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Abstract

We discuss ground state equilibrium surfaces for an energy which is a linear combination of the classical bending energy for curves and a surface energy containing
the squared L2 norm of the difference of the mean curvature and the spontaneous curvature, i.e. the Helfrich energy. We focus on the case of topological discs.
The results of this poster are contained in [5], in which other results related to equilibrium and minimizing configurations for both topological discs and annuli are
also described.

1. Historical Background

In 1691, J. Bernoulli formulated the problem of determining the shape of ideal
elastic rods bent by forces and momenta acting at its ends alone.
Later on, in a letter to L. Euler, D. Bernoulli (a nephew of J. Bernoulli) suggested
that these rods should bend along the curve which minimizes the potential en-
ergy of the strain, i.e. elastic curves.
More generally, following this model, an elastic curve is a critical point of the
bending energy

E [C] :=

∫
C

(
κ2 + λ

)
ds ,

where κ denotes the curvature of the curve C.
Using this new-found variational formulation of elastic curves, L. Euler in 1744
classified and described all the possible qualitative types for untwisted planar
rod configurations, [2].
In the first half of the 19th century, the works of S. Germain and S. Poisson
proposed the 2-dimensional analogous of E to study the physical system asso-
ciated with an elastic plate.
For an immersion X : Σ→ R3 of a surface Σ the bending energy is given by

W [X ] :=

∫
Σ

H2 dΣ ,

where H is the mean curvature.
This energy was studied by W. Blaschke in the early 20th century and later rein-
troduced by T. Willmore. Since then, it is usually referred to as the Willmore
energy.
Beyond its mathematical interest, W. Helfrich proposed an extension of W
based on liquid crystallography to model cellular membranes, [4].
The Helfrich energy has the general form

H[X ] :=

∫
Σ

(
a [H + co]

2 + bK
)
dΣ ,

where a, co and b are constants motivated by the physics andK is the Gaussian
curvature.
Recently, for compact surfaces with boundary, combinations of surface and
boundary energies have also been considered: the Euler-Plateau problem
([3]), the Kirchhoff-Plateau problem ([1]), the Euler-Helfrich problem ([5]),...

2. The Euler-Helfrich Variational Problem

Let Σ be a compact, connected surface with boundary and X : Σ → R3 an
embedding. We also assume that X(Σ) is an oriented surface of class C4.
The Euler-Helfrich energy for X : Σ→ R3 is the functional

E[X ] :=

∫
Σ

(
a [H + co]

2 + bK
)
dΣ +

∮
∂Σ

(
ακ2 + β

)
ds ,

where a > 0, α > 0 and co, b and β are any real constants. The energy E
combines the Helfrich energy H on the interior of the surface with the bending
energy E of the boundary.

Proposition 1 (Rescaling) Let X : Σ→ R3 be critical for E. Then,

2aco

∫
Σ

(H + co) dΣ + βL[∂Σ] = α

∮
∂Σ

κ2 ds ,

where L denotes the length functional. In particular, if H + co ≡ 0 on Σ, then
β > 0 holds.

For an equilibrium surface the following Euler-Lagrange equations hold:

∆H + 2 (H + co) (H [H − co]−K) = 0 , on Σ ,

a (H + co) + bκn = 0 , on ∂Σ ,

J ′ · ν − a∂nH + bτ ′g = 0 , on ∂Σ ,

J ′ · n + a (H + co)
2 + bK = 0 , on ∂Σ ,

where {T, ν, n} is the Darboux frame, κn and τg are the normal curvature and
geodesic torsion of the boundary, respectively, and the vector field J is defined
as

J := 2αT ′′ +
(
3ακ2 − β

)
T ,

along ∂Σ.

3. Ground State Equilibria

We consider the ground state H + co ≡ 0 on Σ. Then, the Euler-Lagrange
equations reduce to

bκn = 0 , on ∂Σ ,

J ′ · ν + bτ ′g = 0 , on ∂Σ ,

J ′ · n− bτ 2
g = 0 , on ∂Σ .

Theorem 2 (Elastic Curves Circular at Rest) Let X : Σ → R3 be an equilib-
rium with H + co ≡ 0. Then, each boundary component C is a simple and
closed critical curve for

F [C] :=

∫
C

(
[κ + µ]2 + λ

)
ds ,

where µ := ±b/(2α) and λ := β/α− µ2.

In what follows, we will assume that Σ is a topological disc, so that it only has
one boundary component C. The classification of ground state equilibrium
configurations is given in the following result.

Theorem 3 (Disc Type Critical Surfaces) Let X : Σ → R3 be a constant
mean curvature H = −co disc type surface critical for E. Then:

(i) Case b 6= 0. The surface is a planar disc bounded by a circle of radius√
α/β and co = 0.

(ii) Case b = 0. The boundary is either a circle of radius
√
α/β or it is a simple

and closed (classical) elastic curve representing a torus knot of type G(q, 1)
for q > 2.

Figure 1. Minimal surfaces of disc type spanned by (classical) elastic curves
of type G(q, 1). These domains are critical for E with co = 0 and b = 0.
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