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Philosophical Origins

• The development of Calculus was initially motivated in order
to compute extrema of functions (G. Leibniz, 1684).

• A natural generalization is to compute extrema of functionals
(i.e., the Calculus of Variations).

The Principle of Least Action

Any change in nature takes place using the minimum amount of
required energy.

• Often attributed to P. L. Maupertuis (1744-1746).

• Already known to G. Leibniz (1705) and L. Euler (1744).
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Variational Problems for Curves (Origin)

• 1691: Jacob Bernoulli proposed the problem of determining
the shape of elastic rods.
(Jordanus de Nemore, XIII century; and G. Galilei, 1638.)

• 1691: G. Leibniz, C. Huygens, and Johann Bernoulli derived
the equations characterizing a hanging chain.
(G. Galilei, 1638; and R. Hooke, ∼1670.)
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Variational Problems for Curves (Origin)

• 1696: Johann Bernoulli posed the problem of finding the
curve of fastest descent, the brachistochrone curve. Solved,
among others, by I. Newton (1697). (G. Galilei, 1638.)

• 1697: Johann Bernoulli, as a public challenge to Jacob
Bernoulli, asked to determine the curve of minimum length
(geodesics)

L[γ] :=
∫
γ
ds .
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Variational Problems for Curves (Evolution)

• 1742: D. Bernoulli, in a letter to L. Euler, suggested to study
elastic curves as minimizers of the bending energy,

E [γ] :=
∫
γ
κ2 ds .

• 1742: He proposed to investigate critical points of the
functionals

Θp[γ] :=

∫
γ
κp ds .

• 1744: L. Euler described the shape of planar elasticae
(partially solved by Jacob Bernoulli, 1692-1694).

• 1923: W. Blaschke studied the cases p = 1/2 and p = 1/3
obtaining catenaries and parabolas, respectively, as equilibria.
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Variational Problems for Curves (Recent)

• 1984: J. Langer and D. A. Singer classified closed elastic
curves in M2(ρ) and in R3 (torus knots).

• 1986: R. Bryant and P. Griffiths introduced a different
approach based on differential forms.

• Multiple generalizations. For curves immersed in M3
r (ρ),

Θ[γ] :=

∫
γ
P(κ) ds .

1. (P., 2018 and 2020)
2. (Arroyo, Garay & P., 2018 and 2019)
3. (López & P., 2020)
4. (Palmer & P., 2020 and 2021)
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Closed Free p-Elastic Curves

Let p ∈ R and consider the functionals

Θp[γ] :=

∫
γ
κp ds ,

acting on the space of closed non-null smooth immersed curves in
M2

r (ρ).

When p ∈ R \N, we restrict to the space of convex curves.

The Euler-Lagrange Equation

A critical point γ of Θp must satisfy

p
d2

ds2
(
κp−1

)
+ ϵ1ϵ2 (p − 1)κp+1 + ϵ1 p ρ κ

p−1 = 0 .
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Closed Free p-Elastic Curves

Theorem

For every pair of relatively prime natural numbers (n,m) satisfying
m < 2n <

√
2m there exists a non-trivial closed free p-elastic curve

immersed in:

• If p > 1, the hyperbolic plane H2.

• If p ∈ (0, 1), the round sphere S2.
• If p < 0, the de Sitter 2-space S21.

1. (Montaldo, Oniciuc & P., J. Math. Anal. Appl. 2023)

2. (Musso & P., J. Nonlinear Sci. 2023)

3. (Gruber, P. & Toda, Anal. Appl. 2023)

4. (Montaldo & P., Commun. Anal. Geom. 2023)

5. (P., Samarakkody & Tran, J. Math. Anal. Appl. 2025)
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Geometric Flows

Theorem (P., Proc. Am. Math. Soc. 2024)

A planar curve γ is a translating soliton to the curvature-driven
flow

∂X

∂t
(s, t) = a κp(s, t)N(s, t) ,

with p ̸= 1 if and only if γ is p-elastic curve.

• If p = 1, the flow is known as the curve-shortening flow and
translating solitons are grim reaper curves. These curves are
critical for

ΘE [γ] :=

∫
γ
κ log κ ds .

• (Fields, P. & Samarakkody, To Be Submitted)

• (Musso & P., Nonlinearity 2024; and SIGMA 2025)
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Relation Between Variational Problems

Theorem (López & P., J. Geom. Phys. 2023)

A planar curve γ is critical for

Fα ̸=−1[γ] :=

∫
γ
yα ds ,

if and only if γ is a free p-elastic curve for p = α/(α+ 1).

• If α = 1 (p = 1/2), is the hanging chain problem.
• If α = −1/2 (p = −1), is the brachistochrone problem.
• If p = 1/3 (α = 1/2), is the suspension bridge problem.
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Variational Problems for Surfaces (Origin)

• 1692: Jacob Bernoulli studied the shape of a linen cloth
(lintearia) full of water on top.

• 1744: L. Euler described the catenoid, the minimal surface of
revolution (other than the plane).

