

Geometric Variational Problems for Curves and Surfaces

Álvaro Pámpano Llarena

PDGMP Seminar Texas Tech University

Lubbock, September 8, 2021

• The development of Calculus was initially motivated in order to compute extrema of functions (G. Leibniz, 1684).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The development of Calculus was initially motivated in order to compute extrema of functions (G. Leibniz, 1684).
- A natural generalization is to compute extrema of functionals (i.e., the Calculus of Variations).

- The development of Calculus was initially motivated in order to compute extrema of functions (G. Leibniz, 1684).
- A natural generalization is to compute extrema of functionals (i.e., the Calculus of Variations).

The Principle of Least Action

Any change in nature takes place using the minimum amount of required energy.

- The development of Calculus was initially motivated in order to compute extrema of functions (G. Leibniz, 1684).
- A natural generalization is to compute extrema of functionals (i.e., the Calculus of Variations).

The Principle of Least Action

Any change in nature takes place using the minimum amount of required energy.

- Often attributed to P. L. Maupertuis (1744-1746).
- Already known to G. Leibniz (1705) and L. Euler (1744).

Variational Problems for Curves (Origin)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Variational Problems for Curves (Origin)

• Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Variational Problems for Curves (Origin)

• Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.

- (I) Already posed by Jordanus de Nemore (Jordan of the Forest) in the XIIIth Century.
- (II) Also appears in a fundamental problem by G. Galilei (1638).
- (III) History can be found in a report by R. Levien (2008).

Variational Problems for Curves (Evolution)

- Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.
- Johan Bernoulli (1697): Public challenge to Jacob Bernoulli; determine the curve of minimum length (geodesics)

$$\mathcal{L}[\gamma] := \int_{\gamma} \, d s$$
 .

Variational Problems for Curves (Evolution)

- Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.
- Johan Bernoulli (1697): Public challenge to Jacob Bernoulli; determine the curve of minimum length (geodesics)

$$\mathcal{L}[\gamma] := \int_{\gamma} \, ds$$
 .

• D. Bernoulli (1742): In a letter to L. Euler suggested to study elastic curves as minimizers of the bending energy,

$$\mathcal{E}[\gamma] := \int_{\gamma} \kappa^2 \, ds$$
 .

Variational Problems for Curves (Evolution)

- Jacob (James) Bernoulli (1691): Proposed the problem of determining the shape of elastic rods.
- Johan Bernoulli (1697): Public challenge to Jacob Bernoulli; determine the curve of minimum length (geodesics)

$$\mathcal{L}[\gamma] := \int_{\gamma} \, ds$$
 .

• D. Bernoulli (1742): In a letter to L. Euler suggested to study elastic curves as minimizers of the bending energy,

$$\mathcal{E}[\gamma] := \int_{\gamma} \kappa^2 \, ds$$
 .

• L. Euler (1744): Described the shape of planar elasticae (partially solved by Jacob Bernoulli, 1692-1694).

J. Langer and D. A. Singer (1984): Classified closed elastic curves in M²(ρ) and in ℝ³ (torus knots).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

J. Langer and D. A. Singer (1984): Classified closed elastic curves in M²(ρ) and in ℝ³ (torus knots).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• R. Bryant and P. Griffiths (1986): Introduced a different approach based on differential forms.

- J. Langer and D. A. Singer (1984): Classified closed elastic curves in M²(ρ) and in ℝ³ (torus knots).
- R. Bryant and P. Griffiths (1986): Introduced a different approach based on differential forms.
- Multiple generalizations. For instance,

$$\mathcal{F}[\gamma] := \int_{\gamma} \mathsf{P}(\kappa) \, \mathsf{ds} \, ,$$

for curves immersed in $M_r^3(\rho)$.

