MATH CIRCLE TTU

Number Theory

Congruences

Congruences

Two integers a and b are congruent modulo c,

$$
a \equiv b(\bmod c) \quad \Longleftrightarrow \quad a=n \times c+b
$$

if the remainder of dividing a by c and the remainder of dividing b by c is the same. Example. 25 is congruent with 4 modulo 7 , that is, $25 \equiv 4(\bmod 7)$.
(i) What is the remainder of dividing 25 by 7 ?
(ii) What is the remainder of dividing 4 by 7 ?
(iii) Clearly, $25=3 \times 7+4$.

Problem 1.
(i) Is $22 \equiv-1040(\bmod 18)$?
(ii) Is $416 \equiv 3(\bmod 7)$?

Greatest Common Divisor

Problem 2.

(i) What is the greatest common divisor of 4 and 12 ?
(ii) What is the greatest common divisor of 8 and 12 ?
(iii) What is the greatest common divisor of 7 and 18 ?

Extended Euclidean Algorithm

The greatest common divisor of a and $b, \operatorname{gcd}(a, b)$, can be written as

$$
\operatorname{gcd}(a, b)=n \times a+m \times b
$$

Example. We work with 8 and 14 and we follow these steps:

1. We divide the largest number 14 by the other one 8 and we get 1 and remainder 6 , that is,

$$
14=1 \times 8+6
$$

2. Now, we divide 8 by 6 and get 1 and remainder 2 , so

$$
8=1 \times 6+2 .
$$

3. If we divide 6 by 2 the remainder is 0 . (We repeat previous steps until we get remainder $0)$.
4. The last nonzero remainder is the greatest common divisor. In our case, $\operatorname{gcd}(8,14)=2$.
5. Moreover, going backwards and using above equations,

$$
2=8-1 \times 6=8-1 \times(14-1 \times 8)=2 \times 8+(-1) \times 14 .
$$

Problem 3. Apply the extended Euclidean algorithm for 7 and 18.

Easy Problem

Problem 4. A store sells boxes of donuts at $\$ 7$ each and pizzas at $\$ 18$ each. If in one day they have sold 25 items in total and received $\$ 208$, how many pizzas and boxes of donuts were sold?

Even Easier Problem

Problem 5. A store sells boxes of donuts at $\$ 7$ each and pizzas at $\$ 18$ each. If in one day they have received $\$ 208$, how many pizzas and boxes of donuts were sold? Is that the only solution?

