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Philosophical Origins

• The development of Calculus was initially motivated in order
to compute extrema of functions (G. Leibniz, 1684).

• A natural generalization is to compute extrema of functionals
(i.e., the Calculus of Variations).

The Principle of Least Action

Any change in nature takes place using the minimum amount of
required energy.

• Often attributed to P. L. Maupertuis (1744-1746).

• Already known to G. Leibniz (1705) and L. Euler (1744).
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Variational Problems for Curves (Origin)

• Jacob (James) Bernoulli (1691): Proposed the problem of
determining the shape of elastic rods.

(i) Already posed by Jordanus de Nemore (Jordan of the Forest)
in the XIIIth Century.

(ii) Also appears in a fundamental problem by G. Galilei (1638).
(iii) History can be found in a report by R. Levien (2008).
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Variational Problems for Curves (Evolution)

• Jacob (James) Bernoulli (1691): Proposed the problem of
determining the shape of elastic rods.

• Johan Bernoulli (1697): Public challenge to Jacob Bernoulli;
determine the curve of minimum length (geodesics)

L[γ] :=

∫
γ
ds .

• D. Bernoulli (1742): In a letter to L. Euler suggested to study
elastic curves as minimizers of the bending energy,

E [γ] :=

∫
γ
κ2 ds .

• L. Euler (1744): Described the shape of planar elasticae
(partially solved by Jacob Bernoulli, 1692-1694).
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Variational Problems for Curves (Recent)

• J. Langer and D. A. Singer (1984): Classified closed elastic
curves in M2(ρ) and in R3 (torus knots).

• R. Bryant and P. Griffiths (1986): Introduced a different
approach based on differential forms.

• Multiple generalizations. For instance,

F [γ] :=

∫
γ
P(κ) ds ,

for curves immersed in M3
r (ρ).

• Applications:

(i) Image Reconstruction
(ii) Dynamics of a Vortex Filament
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Image Reconstruction

(Arroyo, Garay & A. P., 2016)



Image Reconstruction

Primary Visual Cortex V 1 (Petitot, 2003)

The unit tangent bundle R2 × S1 with a suitable sub-Riemannian
geometry can be used as an abstraction to study the organization
and mechanisms of V 1.

Visual Curve Completion (Ben-Yosef & Ben-Shahar, 2012)

If a piece of the contour of a picture is missing, then the brain
tends to complete the curve by minimizing some kind of energy,
the length being the simplest one.

• Geodesics are obtained by lifting minimizers in R2 of

F [γ] :=

∫
γ

√
a2 + κ2(s) ds .
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Dynamics of a Vortex Filament

• L. S. Da Rios (1906): Modeled the movement of a vortex
filament according to the localized induction equation (LIE)

Xt = Xs × Xss (= κB) .

• The compatibility equations are the Gauss-Codazzi equations
of the local surface generated by the evolution.

• This evolution represents a binormal flow.

• H. Hasimoto (1971): Found a relation between this evolution
and elastic curves.

• H. Hasimoto (1972): The LIE is equivalent to the nonlinear
Schrödinger equation.
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Dynamics of a Vortex Filament

• More general binormal flow for curves in M3
r (ρ),

(Garay & A. P., 2016), (Arroyo, Garay & A. P., 2017),

Xt = Ṗ(κ)B .

• Using the Hasimoto transformation, equivalence with the
Hirota equation. (Garay & A. P., 2016)

Traveling Wave Solutions (Garay & A. P., 2016)

Traveling wave solutions of the Gauss-Codazzi equations
correspond with the evolution under isometries and slippage of a
general Kirchhoff centerline. In particular, if there is no slippage
then the initial filament is critical for

F [γ] :=

∫
γ
P(κ) ds .
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Binormal Evolution Surfaces

(Proposal for a PhD Thesis.)

1. Invariant Constant Mean Curvature (CMC) Surfaces in M3
r (ρ):

(Arroyo, Garay & A. P., 2018)

F [γ] :=

∫
γ

√
κ− µ ds .

• W. Blaschke (1921): Studied the case µ = 0 in R3.

Delaunay Curves (Arroyo, Garay & A. P., 2018)

Critical curves are roulettes of conic foci. (Proposal for undergraduate
students.)

• Bour’s families (isometric deformations).
• Lawson’s correspondence.
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Rotational CMC Surfaces in S3(ρ)

(Arroyo, Garay & A. P., 2019)



CMC Tori in S3(ρ)

Theorem (Arroyo, Garay & A. P., 2019)

There exist non-trivial closed critical curves in S2(ρ), for any value
of µ. Moreover, if the curve is also embedded, then µ 6= −

√
ρ/3 is

negative.

(Arroyo, Garay & A. P., 2019)

• Coincides with previous results of O. Perdomo and J.B. Ripoll.

• Verify the Lawson’s conjecture (proved by S. Brendle in 2013).
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Binormal Evolution Surfaces

2. Invariant Linear Weingarten Surfaces (aH + bK = c) in
M3

r (ρ): (A. P., 2020)

F [γ] :=

∫
γ

√
ε
(

[κ− α]2 + β
)
ds .

• In particular, rotational constant Gaussian curvature surfaces
appear for a = α = 0. (Image Reconstruction).