- J. Langer and D. A. Singer (1984): Classified closed elastic curves in M²(ρ) and in ℝ³ (torus knots).
- R. Bryant and P. Griffiths (1986): Introduced a different approach based on differential forms.
- Multiple generalizations. For instance,

$$\mathcal{F}[\gamma] := \int_{\gamma} \mathsf{P}(\kappa) \, \mathsf{ds} \, ,$$

for curves immersed in $M_r^3(\rho)$.

- Applications:
 - (I) Image Reconstruction
 - (II) Dynamics of a Vortex Filament

(Arroyo, Garay & A. P., 2016)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Primary Visual Cortex V1 (Petitot, 2003)

The unit tangent bundle $\mathbb{R}^2 \times \mathbb{S}^1$ with a suitable sub-Riemannian geometry can be used as an abstraction to study the organization and mechanisms of V1.

- ロ ト - 4 回 ト - 4 □ - 4

Primary Visual Cortex V1 (Petitot, 2003)

The unit tangent bundle $\mathbb{R}^2 \times \mathbb{S}^1$ with a suitable sub-Riemannian geometry can be used as an abstraction to study the organization and mechanisms of V1.

Visual Curve Completion (Ben-Yosef & Ben-Shahar, 2012)

If a piece of the contour of a picture is missing, then the brain tends to complete the curve by minimizing some kind of energy, the length being the simplest one.

Primary Visual Cortex V1 (Petitot, 2003)

The unit tangent bundle $\mathbb{R}^2 \times \mathbb{S}^1$ with a suitable sub-Riemannian geometry can be used as an abstraction to study the organization and mechanisms of V1.

Visual Curve Completion (Ben-Yosef & Ben-Shahar, 2012)

If a piece of the contour of a picture is missing, then the brain tends to complete the curve by minimizing some kind of energy, the length being the simplest one.

- Geodesics are obtained by lifting minimizers in \mathbb{R}^2 of

$$\mathcal{F}[\gamma] := \int_{\gamma} \sqrt{\mathsf{a}^2 + \kappa^2(s)} \, \mathsf{d}s$$
 .

(Arroyo, Garay & A. P., 2016)

• L. S. Da Rios (1906): Modeled the movement of a vortex filament according to the localized induction equation (LIE)

$$X_t = X_s \times X_{ss} (= \kappa B).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• L. S. Da Rios (1906): Modeled the movement of a vortex filament according to the localized induction equation (LIE)

$$X_t = X_s \times X_{ss} (= \kappa B).$$

• The compatibility equations are the Gauss-Codazzi equations of the local surface generated by the evolution.

• L. S. Da Rios (1906): Modeled the movement of a vortex filament according to the localized induction equation (LIE)

$$X_t = X_s \times X_{ss} (= \kappa B).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The compatibility equations are the Gauss-Codazzi equations of the local surface generated by the evolution.
- This evolution represents a binormal flow.

• L. S. Da Rios (1906): Modeled the movement of a vortex filament according to the localized induction equation (LIE)

$$X_t = X_s \times X_{ss} (= \kappa B).$$

- The compatibility equations are the Gauss-Codazzi equations of the local surface generated by the evolution.
- This evolution represents a binormal flow.
- H. Hasimoto (1971): Found a relation between this evolution and elastic curves.

• L. S. Da Rios (1906): Modeled the movement of a vortex filament according to the localized induction equation (LIE)

$$X_t = X_s \times X_{ss} (= \kappa B).$$

- The compatibility equations are the Gauss-Codazzi equations of the local surface generated by the evolution.
- This evolution represents a binormal flow.
- H. Hasimoto (1971): Found a relation between this evolution and elastic curves.
- H. Hasimoto (1972): The LIE is equivalent to the nonlinear Schrödinger equation.

 More general binormal flow for curves in M³_r(ρ), (Garay & A. P., 2016), (Arroyo, Garay & A. P., 2017),

$$X_t = \dot{P}(\kappa)B$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Using the Hasimoto transformation, equivalence with the Hirota equation. (Garay & A. P., 2016)

 More general binormal flow for curves in M³_r(ρ), (Garay & A. P., 2016), (Arroyo, Garay & A. P., 2017),

$$X_t = \dot{P}(\kappa)B$$
.

