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Abstract

A curve immersed in a pseudo-Riemannian manifold is called an elastic curve if it is a critical point of the bending energy [1]. The purpose of this poster is to present a few author’s recent results
on geodesics of hypersurfaces in a Lorentzian space form which are critical curves for the bending energy, but for variations constrained to lie on the hypersurface: the elastica constrained
problem [3], [5]. First, the classification into three different types of critical geodesics for the constrained problem will be presented, in terms of their Frenet curvatures [2]. Finally, restricting
ourselves to the flat Minkowski space L3, surfaces which are foliated by critical geodesics of each type will be studied (and classified in two of these cases) [2]. Special emphasis will be put in
the warped product metric of Hashimoto surfaces [4], which are foliated by critical geodesics of the third type [2].

1. Elasticae Constrained Problem

Elastic curves or, simply, elasticae are defined as those curves which are critical for the
bending energy functional

F(γ) :=

∫
γ

(
ε2

〈
Dγ̇

ds
,
Dγ̇

ds

〉
+ λ

)
ds, (1)

where ε2 is the causal character of Dγ̇ds .
Now, let φ : Mn−1

r → Mn
1 (c) be a semi-Riemannian hypersurface of index r isometrically

immersed in a Lorentzian space form Mn
1 (c). We are interested in those curves γ of the

hypersurface which are critical points of the bending energy (1) for variations contained in
Mn−1
r , the elastica constrained problem in hypersurfaces.

Choose two arbitrary points pi ∈ Mn−1
r and vectors vi ∈ TpiM

n−1
r , i ∈ {0, 1}, and consider

the space of curves

Ω =
{
β : I →Mn−1

r s.t. <
diβ

dt
,
diβ

dt
> (t) 6= 0, β(i) = pi,

dβ

dt
(i) = vi, i ∈ { 0, 1}

}
, (2)

where, dβ
dt (t) denotes the derivative with respect to the parameter t ∈ I, I being any real

interval. We wish now to analyze the variational problem associated to the energy (1) acting
on Ω.
From the first variation formula of F along γ, and due to the initial and boundary conditions
of the variation we obtain the Euler-Lagrange operator

E(γ) = 2ε2
D3T

ds3
+ 3ε1

D(κ2T )

ds
+ ε1(2cε2 − λ)

DT

ds
. (3)

Now, since γ ⊂ Mn−1
r and we are taking variations in Mn−1

r , the variation field W is tangent
to Mn−1

r along γ. So only the tangential part of E affects the first variation formula and γ is a
critical point of F , if and only if,

tan (E(γ)) = 0 , (4)

where tan () denotes tangential projection on Mn−1
r .

2. Critical Geodesics

A geodesic is a constant speed curve whose tangent vector is parallel propagated along it-
self, i.e. a curve whose tangent, γ′(t) = T (t), satisfies the equation DT (t)

dt = 0. Geodesics
will be called Frenet curves of rank 1 where an immersed curve in a Lorentzian manifold
γ : I → Mn

1 is called a Frenet curve of rank m, 2 ≤ m ≤ n, if m is the highest integer for
which there exists an orthonormal frame defined along γ, {e1(t) = γ′(t), e2(t), . . . , em(t)} and
non-negative smooth functions on γ, κi(t), t ∈ I, 1 ≤ i ≤ m− 1 (Frenet curvatures), such that
the Frenet-Serret equations are satisfied. Obviously, geodesics have zero curvature.
Proposition 1 [2] Let γ : I → Mn−1

r ⊂ Mn
1 (c) be a Frenet curve of rank m which is geodesic

of Mn−1
r . Assume that F is acting on Ω. Then γ is a critical point of F (i.e., for the hypersur-

face constrained problem), if and only if, one of the following cases occurs:
1. Rank of γ is 1, i.e. γ is a geodesic of Mn

1 (c);
2. Rank of γ is 2, that is, the torsion of γ vanishes, κ2 = 0;
3. γ is a Frenet curve of rank 3 satisfying

κ2
1κ2 = d , (5)

where, d ∈ R is a constant and κ1, κ2 are the two first Frenet curvatures of γ in Mn
1 (c). More-

over, in all above cases γ lies fully in a totally geodesic submanifold El ⊂Mn
1 (c) of dimension

l= rank γ, 1 ≤ m ≤ 3.

3. Surfaces of L3 Foliated by Critical Geodesics

Consider the Minkowsky 3-space L3, that is, the flat Lorentzian 3-space R3 equipped with the
metric

go = −dx2
1 + dx2

2 + dx2
3 , (6)

where (x1, x2, x3) is the standard rectangular coordinate system. Now, we can study the
surfaces of L3 foliated by critical geodesics of the three different types of Proposition 1.
• Type 1. A ruled surface S in 3-space L3 is defined by the property that it admits a

parametrization x(s, t) = α(s) + tX(s) where α(s) is a connected piece of a regular curve
and X(s) is a nowhere vanishing vector field along the curve. Thus, rulings (s = constant)
of S are geodesics of L3 and ruled surfaces are examples of surfaces foliated by curves of
the first type of Proposition 1.
• Type 2. A non-null unit speed curve of L3 with τ = 0 lies in an affine plane. A curve with
τ = 0 is going to be called a planar curve. Then, we have the following result

Proposition 2 [2] Let δ : I1 → L3 be a non-null arc-length parametrized curve δ(t) in
L3, and let {Tδ(t), Nδ(t), Bδ(t)} denote its Frenet frame. We also denote by Pto :=
span{Nδ(to), Bδ(to)} the normal plane to δ(t) at to ∈ I1.

