MATH CIRCLE TTU

Number Theory

Induction Axiom

Adding "Easy" Sequences

1. What is the sum of the first n natural numbers?

$$
1+2+3+4+\cdots+(n-1)+n=?
$$

2. What is the sum of the first n odd natural numbers?

$$
1+3+5+7+\cdots+(2 n-3)+(2 n-1)=?
$$

3. What is the sum of the first n even natural numbers?

$$
2+4+6+8+\cdots+(2 n-2)+(2 n)=?
$$

Adding "Not-That-Easy" Sequences

4. Follow the Induction Process to show that

$$
1^{2}+2^{2}+3^{2}+4^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Hint (the following are the steps for the Induction Process):
(i) Check it for $n=1$ (also, if you do not trust it, check it for $n=2,3, \ldots$).
(ii) Assume it is true for $n-1$. That is, assume that

$$
1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(n-1)^{2}=\frac{(n-1) n(2 n-1)}{6}
$$

(iii) Using the identity of the previous step, prove the original formula.
5. What is the sum of the squares of the first n even numbers?

$$
2^{2}+4^{2}+6^{2}+8^{2}+\cdots+(2 n)^{2}=?
$$

Magic Squares

A magic square is a $n \times n$ 'big' square that has the numbers $1,2,3, \ldots, n^{2}$ in the 'small' squares, in such a way that the sum of the numbers in each row, each column, and both main diagonals are the same.
6. Before solving it, what is the constant sum for a 3×3 magic square?
7. And, for a 4×4 ?
8. And, in general, for a $n \times n$ magic square?
9. Solve the 3×3 magic square.
10. (Homework) Solve the 4×4 magic square.