3. Rotational Surfaces of Constant Astigmatism in M3(ρ):
(López & A. P., 2020)

F [γ] :=

∫
γ
κ e µ/κ ds .

• R. von Lilienthal (1887): Described these surfaces in R3.
• L. Bianchi and A. Ribaucour (1872-1902): Focal surfaces have

constant negative Gaussian curvature. (Collaboration.)
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Binormal Evolution Surfaces

4. Rotational Linear Weingarten Surfaces (κ1 = aκ2 + b, a 6= 1)
in M3(ρ): (López & A. P., 2020), (A. P., 2018)

F [γ] :=

∫
γ

(κ− µ)n ds .

• In particular, µ = 0 and n = 1/4 corresponds with proper
biconservative surfaces. (Montaldo & A. P., to appear)

5. Rotational Constant Skew Curvature Surfaces (κ1 = κ2 + c)
in M3(ρ): (López & A. P., 2020)

F [γ] :=

∫
γ
e µκ ds .

• They satisfy H2 − K = c2
o . In particular, circular biconcave

discoids.
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Variational Problems for Surfaces (Area)

• J. Lagrange (1760): Raised the question of how to find the
surface with least area

A[Σ] :=

∫
Σ
dΣ ,

for a given fixed boundary.

• J. Plateau (1849): Demonstrated that Lagrange’s problem
could be physically realized by considering soap films.

• J. Douglas and T. Radó (1930-1931): Found the general
solution to Plateau’s problem, independently.
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Variational Problems for Surfaces (Willmore)

• S. Germain (1811): Proposed to study other energies such as

W[Σ] :=

∫
Σ
H2 dΣ .

• W. Blaschke and G. Thomsen (∼1920): The functional W is
conformally invariant.

• T. J. Willmore (1968): Reintroduced the functional W and
stated his famous conjecture.

• B.-Y. Chen (1974): Extended the functional W preserving the
conformal invariance.

• U. Pinkall (1985): Hopf tori in S3(ρ).

• F. C. Marques and A. Neves (2012): Proved the Willmore
conjecture.
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Modeling Biological Membranes

• P. B. Canham (1970): Proposed the minimization of the
Willmore energy as a possible explanation for the biconcave
shape of red blood cells.



Modeling Biological Membranes

• W. Helfrich (1973): Based on liquid cristallography, suggested
the extension

H[Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ ,

to model biological membranes.

• The Euler-Lagrange equation associated to H is

∆H + 2 (H + co) (H [H − co ]− K ) = 0 .
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The Helfrich Energy

There are some solutions:

1. Constant Mean Curvature Surfaces with H ≡ −co .

2. Circular Biconcave Discoids (far from the axis of rotation).

3. Surfaces satisfying (Palmer & A. P., submitted)

H + co = −ν3

z
.

Axially Symmetric Discs (Palmer & A. P., submitted)

An axially symmetric disc critical for H must satisfy

H + co = −ν3

z
.
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Boundary Problems

Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Fixed Boundary Problem. The boundary ∂Σ is prescribed
and immovable.

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• Combinations of energies. The boundary components of ∂Σ
are elastic.

(i) The Euler-Plateau Problem. (Gruber, A. P. & Toda, 2021)

(ii) The Kirchhoff-Plateau Problem. (Palmer & A. P., 2020)
(iii) The Euler-Helfrich Problem. (Palmer & A. P., 2021),

(Palmer & A. P., submitted)
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The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

E [Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ +

∮
∂Σ

(
ακ2 + β

)
ds .

CMC Discs (Palmer & A. P., 2021)

Consider a CMC disc critical for the energy E . Then:

1. Case b 6= 0 and co = 0. The surface is a spherical cap.

2. Case b = 0. The boundary is an unknotted closed elastic
curve.

In other cases, there are no CMC critical discs.



The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

E [Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ +

∮
∂Σ

(
ακ2 + β

)
ds .

CMC Discs (Palmer & A. P., 2021)

Consider a CMC disc critical for the energy E . Then:

1. Case b 6= 0 and co = 0. The surface is a spherical cap.

2. Case b = 0. The boundary is an unknotted closed elastic
curve.

In other cases, there are no CMC critical discs.



The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

E [Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ +

∮
∂Σ

(
ακ2 + β

)
ds .

CMC Discs (Palmer & A. P., 2021)

Consider a CMC disc critical for the energy E . Then:

1. Case b 6= 0 and co = 0. The surface is a spherical cap.

2. Case b = 0. The boundary is an unknotted closed elastic
curve.

In other cases, there are no CMC critical discs.



The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

E [Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ +

∮
∂Σ

(
ακ2 + β

)
ds .

CMC Discs (Palmer & A. P., 2021)

Consider a CMC disc critical for the energy E . Then:

1. Case b 6= 0 and co = 0. The surface is a spherical cap.

2. Case b = 0. The boundary is an unknotted closed elastic
curve.

In other cases, there are no CMC critical discs.



Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)



Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)



Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)



The Euler-Helfrich Problem

Axially Symmetric (Palmer & A. P., submitted)

An axially symmetric immersion critical for E is either a part of a
Delaunay surface or its mean curvature satisfies

H + co = −ν3

z
.

(Palmer & A. P., submitted)
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THE END

Thank You!