A) Suppose first that δ(t) is spacelike and take any non-null arc-length parametrized curve
γ(s) = (γ1(s), γ2(s)) in the timelike plane Pto, γ : I2→ Pto. Then

1) If δ′′(t) is non-null, define the surface x : U = I1 × I2→ L3 given by

x(s, t) = δ(t) + γ1(s) (cosh ς(t)Nδ(t) + sinh ς(t)Bδ(t))

+ γ2(s) (cosh ς(t)Bδ(t) + sinh ς(t)Nδ(t)) ,
(7)

where ς satisfies ε ς ′(t) = τδ(t), τδ(t) denotes the torsion of δ(t) and ε is the causal char-
acter of δ′′(t). Then, the immersion (U, xa) given in (7) defines a surface of L3 foliated
by planar geodesics.

2) If δ′′(t) is null, consider the surface x : U = I1 × I2→ L3 defined by

xa(s, t) = a δ(t) (8)

+ γ1(s)

(
1

2d
(cosh ς(t)− sinh ς(t))Nδ(t) + d (cosh ς(t) + sinh ς(t))Bδ(t)

)
+ γ2(s)

(
1

2d
(sinh ς(t)− cosh ς(t))Nδ(t) + d (cosh ς(t) + sinh ς(t))Bδ(t)

)
,

where d ∈ R, a ∈ {0, 1} and ς ′(t) = τδ(t) is the torsion of δ(t). Then, the immersion
(U, xa) given in (8) defines a surface of L3 foliated by planar geodesics of (U, xa).

Moreover, in both cases, the pseudoriemannian character of the surface is determined
by that of γ, that is, (U, xa) is Riemannian (respectively, Lorentzian) if and only if γ is
spacelike (respectively, timelike).

B) Assume now that δ(t) is timelike. Take any non-null arclength parametrized curve
γ(s) = (γ1(s), γ2(s)) in the spacelike plane Pto. Then

xa(s, t) = a δ(t) + γ1(s) (cos ς(t)Nδ(t)− sin ς(t)Bδ(t))

+ γ2(s) (cos ς(t)Bδ(t) + sin ς(t)Nδ(t)) ,
(9)

where a ∈ {0, 1} and ς ′(t) = τδ(t) is the torsion of δ(t). Then, the immersion (U, xa) given
in (9) defines a Lorentzian surface of L3 foliated by planar geodesics of (U, xa).

Conversely, locally, any surface M2
r in L3 foliated by non-null planar geodesics is either a

ruled surface or it can be constructed as described in (7), (8) and (9).

• Type 3. Examples of surfaces foliated by curves of the third type of Proposition 1 are given
by Hashimoto Surfaces [2], [4].

4. Hashimoto Surfaces

For a Hashimoto surface Sγ the filament evolution x(s, t) under LIE implies that the vortex
curves (t-curves) x(s, to) are geodesics in Sγ and then x(s, t) gives a parametrization of Sγ
where, as a consequence of the equivalence between the binormal flow and the LIE, the
induced metric is a warped product metric,

g = ε1ds
2 + ε3κ

2dt2, (10)

κ being the curvature of γ in L3. Hence, one can see that the Gauss-Codazzi equations are

κt = −ε2ε3(2κsτ + κτs) , (11)

τt = ε2(ε2
κss
κ
− ε3τ

2 +
1

2
ε1κ

2)s , (12)

the Lorentzian Da Rios equations [2].
Lorentzian Hashimoto surfaces have the following properties (which are an extension of the
Riemannian version)
Proposition 3 [2] With the previous notation, let Sγ be a Hashimoto surface having by initial
condition a Frenet curve of rank 2 or 3 in L3, γ(s), parametrized by proper time. Denote by
x(s, t) the parametrization of Sγ determined by LIE. Then
1. If all vortex curves are planar then they are elastica in either a Riemannian or a Lorentzian

plane. The corrresponding Hashimoto surface is described in Propostition 2 and if δ′′ is not
null, then Sγ is either a right cylinder on a Lorentzian circle, or a rotation surface shaped
on a planar elastica γ of either R2 or L2.

2. The initial vortex curve γ(s) evolves by rigid motions under LIE, if and only if, it is an elastica
in L3. As a consecuence, a rank 3 elastica γ(s) in L3 evolves under LIE (by rigid motions)
and the different positions of the vortex curve over time give a foliation of the assosiated
Hashimoto surface by Sγ-constrained elastic geodesics of type 3 in Proposition 1.
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