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Abstract

A curve immersed in a pseudo-Riemannian manifold is called an elastic curve if it is a critical point of the bending energy [1]. The purpose of this poster is to present a few author’s recent results
on geodesics of hypersurfaces in a Lorentzian space form which are critical curves for the bending energy, but for variations constrained to lie on the hypersurface: the elastica constrained
problem [3], [5]. First, the classification into three different types of critical geodesics for the constrained problem will be presented, in terms of their Frenet curvatures [2]. Finally, restricting
ourselves to the flat Minkowski space L°, surfaces which are foliated by critical geodesics of each type will be studied (and classified in two of these cases) [2]. Special emphasis will be put in
the warped product metric of Hashimoto surfaces [4], which are foliated by critical geodesics of the third type [2].

1. Elasticae Constrained Problem

Elastic curves or, simply, elasticae are defined as those curves which are critical for the

bending energy functional
_ Dy Dy
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where ¢, is the causal character of 2.

Now, let ¢ : MP~1 — Mi'(c) be a semi-Riemannian hypersurface of index r isometrically
immersed in a Lorentzian space form M{'(c). We are interested in those curves v of the
hypersurface which are critical points of the bending energy (1) for variations contained in
M?1 the elastica constrained problem in hypersurfaces.

Choose two arbitrary points p; € M”~! and vectors v; € T, M*~! i € {0,1}, and consider
the space of curves
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where, %(t) denotes the derivative with respect to the parameter ¢t € I, I being any real
interval. We wish now to analyze the variational problem associated to the energy (1) acting
on ().
From the first variation formula of F along ~, and due to the initial and boundary conditions
of the variation we obtain the Euler-Lagrange operator
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Now, since v ¢ M~ and we are taking variations in M ~!, the variation field 1V is tangent
to M7~ along . So only the tangential part of £ affects the first variation formula and ~ is a
critical point of F, if and only if,
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where tan () denotes tangential projection on A/,

2. Critical Geodesics

A geodesic is a constant speed curve whose tangent vector is parallel propagated along it-
self, i.e. a curve whose tangent, 7/(t) = T(t), satisfies the equation Dgt@) = (0. Geodesics
will be called Frenet curves of rank 1 where an immersed curve in a Lorentzian manifold
v : I — M is called a Frenet curve of rank m, 2 < m < n, if m is the highest integer for
which there exists an orthonormal frame defined along v, {e1(t) = ~/(t),ea(t), ..., en(t)} and
non-negative smooth functions on v, x;(t), t € I, 1 < < m —1 (Frenet curvatures), such that

the Frenet-Serret equations are satisfied. Obviously, geodesics have zero curvature.

Proposition 1 [2] Let~ : I — M~ c M?(c) be a Frenet curve of rank m which is geodesic

of M»~1. Assume that F is acting on ). Then ~ is a critical point of F (i.e., for the hypersur-
face constrained problem), if and only if, one of the following cases occurs:

1. Rank of v is 1, i.e. v is a geodesic of M{'(c),
2. Rank of v is 2, that is, the torsion of v vanishes, ko = 0,
3.~ Is a Frenet curve of rank 3 satisfying

Kikg = d, (5)

where, d € R is a constant and k1, ko are the two first Frenet curvatures of v in Mi'(c). More-

over, in all above cases ~ lies fully in a totally geodesic submanifold E' ¢ M {"(c) of dimension
[=rank~,1 <m < 3.

3. Surfaces of L° Foliated by Critical Geodesics

Consider the Minkowsky 3-space L3, that is, the flat Lorentzian 3-space R> equipped with the
metric

Jo = —d:z:% -+ dx% - dx% : (6)

where (z1, x9,z3) is the standard rectangular coordinate system. Now, we can study the
surfaces of L? foliated by critical geodesics of the three different types of Proposition 1.

e Type 1. A ruled surface S in 3-space L° is defined by the property that it admits a
parametrization x(s,t) = a(s) + tX(s) where «a(s) is a connected piece of a regular curve
and X (s) is a nowhere vanishing vector field along the curve. Thus, rulings (s = constant)
of S are geodesics of L° and ruled surfaces are examples of surfaces foliated by curves of
the first type of Proposition 1.

e Type 2. A non-null unit speed curve of L3 with 7 = 0 lies in an affine plane. A curve with
T = 0 is going to be called a p/lanar curve. Then, we have the following result

Proposition 2 /2] Let § : I; — L} be a non-null arc-length parametrized curve 6(t) in

13, and let {Tj(t), Ns(t), Bs(t)} denote its Frenet frame. We also denote by P; =

span{Ns(ty), Bs(to)} the normal plane to i(t) att, € 1.