• Using the Hasimoto transformation, equivalence with the Hirota equation. (Garay & A. P., 2016)

Traveling Wave Solutions (Garay & A. P., 2016)

Traveling wave solutions of the Gauss-Codazzi equations correspond with the evolution under isometries and slippage of a general Kirchhoff centerline.

 More general binormal flow for curves in M³_r(ρ), (Garay & A. P., 2016), (Arroyo, Garay & A. P., 2017),

$$X_t = \dot{P}(\kappa)B$$
.

• Using the Hasimoto transformation, equivalence with the Hirota equation. (Garay & A. P., 2016)

Traveling Wave Solutions (Garay & A. P., 2016)

Traveling wave solutions of the Gauss-Codazzi equations correspond with the evolution under isometries and slippage of a general Kirchhoff centerline. In particular, if there is no slippage then the initial filament is critical for

$$\mathcal{F}[\gamma] := \int_{\gamma} \mathsf{P}(\kappa) \, ds$$
 .

(Proposal for a PhD Thesis.)

(Proposal for a PhD Thesis.)

1. Invariant Constant Mean Curvature (CMC) Surfaces in $M_r^3(\rho)$: (Arroyo, Garay & A. P., 2018)

$$\mathcal{F}[\gamma] := \int_{\gamma} \sqrt{\kappa - \mu} \, ds$$
 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• W. Blaschke (1921): Studied the case $\mu = 0$ in \mathbb{R}^3 .

(Proposal for a PhD Thesis.)

1. Invariant Constant Mean Curvature (CMC) Surfaces in $M_r^3(\rho)$: (Arroyo, Garay & A. P., 2018)

$$\mathcal{F}[\gamma] := \int_{\gamma} \sqrt{\kappa - \mu} \, ds$$
 .

• W. Blaschke (1921): Studied the case $\mu = 0$ in \mathbb{R}^3 .

Delaunay Curves (Arroyo, Garay & A. P., 2018)

Critical curves are roulettes of conic foci. (Proposal for undergraduate students.)

(Proposal for a PhD Thesis.)

1. Invariant Constant Mean Curvature (CMC) Surfaces in $M_r^3(\rho)$: (Arroyo, Garay & A. P., 2018)

$$\mathcal{F}[\gamma] := \int_{\gamma} \sqrt{\kappa - \mu} \, ds$$
 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• W. Blaschke (1921): Studied the case $\mu = 0$ in \mathbb{R}^3 .

Delaunay Curves (Arroyo, Garay & A. P., 2018)

Critical curves are roulettes of conic foci. (Proposal for undergraduate students.)

- Bour's families (isometric deformations).
- Lawson's correspondence.

Rotational CMC Surfaces in $\mathbb{S}^{3}(\rho)$

(Arroyo, Garay & A. P., 2019)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>
CMC Tori in $\mathbb{S}^3(\rho)$

Theorem (Arroyo, Garay & A. P., 2019)

There exist non-trivial closed critical curves in $\mathbb{S}^2(\rho)$, for any value of μ . Moreover, if the curve is also embedded, then $\mu \neq -\sqrt{\rho/3}$ is negative.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

CMC Tori in $\mathbb{S}^3(\rho)$

Theorem (Arroyo, Garay & A. P., 2019)

There exist non-trivial closed critical curves in $\mathbb{S}^2(\rho)$, for any value of μ . Moreover, if the curve is also embedded, then $\mu \neq -\sqrt{\rho/3}$ is negative.

(Arroyo, Garay & A. P., 2019)

- Coincides with previous results of O. Perdomo and J.B. Ripoll.
- Verify the Lawson's conjecture (proved by S. Brendle in 2013).

2. Invariant Linear Weingarten Surfaces (aH + bK = c) in $M_r^3(\rho)$: (A. P., 2020)

$$\mathcal{F}[\gamma] := \int_{\gamma} \sqrt{\epsilon \left([\kappa - lpha]^2 + eta
ight)} \, ds$$
 .

