Elastica Constrained Problem in Hypersurfaces of Lorentzian Space Forms*

Álvaro Pámpano Llarena
University of the Basque Country UPV/EHU, Departament of Mathematics, Bilbao, Spain
alvaro.pampano@ehu.eus

Abstract

A curve immersed in a pseudo-Riemannian manifold is called an elastic curve if it is a critical point of the bending energy [1]. The purpose of this poster is to present a few author's recent results on geodesics of hypersurfaces in a Lorentzian space form which are critical curves for the bending energy, but for variations constrained to lie on the hypersurface: the elastica constrained problem [3], [5]. First, the classification into three different types of critical geodesics for the constrained problem will be presented, in terms of their Frenet curvatures [2]. Finally, restricting ourselves to the flat Minkowski space \mathbb{L}^{3}, surfaces which are foliated by critical geodesics of each type will be studied (and classified in two of these cases) [2]. Special emphasis will be put in the warped product metric of Hashimoto surfaces [4], which are foliated by critical geodesics of the third type [2]

1. Elasticae Constrained Problem

Elastic curves or, simply, elasticae are defined as those curves which are critical for the bending energy functional

$$
\begin{equation*}
\mathcal{F}(\gamma):=\int_{\gamma}\left(\varepsilon_{2}\left\langle\frac{D \dot{\gamma}}{d s}, \frac{D \dot{\gamma}}{d s}\right\rangle+\lambda\right) d s \tag{1}
\end{equation*}
$$

where ε_{2} is the causal character of $\frac{D \dot{\gamma}}{d s}$.
Now, let $\phi: M_{r}^{n-1} \rightarrow M_{1}^{n}(c)$ be a semi-Riemannian hypersurface of index r isometrically immersed in a Lorentzian space form $M_{1}^{n}(c)$. We are interested in those curves γ of the hypersurface which are critical points of the bending energy (1) for variations contained in M_{r}^{n-1}, the elastica constrained problem in hypersurfaces.
Choose two arbitrary points $p_{i} \in M_{r}^{n-1}$ and vectors $v_{i} \in T_{p_{i}} M_{r}^{n-1}, i \in\{0,1\}$, and consider the space of curves

$$
\begin{equation*}
\Omega=\left\{\beta: I \rightarrow M_{r}^{n-1} \text { s.t. }<\frac{d^{i} \beta}{d t}, \frac{d^{i} \beta}{d t}>(t) \neq 0, \beta(i)=p_{i}, \frac{d \beta}{d t}(i)=v_{i}, i \in\{0,1\}\right\} \tag{2}
\end{equation*}
$$

where, $\frac{d \beta}{d t}(t)$ denotes the derivative with respect to the parameter $t \in I, I$ being any real interval. We wish now to analyze the variational problem associated to the energy (1) acting on Ω.
From the first variation formula of \mathcal{F} along γ, and due to the initial and boundary conditions of the variation we obtain the Euler-Lagrange operator

$$
\begin{equation*}
\mathcal{E}(\gamma)=2 \varepsilon_{2} \frac{D^{3} T}{d s^{3}}+3 \varepsilon_{1} \frac{D\left(\kappa^{2} T\right)}{d s}+\varepsilon_{1}\left(2 c \varepsilon_{2}-\lambda\right) \frac{D T}{d s} \tag{3}
\end{equation*}
$$

Now, since $\gamma \subset M_{r}^{n-1}$ and we are taking variations in M_{r}^{n-1}, the variation field W is tangent to M_{r}^{n-1} along γ. So only the tangential part of \mathcal{E} affects the first variation formula and γ is a critical point of \mathcal{F}, if and only if,

$$
\begin{equation*}
\tan (\mathcal{E}(\gamma))=0 \tag{4}
\end{equation*}
$$

where $\tan ()$ denotes tangential projection on M_{r}^{n-1}.

2. Critical Geodesics

A geodesic is a constant speed curve whose tangent vector is parallel propagated along itself, i.e. a curve whose tangent, $\gamma^{\prime}(t)=T(t)$, satisfies the equation $\frac{D T(t)}{d t}=0$. Geodesics will be called Frenet curves of rank 1 where an immersed curve in a Lorentzian manifold $\gamma: I \rightarrow M_{1}^{n}$ is called a Frenet curve of rank $m, 2 \leq m \leq n$, if m is the highest integer for which there exists an orthonormal frame defined along $\gamma,\left\{e_{1}(t)=\gamma^{\prime}(t), e_{2}(t), \ldots, e_{m}(t)\right\}$ and non-negative smooth functions on $\gamma, \kappa_{i}(t), t \in I, 1 \leq i \leq m-1$ (Frenet curvatures), such that the Frenet-Serret equations are satisfied. Obviously, geodesics have zero curvature.
Proposition 1 [2] Let $\gamma: I \rightarrow M_{r}^{n-1} \subset M_{1}^{n}(c)$ be a Frenet curve of rank m which is geodesic of M_{r}^{n-1}. Assume that \mathcal{F} is acting on Ω. Then γ is a critical point of \mathcal{F} (i.e., for the hypersurface constrained problem), if and only if, one of the following cases occurs:

1. Rank of γ is 1 , i.e. γ is a geodesic of $M_{1}^{n}(c)$;
2. Rank of γ is 2 , that is, the torsion of γ vanishes, $\kappa_{2}=0$;
3. γ is a Frenet curve of rank 3 satisfying
$\kappa_{1}^{2} \kappa_{2}=d$,
(5)
where, $d \in \mathbb{R}$ is a constant and κ_{1}, κ_{2} are the two first Frenet curvatures of γ in $M_{1}^{n}(c)$. Moreover, in all above cases γ lies fully in a totally geodesic submanifold $E^{l} \subset M_{1}^{n}(c)$ of dimension $l=\operatorname{rank} \gamma, 1 \leq m \leq 3$.