A) Suppose first that 6(t) is spacelike and take any non-null arc-length parametrized curve
v(s) = (v1(s),v2(s)) in the timelike plane P; , v : Iy — P; . Then

1) If 6" (¢) is non-null, define the surface = : U = I, x I, — L3 given by

(t))

x(s,t) = 0(t) + v1(s) (cosh¢(t)Ns(t) + sinh ¢(t)
+72(8) (cosh ¢(t) Bs(t) +sinh () N5(t)) |
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where ¢ satisfies e¢'(t) = 75(t), 75(t) denotes the torsion of §(t) and e is the causal char-
acter of 8" (t). Then, the immersion (U, zq) given in (7) defines a surface of 1L° foliated
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by planar geodesics.
2) If §"(t) is null, consider the surface = : U = I x Iy — 1L defined by
Za(s,t) = ad(t) (8)
1
+ 71(s) (ﬁ (cosh¢(t) —sinh¢(t)) Ns(t) + d (coshg(t) + sinh¢(t)) B5(t)>
1
+ Y2(s) (ﬁ (sinh¢(t) — cosh¢(t)) Ns(t) + d (coshg(t) + sinh¢(t)) B(g(t)) ,

where d € R, a € {0,1} and ¢'(t) = 75(t) is the torsion of 5(t). Then, the immersion
(U, z4) given in (8) defines a surface of 1L° foliated by planar geodesics of (U, zq).
Moreover, in both cases, the pseudoriemannian character of the surface is determined
by that of ~, that is, (U,xzq4) is Riemannian (respectively, Lorentzian) if and only if v is
spacelike (respectively, timelike).
B) Assume now that i(t) is timelike. Take any non-null arclength parametrized curve
v(s) = (71(s),12(s)) in the spacelike plane P; . Then

Ta(s,t) = ad(t) +y1(s) (cos(t)Ns(t) — sin () Bs(t))

+ vo(s) (cos¢(t)Bg(t) + sin¢(t)Ns(t)) , (9)

where a € {0,1} and <'(t) = 75(t) is the torsion of §(t). Then, the immersion (U, z4) given
in (9) defines a Lorentzian surface of 1L? foliated by planar geodesics of (U, z).

Conversely, locally, any surface M? in 1L° foliated by non-null planar geodesics is either a
ruled surface or it can be constructed as described in (7), (8) and (9).

e Type 3. Examples of surfaces foliated by curves of the third type of Proposition 1 are given
by Hashimoto Surfaces [2], [4].

4. Hashimoto Surfaces

For a Hashimoto surface S, the filament evolution z(s,¢) under L/E implies that the vortex
curves (t-curves) z(s,t,) are geodesics in S, and then z(s,t) gives a parametrization of S,
where, as a consequence of the equivalence between the binormal flow and the LIE, the
iInduced metric is a warped product metric,

= €1d82 + 63/43261?52, (1 O)

x being the curvature of ~ in L3. Hence, one can see that the Gauss-Codazzi equations are

Kt = —8283(2/@7‘4—/@7@), (11)
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the Lorentzian Da Rios equations [2].
Lorentzian Hashimoto surfaces have the following properties (which are an extension of the
Riemannian version)

Proposition 3 [2] With the previous notation, let S, be a Hashimoto surface having by initial
condition a Frenet curve of rank 2 or 3 in L3, v(s), parametrized by proper time. Denote by
z(s,t) the parametrization of S-, determined by LIE. Then

1. If all vortex curves are planar then they are elastica in either a Riemannian or a Lorentzian
plane. The corrresponding Hashimoto surface is described in Propostition 2 and if 5" is not
null, then S is either a right cylinder on a Lorentzian circle, or a rotation surface shaped
on a planar elastica ~ of either R? or L.

2. The initial vortex curve ~(s) evolves by rigid motions under LIE, if and only if, it is an elastica
inL3. As a consecuence, a rank 3 elastica v(s) in L3 evolves under LIE (by rigid motions)
and the different positions of the vortex curve over time give a foliation of the assosiated
Hashimoto surface by S~ -constrained elastic geodesics of type 3 in Proposition 1.
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