• In particular, rotational constant Gaussian curvature surfaces appear for $a = \alpha = 0$. (Image Reconstruction).

2. Invariant Linear Weingarten Surfaces (aH + bK = c) in $M_r^3(\rho)$: (A. P., 2020)

$$\mathcal{F}[\gamma] := \int_{\gamma} \sqrt{\epsilon \left([\kappa - lpha]^2 + eta
ight)} \, ds$$
 .

- In particular, rotational constant Gaussian curvature surfaces appear for $a = \alpha = 0$. (Image Reconstruction).
- Rotational Surfaces of Constant Astigmatism in M³(ρ): (López & A. P., 2020)

$$\mathcal{F}[\gamma] := \int_{\gamma} \kappa \, e^{\, \mu/\kappa} \, ds$$
 .

- R. von Lilienthal (1887): Described these surfaces in \mathbb{R}^3 .
- L. Bianchi and A. Ribaucour (1872-1902): Focal surfaces have constant negative Gaussian curvature. (Collaboration.)

4. Rotational Linear Weingarten Surfaces ($\kappa_1 = a\kappa_2 + b$, $a \neq 1$) in $M^3(\rho)$: (López & A. P., 2020), (A. P., 2018)

$$\mathcal{F}[\gamma] := \int_{\gamma} \left(\kappa - \mu
ight)^n \, ds \, .$$

 In particular, μ = 0 and n = 1/4 corresponds with proper biconservative surfaces. (Montaldo & A. P., to appear)

4. Rotational Linear Weingarten Surfaces ($\kappa_1 = a\kappa_2 + b$, $a \neq 1$) in $M^3(\rho)$: (López & A. P., 2020), (A. P., 2018)

$$\mathcal{F}[\gamma] := \int_{\gamma} \left(\kappa - \mu
ight)^n \, ds \, .$$

- In particular, μ = 0 and n = 1/4 corresponds with proper biconservative surfaces. (Montaldo & A. P., to appear)
- 5. Rotational Constant Skew Curvature Surfaces ($\kappa_1 = \kappa_2 + c$) in $M^3(\rho)$: (López & A. P., 2020)

$$\mathcal{F}[\gamma] := \int_{\gamma} e^{\,\mu\kappa}\, ds$$
 .

• They satisfy $H^2 - K = c_o^2$. In particular, circular biconcave discoids.

(A. P., 2018)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(A. P., 2018)

(A. P., 2018)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma \, ,$$

for a given fixed boundary.

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma \, ,$$

for a given fixed boundary.

• J. Plateau (1849): Demonstrated that Lagrange's problem could be physically realized by considering soap films.

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma \, ,$$

for a given fixed boundary.

• J. Plateau (1849): Demonstrated that Lagrange's problem could be physically realized by considering soap films.

 J. Douglas and T. Radó (1930-1931): Found the general solution to Plateau's problem, independently.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

• W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

- W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.
- T. J. Willmore (1968): Reintroduced the functional W and stated his famous conjecture.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

- W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.
- T. J. Willmore (1968): Reintroduced the functional $\mathcal W$ and stated his famous conjecture.
- B.-Y. Chen (1974): Extended the functional W preserving the conformal invariance.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

- W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.
- T. J. Willmore (1968): Reintroduced the functional $\mathcal W$ and stated his famous conjecture.
- B.-Y. Chen (1974): Extended the functional W preserving the conformal invariance.

• U. Pinkall (1985): Hopf tori in $\mathbb{S}^3(\rho)$.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

- W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.
- T. J. Willmore (1968): Reintroduced the functional $\mathcal W$ and stated his famous conjecture.
- B.-Y. Chen (1974): Extended the functional W preserving the conformal invariance.