• 1760: J. Lagrange raised the question of how to find the
surface with least area

A[Σ] :=

∫
Σ
dΣ ,

for a given fixed boundary.
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• 1788: J. Lagrange derived the equation for heavy surfaces in
vertical gravitational fields (singular minimal surfaces).

• 1811: S. Germain proposed to study other energies such as

W[Σ] :=

∫
Σ
H2 dΣ .
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Variational Problems for Surfaces (Evolution)

• 1812: S. Poisson gave a more general approach to describe
singular minimal surfaces.

• 1849: J. Plateau demonstrated that Lagrange’s problem
could be physically realized by considering soap films.

• 1920: W. Blaschke and G. Thomsen showed that the
functional W is conformally invariant.

• 1930: J. Douglas and T. Radó found the general solution to
Plateau’s problem, independently.
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Variational Problems for Surfaces (Recent)

• 1968: T. J. Willmore reintroduced the functional W and
stated his famous conjecture.

• 1970: P. B. Canham proposed the minimization of the
Willmore energy as a possible explanation for the biconcave
shape of red blood cells.

• 1973: W. Helfrich, based on liquid cristallography, suggested
the extension

H[Σ] :=

∫
Σ

(
a [H + co ]

2 + bK
)
dΣ ,

to model biological membranes.

• 1974: B.-Y. Chen extended the functional W preserving the
conformal invariance.
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Variational Problems for Surfaces (Recent)

• 1985: U. Pinkall constructed Willmore-Hopf tori in S3(ρ),
first non-isothermic examples.

• 2012: F. C. Marques and A. Neves proved the Willmore
conjecture.

• Multiple generalizations:

1. Generalized Willmore Surfaces (Barros, Garay & P., 2018),
(P., 2020), (López & P., 2023), (Gruber, P. & Toda,
2023)

2. Kirchhoff-Plateau Problem (Palmer & P., 2021)
3. Euler-Helfrich Problem (Palmer & P., 2021)
4. Euler-Plateau Problem (Gruber, P. & Toda, 2021)
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Modeling Biological Membranes



The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an
embedding X : Σ −→ R3 the Helfrich energy is given by

H[Σ] :=

∫
Σ

(
a [H + co ]

2 + bK
)
dΣ .

The Euler-Lagrange Equation

Equilibria for H are characterized by

∆H + 2 (H + co) (H[H − co ]− K ) = 0 ,

on the interior of Σ.
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Second Order Reduction

Theorem (Palmer & P., Calc. Var. PDE 2022)

A non-CMC surface critical for H which contains an axially
symmetric topological disc must satisfy

H + co = −ν3
z

.

(The Reduced Membrane Equation.)

Theorem (Palmer & P., Calc. Var. PDE 2022)

A sufficiently regular immersion satisfying the reduced membrane
equation is critical for H.
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Second Variation Formula

Theorem (Palmer & P., J. Geom. Anal. 2024)

Let X : Σ −→ R3 be an immersion critical for H satisfying the
reduced membrane equation. Then, for every f ∈ C∞

o (Σ) and
normal variations δX = f ν,

δ2H[Σ] =

∫
Σ
f F [f ] dΣ+

1

2

∮
∂Σ

L[f ]∂nf ds ,

where

F [f ] :=
1

2

(
P∗ +

2

z2

)
◦ P[f ] .

(Here, P is the operator arising as twice the variation of the
quantity H + ν3/z , P

∗ is its adjoint operator, and L comes from
twice the variation of H.)



Symmetry Breaking Bifurcation

Theorem (Palmer & P., Nonlinear Anal. 2024)

Above surface Σ0 is embedded in a one parameter family of axially
symmetric solutions of the reduced membrane equation
(parameterized by co) which all share the same boundary circle.
Precisely at Σ0, a non-axially symmetric branch bifurcates.
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Reduced Membrane Equation

The reduced membrane equation is the Euler-Lagrange equation for

G[Σ] :=
∫
Σ

1

z2
dΣ− 2co

∫
Ω

1

z2
dV = Ã[Σ]− 2co

∫
Ω
|z | dṼ .

Hence, solutions of the reduced membrane equation are capillary
surfaces under the action of constant gravity in the hyperbolic
space H3.
Applications:

• Closed Helfrich Surfaces (López, Palmer & P., Submitted)

• Connection to the renormalized area functional (Palmer &
P., Submitted)

• Renormalized area in Poincaré-Einstein spaces (P. & Tyrrell,
To Be Submitted)
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Hence, solutions of the reduced membrane equation are capillary
surfaces under the action of constant gravity in the hyperbolic
space H3.
Applications:

• Closed Helfrich Surfaces (López, Palmer & P., Submitted)
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Hypersurfaces in Spheres, Journal of Mathematical Analysis and
Applications 518-1 (2023), 126697.
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8. A. Gruber, A. Pámpano and M. Toda, Instability of Closed p-Elastic
Curves in S2, Analysis and Applications 21-6 (2023), 1533-1559.
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19. S. Fields, A. Pámpano and M. Samarakkody, Grim Reaper Curves in
2-Space Forms, to be submitted.



THE END

Thank You!