3. Surfaces of \mathbb{L}^{3} Foliated by Critical Geodesics

Consider the Minkowsky 3 -space \mathbb{L}^{3}, that is, the flat Lorentzian 3-space \mathbb{R}^{3} equipped with the metric

$$
\begin{equation*}
g_{o}=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}, \tag{6}
\end{equation*}
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ is the standard rectangular coordinate system. Now, we can study the surfaces of \mathbb{L}^{3} foliated by critical geodesics of the three different types of Proposition 1.

- Type 1. A ruled surface S in 3 -space \mathbb{L}^{3} is defined by the property that it admits a parametrization $x(s, t)=\alpha(s)+t X(s)$ where $\alpha(s)$ is a connected piece of a regular curve and $X(s)$ is a nowhere vanishing vector field along the curve. Thus, rulings ($s=$ constant) of S are geodesics of \mathbb{L}^{3} and ruled surfaces are examples of surfaces foliated by curves of the first type of Proposition 1.
- Type 2. A non-null unit speed curve of \mathbb{L}^{3} with $\tau=0$ lies in an affine plane. A curve with $\tau=0$ is going to be called a planar curve. Then, we have the following result
Proposition 2 [2] Let $\delta: I_{1} \rightarrow \mathbb{L}^{3}$ be a non-null arc-length parametrized curve $\delta(t)$ in \mathbb{L}^{3}, and let $\left\{T_{\delta}(t), N_{\delta}(t), B_{\delta}(t)\right\}$ denote its Frenet frame. We also denote by $P_{t_{o}}:=$ $\operatorname{span}\left\{N_{\delta}\left(t_{o}\right), B_{\delta}\left(t_{o}\right)\right\}$ the normal plane to $\delta(t)$ at $t_{o} \in I_{1}$.
A) Suppose first that $\delta(t)$ is spacelike and take any non-null arc-length parametrized curve $\gamma(s)=\left(\gamma_{1}(s), \gamma_{2}(s)\right)$ in the timelike plane $P_{t_{o}}, \gamma: I_{2} \rightarrow P_{t_{o}}$. Then

1) If $\delta^{\prime \prime}(t)$ is non-null, define the surface $x: U=I_{1} \times I_{2} \rightarrow \mathbb{L}^{3}$ given by
$x(s, t)=\delta(t)+\gamma_{1}(s)\left(\cosh \varsigma(t) N_{\delta}(t)+\sinh \varsigma(t) B_{\delta}(t)\right)$ $+\gamma_{2}(s)\left(\cosh \varsigma(t) B_{\delta}(t)+\sinh \varsigma(t) N_{\delta}(t)\right)$
where ς satisfies $\epsilon \varsigma^{\prime}(t)=\tau_{\delta}(t), \tau_{\delta}(t)$ denotes the torsion of $\delta(t)$ and ϵ is the causal character of $\delta^{\prime \prime}(t)$. Then, the immersion ($U, x_{\mathfrak{a}}$) given in (7) defines a surface of \mathbb{L}^{3} foliated by planar geodesics.
2) If $\delta^{\prime \prime}(t)$ is null, consider the surface $x: U=I_{1} \times I_{2} \rightarrow \mathbb{L}^{3}$ defined by

$$
\begin{align*}
& x_{\mathfrak{a}}(s, t)=\mathfrak{a} \delta(t) \tag{8}\\
+ & \gamma_{1}(s)\left(\frac{1}{2 d}(\cosh \varsigma(t)-\sinh \varsigma(t)) N_{\delta}(t)+d(\cosh \varsigma(t)+\sinh \varsigma(t)) B_{\delta}(t)\right) \\
+ & \gamma_{2}(s)\left(\frac{1}{2 d}(\sinh \varsigma(t)-\cosh \varsigma(t)) N_{\delta}(t)+d(\cosh \varsigma(t)+\sinh \varsigma(t)) B_{\delta}(t)\right)
\end{align*}
$$

