

there exists a non-isoparametric torus of CMC H.

• However, from our local classification we get that the only
minimal tori is given by S1

(√
2 ρ
)
× S1

(√
2 ρ
)
.

Lawson’s Conjecture ([18]: Lawson, 1970)

The only embedded minimal tori in S3(ρ) is the Clifford torus.
(Recently proved in ([7]: Brendle, 2013))
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Part III (Chapter 5)

Invariant Surfaces in 3-Space Forms

1. Chapter 5. Invariant Linear Weingarten Surfaces Surfaces

• Introduction of Linear Weingarten Surfaces

• The p-Elastic Energy of Curves

• Relation with the Generalized EMP Equation

• Rotational Linear Weingarten Surfaces

• Geometric Description in R3

• Application to Biconservative Surfaces
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Linear Weingarten Surfaces

In Riemannian backgrounds the mean curvature H can be written
as

2H = κ1 + κ2

where κi are the principal curvatures.

• The CMC condition gives rise to a relation of the type
Υ(κ1, κ2) = 0.

• A surface verifying a certain relation Υ(κ1, κ2) = 0 is called a
Weingarten surface. ([27]: Weingarten, 1861)

• The simplest relation extending the CMC condition is

κ1 = a κ2 + b.

Linear Weingarten Surfaces

A surface in M3(ρ) verifying κ1 = a κ2 + b is a linear Weingarten
surface.
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The p-Elastic Energy in M3(ρ)

For any fixed µ ∈ R, the p-elastic energy of curves is defined by
([37]: Garay & — , submitted)

Θp
µ(γ) =

∫
γ

(κ− µ)p ds.

Some classical energies:

• Generalized elastic energy for ε = 1, Θ1,p
µ ≡ Θp

µ.

• If p = 0, Θo
µ is the length functional.

• If p = 1, we basically get the total curvature functional.

• If p = 2 and µ = 0, it is the bending energy or elastic energy.

• If p = 1/2, we obtain Blaschke’s type energy.
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Generalized EMP Equation

Let us define the function ζ(s) as

ζ(s) = (κ(s)− µ)p−1 .

Theorem 5.1.1. (Extension of [37]: Garay & — , submitted)

Assume that γ is a p-elastic curve, then, the function ζ(s) is a
solution of

ζ ′′(s) + α ζ(s) +
$

ζ3(s)
= ν ζa(s)− 1

a
ζ2a−1(s).

• Theorem 5.1.2. (Extension of [37]) Conversely, given any
solution ζ(s) we can construct a critical curve of Θp

µ.

• The curvature is given by above formula, while the torsion
comes from

ζ4(s) τ2 +$ = 0.
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Rotational Linear Weingarten Surfaces

Assume that γ is a planar p-elastic curve. ([39]: — , submitted)

• We have a Killing vector field defined on the whole M3(ρ).
The unique extension of I = p (κ− µ)p−1 B.

• Therefore, we can define the surface Sγ := {φt(γ(s))}.

Theorem 5.2.2. (Extension of [38]: López & — , submitted)

The binormal evolution surface Sγ is a rotational linear Weingarten
surface.

Theorem 5.2.1. (Extension of [38]: López & — , submitted)

Let Sγ be a rotational surface verifying

κ1 = a κ2 + b

with a 6= 1, then γ is a planar p-elasticae.
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Geometric Description in R3 (b = 0)

Theorem 5.2.4. ([4]: Barros & Garay, 2012)

The rotational linear Weingarten surfaces satisfying the relation
κ1 = a κ2, a 6= 0, are ovaloids, catenoid-type surfaces and planes.

a > 0 a ∈ [−1, 0) a < −1

• For any a > 0 (and any b ∈ R), there are convex closed
rotational surfaces. ([15]: Hopf, 1951)

• In particular, when a = 2 and b = 0, it is a Mylar balloon.
([20]: Mladenov & Oprea, 2003)
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Geometric Description in R3 (b 6= 0)

1. Classification depending on the sign of a;

Theorem 5.2.5. ([38]: López & — , submitted)

The rotational linear Weingarten surfaces satisfying the relation
κ1 = a κ2 + b, for a > 0 and b 6= 0, are ovaloids, vesicle-type
surfaces, pinched spheroids, immersed spheroids, cylindrical
antinodoid-type surfaces, antinodoid-type surfaces and circular
cylinders.

2. Those surfaces that meet the axis of rotation;
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Geometric Description in R3 (b 6= 0)

1. Classification depending on the sign of a;

Theorem 5.2.6. ([38]: López & — , submitted)

The rotational linear Weingarten surfaces satisfying the relation
κ1 = a κ2 + b, for a < 0 and b 6= 0, are spheres, unduloid-type
surfaces, circular cylinders and nodoid-type surfaces.

2. Those surfaces that do not meet the axis of rotation;



I: Gen. Elastic Curves II: Binormal Evolution III: Constant Mean Curvature III: Linear Weingarten IV: Willmore Tori

Geometric Description in R3 (b 6= 0)

1. Classification depending on the sign of a;

Theorem 5.2.6. ([38]: López & — , submitted)
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Biconservative Surfaces

Stress-Energy Tensor ([14]: Hilbert, 1924)

It is a symmetric 2-covariant tensor which is conservative at critical
points of an associated variational problem.