- U. Pinkall (1985): Hopf tori in $\mathbb{S}^3(\rho)$.
- F. C. Marques and A. Neves (2012): Proved the Willmore conjecture.

Modeling Biological Membranes

• P. B. Canham (1970): Proposed the minimization of the Willmore energy as a possible explanation for the biconcave shape of red blood cells.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modeling Biological Membranes

• W. Helfrich (1973): Based on liquid cristallography, suggested the extension

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

to model biological membranes.

◆ロト ◆昼 → ◆ 臣 → ◆ 臣 → のへぐ

Modeling Biological Membranes

• W. Helfrich (1973): Based on liquid cristallography, suggested the extension

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

to model biological membranes.

• The Euler-Lagrange equation associated to $\mathcal H$ is

 $\Delta H + 2(H + c_o)(H[H - c_o] - K) = 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

There are some solutions:

1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.

There are some solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Circular Biconcave Discoids (far from the axis of rotation).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There are some solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Circular Biconcave Discoids (far from the axis of rotation).
- 3. Surfaces satisfying (Palmer & A. P., submitted)

$$H + c_o = -\frac{\nu_3}{z}$$

There are some solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Circular Biconcave Discoids (far from the axis of rotation).
- 3. Surfaces satisfying (Palmer & A. P., submitted)

$$H + c_o = -\frac{\nu_3}{z}$$

Axially Symmetric Discs (Palmer & A. P., submitted) An axially symmetric disc critical for \mathcal{H} must satisfy

$$H + c_o = -\frac{\nu_3}{z}$$

There are some solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Circular Biconcave Discoids (far from the axis of rotation).
- 3. Surfaces satisfying (Palmer & A. P., submitted)

$$H + c_o = -\frac{\nu_3}{z}$$

Axially Symmetric Discs (Palmer & A. P., submitted)

An axially symmetric disc critical for $\mathcal H$ must satisfy

$$H+c_o=-\frac{\nu_3}{z}.$$

• They are an extension of singular minimal surfaces.

Different problems depending on the nature of $\partial\Sigma$:

Different problems depending on the nature of $\partial \Sigma$:

• The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.
- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.
- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.
- Combinations of energies. The boundary components of $\partial\Sigma$ are elastic.

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.
- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.
- Combinations of energies. The boundary components of $\partial\Sigma$ are elastic.
 - (I) The Euler-Plateau Problem. (Gruber, A. P. & Toda, 2021)
 - ${\rm (II)}~$ The Kirchhoff-Plateau Problem. (Palmer & A. P., 2020)
 - (III) The Euler-Helfrich Problem. (Palmer & A. P., 2021),

(Palmer & A. P., submitted)

The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,.$$

CMC Discs (Palmer & A. P., 2021)

Consider a CMC disc critical for the energy *E*. Then:

1. Case $b \neq 0$ and $c_o = 0$. The surface is a spherical cap.
The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,.$$

CMC Discs (Palmer & A. P., 2021)

Consider a CMC disc critical for the energy *E*. Then:

- 1. Case $b \neq 0$ and $c_o = 0$. The surface is a spherical cap.
- 2. Case b = 0. The boundary is an unknotted closed elastic curve.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,.$$

CMC Discs (Palmer & A. P., 2021)

Consider a CMC disc critical for the energy *E*. Then:

- 1. Case $b \neq 0$ and $c_o = 0$. The surface is a spherical cap.
- 2. Case b = 0. The boundary is an unknotted closed elastic curve.

In other cases, there are no CMC critical discs.

Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Axially Symmetric (Palmer & A. P., submitted)

An axially symmetric immersion critical for E is either a part of a Delaunay surface or its mean curvature satisfies

$$H+c_o=-\frac{\nu_3}{z}\,.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axially Symmetric (Palmer & A. P., submitted)

An axially symmetric immersion critical for E is either a part of a Delaunay surface or its mean curvature satisfies

$$H+c_o=-\frac{\nu_3}{z}\,.$$

(Palmer & A. P., submitted)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank You!