where $d \in \mathbb{R}, \mathfrak{a} \in\{0,1\}$ and $\varsigma^{\prime}(t)=\tau_{\delta}(t)$ is the torsion of $\delta(t)$. Then, the immersion $\left(U, x_{\mathfrak{a}}\right)$ given in (8) defines a surface of \mathbb{L}^{3} foliated by planar geodesics of $\left(U, x_{\mathfrak{a}}\right)$.
Moreover, in both cases, the pseudoriemannian character of the surface is determined by that of γ, that is, $\left(U, x_{\mathfrak{a}}\right)$ is Riemannian (respectively, Lorentzian) if and only if γ is spacelike (respectively, timelike).
B) Assume now that $\delta(t)$ is timelike. Take any non-null arclength parametrized curve $\gamma(s)=\left(\gamma_{1}(s), \gamma_{2}(s)\right)$ in the spacelike plane $P_{t_{o}}$. Then

$$
\begin{align*}
x_{\mathfrak{a}}(s, t)=\mathfrak{a} \delta(t) & +\gamma_{1}(s)\left(\cos \varsigma(t) N_{\delta}(t)-\sin \varsigma(t) B_{\delta}(t)\right) \tag{9}\\
& +\gamma_{2}(s)\left(\cos \varsigma(t) B_{\delta}(t)+\sin \varsigma(t) N_{\delta}(t)\right)
\end{align*}
$$

where $\mathfrak{a} \in\{0,1\}$ and $\varsigma^{\prime}(t)=\tau_{\delta}(t)$ is the torsion of $\delta(t)$. Then, the immersion $\left(U, x_{\mathfrak{a}}\right)$ given in (9) defines a Lorentzian surface of \mathbb{L}^{3} foliated by planar geodesics of $\left(U, x_{\mathfrak{a}}\right)$.
Conversely, locally, any surface M_{r}^{2} in \mathbb{L}^{3} foliated by non-null planar geodesics is either a ruled surface or it can be constructed as described in (7), (8) and (9).

- Type 3. Examples of surfaces foliated by curves of the third type of Proposition 1 are given by Hashimoto Surfaces [2], [4].

4. Hashimoto Surfaces

For a Hashimoto surface S_{γ} the filament evolution $x(s, t)$ under LIE implies that the vortex curves (t-curves) $x\left(s, t_{o}\right)$ are geodesics in S_{γ} and then $x(s, t)$ gives a parametrization of S_{γ} where, as a consequence of the equivalence between the binormal flow and the LIE, the induced metric is a warped product metric,

$$
\begin{equation*}
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} \kappa^{2} d t^{2}, \tag{10}
\end{equation*}
$$

κ being the curvature of γ in \mathbb{L}^{3}. Hence, one can see that the Gauss-Codazzi equations are

$$
\begin{align*}
\kappa_{t} & =-\varepsilon_{2} \varepsilon_{3}\left(2 \kappa_{s} \tau+\kappa \tau_{s}\right) \tag{11}\\
\tau_{t} & =\varepsilon_{2}\left(\varepsilon_{2} \frac{\kappa_{s s}}{\kappa}-\varepsilon_{3} \tau^{2}+\frac{1}{2} \varepsilon_{1} \kappa^{2}\right)_{s}
\end{align*}
$$

the Lorentzian Da Rios equations [2].
Lorentzian Hashimoto surfaces have the following properties (which are an extension of the Riemannian version)
Proposition 3 [2] With the previous notation, let S_{γ} be a Hashimoto surface having by initial condition a Frenet curve of rank 2 or 3 in $\mathbb{L}^{3}, \gamma(s)$, parametrized by proper time. Denote by $x(s, t)$ the parametrization of S_{γ} determined by LIE. Then

1. If all vortex curves are planar then they are elastica in either a Riemannian or a Lorentzian plane. The corrresponding Hashimoto surface is described in Propostition 2 and if $\delta^{\prime \prime}$ is not null, then S_{γ} is either a right cylinder on a Lorentzian circle, or a rotation surface shaped on a planar elastica γ of either \mathbb{R}^{2} or \mathbb{L}^{2}.
2. The initial vortex curve $\gamma(s)$ evolves by rigid motions under LIE, if and only if, it is an elastica in \mathbb{L}^{3}. As a consecuence, a rank 3 elastica $\gamma(s)$ in \mathbb{L}^{3} evolves under LIE (by rigid motions) and the different positions of the vortex curve over time give a foliation of the assosiated Hashimoto surface by S_{γ}-constrained elastic geodesics of type 3 in Proposition 1.

References

[1] L. Euler, "Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes", Sive Solutio Problematis Isoperimetrici Lattisimo Sensu Accepti, Bousquet, Lausannae et Genevae E 65A., O.O. Ser. I, vo lematis Is.
$24,1744$.
[2] O.J. Garay, A. Pámpano and C. Woo, "Hypersurface Constrained Elasticae in Lorentzian Space Forms" Advances in Mathematical Physics, vol. 2015 (2015), Article ID 458178, 13p
[3] O.J. Garay and M. Pauley, "Critical curves for a Santaló problem in 3-space forms", J. Math. Anal. Appl., vol. 398 (2013), 80-99.
[4] H. Hashimoto, "Motion of a Vortex Filament and its Relation to Elastica", J. Phy. Soc. Japan, vol. 31 (1971) 293-294.
[5] L.A. Santaló, "Curvas sobre una superficie extremales de una función de la curvatura y torsión", Abhndlungen der Hambrugische Universiteit, vol. 20 (1956), 216-222.