In particular, if we consider the bienergy

E2(ϕ) =
1

2

∫
N2

|trace grad dϕ|2 vg

acting on isometric immersions in M3(ρ), we have

Biconservative Surfaces

An isometric immersion is biconservative if the corresponding
stress-energy tensor is conservative.

• A biconservative surface is either a CMC surface or a
rotational surface. ([8]: Caddeo, Montaldo, Oniciuc & Piu, 2014)
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Characterization as BES

• Proposition 5.3.1. ([43]) Non-CMC biconservative surfaces
are rotational linear Weingarten surfaces for

3κ1 + κ2 = 0.

Moreover, the converse is also true.

Theorem 5.3.2 & 5.3.3. ([43]: Montaldo & — , preprint)

All non-CMC biconservative surfaces can be seen as binormal
evolution surfaces with initial condition critical for

Θ
1/4
o (γ) =

∫
γ
κ1/4 ds.

Now, using closure conditions we have

• Proposition 5.3.4. ([43]) In R3 and in H3(ρ) there are no
closed non-CMC biconservative surfaces.
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Killing Submersions

A Riemannian submersion π : M → B of a 3-dimensional
Riemannian manifold M over a surface B will be called a Killing
submersion it if fibers are the trajectories of a complete unit Killing
vector field, ξ.

• Most of the geometry is encoded in the pair of functions KB

(Gaussian curvature of B) and τπ (bundle curvature).
• Theorem 6.2.1. ([35]: Barros, Garay & — , 2018) For any KB

and τπ, there exists a Killing submersion. It can be chosen
with compact fibers.

• For the simply connected case, we have uniqueness. ([19]:

Manzano, 2014)

Bianchi-Cartan-Vranceanu Spaces

They are the canonical models with constant KB and τπ.

• They include all 3-dimensional homogeneous spaces with
group of isometries of dimension 4.
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Vertical Lifts in Killing Submersions

Let γ be an immersed curve in B.

• The surface Sγ = π−1(γ) is an isometrically immersed surface
in M.

• Moreover, Sγ is invariant under the flow of the vertical Killing
vector field, ξ.

• It is usually called vertical tube shaped on γ.

• In fact, all ξ-invariant surfaces of M can be seen as vertical
lifts of curves.

• The mean curvature of these surfaces is ([3]: Barros, 1997)

H =
1

2
(κ ◦ π) ,

κ denoting the geodesic curvature of γ in B.
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Willmore-Like Surfaces in Total Spaces

Let Φ ∈ C∞(M) be an invariant potential, that is, Φ = Φ̄ ◦ π, and
consider the Willmore-like energy

WΦ(N2) =

∫
N2

(
H2 + Φ

)
dA

defined on the space of surface immersions in a total space of a
Killing submersion with compact fibers, Imm(N2,M).

Theorem 6.3.1. ([35]: Barros, Garay & — , 2018)

If γ is a closed curve in B, then Sγ is a Willmore-like torus, if and
only if, γ is an extremal of

Θ4Φ̄(γ) =

∫
γ

(
κ2 + 4Φ̄

)
ds.
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Invariant Willmore Tori

Now, for φ ∈ Imm(N2,M), we consider the Chen-Willmore energy

CW(N2) =

∫
N2

(
H2
φ + R

)
dAφ

where R denotes the extrinsic Gaussian curvature.

• Extremals of CW are called Willmore surfaces.

• In general, CW 6=W. However, if M = M3(ρ), then
CW =W for Φ = ρ.

Theorem 6.3.3. ([35]: Barros, Garay & — , 2018)

A vertical torus Sγ is Willmore in M, if and only if, it is extremal of

Wτ2
π

(N2) =

∫
N2

(
H2 + τ2

π

)
dA.

• That is, if and only if, γ is an elastica with potential 4τ2
π in B.
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Willmore Tori Foliations of Total Spaces

1. Orthonormal Frame Bundles

Proposition 6.4.1. ([35]: Barros, Garay & — , 2018)

Orthonormal frame bundles of compact rotational surfaces in R3

admit a foliation by minimal Willmore tori.

In order to get foliations by non-minimal Willmore tori,

• Consider Sf = I ×f S1 such that all fibers, δ, are extremals of

ΘK2
Sf

(δ) =

∫
δ

(
κ2 + K 2

Sf

)
dt.

• This completely determines f (s) (Proposition 6.4.2. ([35])).

• These Sf give rise to orthonormal frame bundles admitting
foliations by Willmore tori with CMC.
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Willmore Tori Foliations of Total Spaces

2. General Killing Submersions

• Let γ be a (proper) elastic curve in a surface B.

• Define Φ̄(s, t) = exp (κ(s) t +$(s)) + λ for an arbitrary
function $(s) along γ.

• Consider π : M(KB , τπ)→ B a Killing submersion with closed
fibers for 4τ2

π = Φ̄(s, t). (Recall Theorem 6.2.1. ([35])).

Theorem 6.4.3. ([35]: Barros, Garay & — , 2018)

The vertical lift Sγ = π−1(γ) is a Willmore tori in M(KB , τπ).

As an illustration, take B = R2 − {(0, 0)} and {Ct , t ∈ R}.
• The potentials Φ̄(s, t) = f̃ (s) t + 1

3t2 , f̃ ∈ C∞(S1) make the
whole family of circles elasticae with potential.

• Corollary 6.4.4. ([35]) There exists a Killing submersion
admitting a foliation by Willmore tori with CMC.
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