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Minimal Surfaces

Let X : Σ→ R3 be an immersion of an oriented surface Σ.

The
area (functional) is given by

A[X ] :=

∫
Σ
dΣ .

Definition

The immersion X : Σ→ R3 is said to be minimal (or the surface Σ
is said to be minimal) if it is a critical point of A[X ].

For compactly supported variations δX ,

δA[X ] = −2

∫
Σ
Hν · δX dΣ ,

where H is the mean curvature and ν is the unit normal to Σ.
So, the immersion is minimal if and only if H ≡ 0.
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Minimal Surfaces with Boundary

Assume that Σ is an oriented, compact surface with boundary ∂Σ
(positively oriented).

Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Plateau Problem. The boundary ∂Σ is prescribed and
immovable (fixed boundary).

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• The Euler-Plateau Problem. The boundary components of ∂Σ
are elastic: (Giomi & Mahadevan, 2012)

EP[X ] := σA[X ] +

∮
∂Σ

(
ακ2 + β

)
ds .
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(Extension of) the Euler-Plateau Problem

The Euler-Plateau problem combines two of the oldest objects in
Differential Geometry:

• Elastic Curves, and

• Minimal Surfaces.

However, physically, it can be improved: including the twisting of
the boundary ∂Σ.

The Kirchhoff-Plateau Problem (Biria & Fried, 2014)

The boundary ∂Σ is treated as a thin elastic (flexible) rod, which is
allowed to twist.
The twisting is measured by including another term in the energy
which depends on a choice of an orthonormal framing (Kirchhoff
elastic rod).
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Kirchhoff Elastic Rods (Introduction)

Physical Definition

A Kirchhoff elastic rod is a thin elastic rod with circular cross
sections and uniform density, naturally straight and prismatic when
unstressed and which is being held bent and twisted by external
forces and moments acting at its ends alone.

Mathematically, the usual formulation is a variational problem
which includes a curve (the center line) and an orthonormal frame
(the material frame):

• The Center Line. An elastic space curve (bending energy).

• The Material Frame. The square of the norm of its derivative
in the normal bundle (twisting energy).
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Kirchhoff Elastic Rods (Energy)

Let C : [0, L]→ R3 be an arc-length parameterized curve, which
represents the center line, and let M := {M1,M2} denote the
material frame.

Variational Problem (Langer & Singer, 1986)

The energy of an inextensible Kirchhoff elastic rod is given by

K[(C ,M)] :=

∫
C

(
ακ2 +$‖∇⊥M1‖2 + β

)
ds ,

where κ denotes the (Frenet) curvature of C .

• Obviously, $ = 0 (non-shearable rod) reduces to the classical
bending energy.



Kirchhoff Elastic Rods (Energy)

Let C : [0, L]→ R3 be an arc-length parameterized curve, which
represents the center line,

and let M := {M1,M2} denote the
material frame.

Variational Problem (Langer & Singer, 1986)

The energy of an inextensible Kirchhoff elastic rod is given by

K[(C ,M)] :=

∫
C

(
ακ2 +$‖∇⊥M1‖2 + β

)
ds ,

where κ denotes the (Frenet) curvature of C .

• Obviously, $ = 0 (non-shearable rod) reduces to the classical
bending energy.



Kirchhoff Elastic Rods (Energy)

Let C : [0, L]→ R3 be an arc-length parameterized curve, which
represents the center line, and let M := {M1,M2} denote the
material frame.

Variational Problem (Langer & Singer, 1986)

The energy of an inextensible Kirchhoff elastic rod is given by

K[(C ,M)] :=

∫
C

(
ακ2 +$‖∇⊥M1‖2 + β

)
ds ,

where κ denotes the (Frenet) curvature of C .

• Obviously, $ = 0 (non-shearable rod) reduces to the classical
bending energy.



Kirchhoff Elastic Rods (Energy)

Let C : [0, L]→ R3 be an arc-length parameterized curve, which
represents the center line, and let M := {M1,M2} denote the
material frame.

Variational Problem (Langer & Singer, 1986)

The energy of an inextensible Kirchhoff elastic rod is given by

K[(C ,M)] :=

∫
C

(
ακ2 +$‖∇⊥M1‖2 + β

)
ds ,

where κ denotes the (Frenet) curvature of C .

• Obviously, $ = 0 (non-shearable rod) reduces to the classical
bending energy.



Kirchhoff Elastic Rods (Energy)

Let C : [0, L]→ R3 be an arc-length parameterized curve, which
represents the center line, and let M := {M1,M2} denote the
material frame.

Variational Problem (Langer & Singer, 1986)

The energy of an inextensible Kirchhoff elastic rod is given by

K[(C ,M)] :=

∫
C

(
ακ2 +$‖∇⊥M1‖2 + β

)
ds ,

where κ denotes the (Frenet) curvature of C .

• Obviously, $ = 0 (non-shearable rod) reduces to the classical
bending energy.



The Kirchhoff-Plateau Problem

Let X : Σ→ R3, then the Kirchhoff-Plateau energy is

KP[(X ,M)] := σA[X ] +K[(X |∂Σ,M)] .

Or, equivalently, if we expand each term,

KP[(X ,M)] = σ

∫
Σ
dΣ +

∮
∂Σ

(
ακ2 +$‖∇⊥M1‖2 + β

)
ds .

• The energy KP depends on both the surface immersion X
and the material frame M.

• By varying independently, the normal frame we obtain that

∇⊥M1 ·M2

is constant. This yields to the total (Frenet) torsion term.
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Twisted Elastic Ribbon

We will consider the Kirchhoff-Plateau energy where the material
frame (fixed from the beginning) is the normal part of the Darboux
frame. The Darboux frame of ∂Σ is the orthonormal frame
{T , ν, n}, where:

• T is the tangent vector field to ∂Σ,

• ν is the unit normal vector field to Σ, and

• n := T × ν is the (outward pointing) conormal vector field.

Note that the energy only depends on the immersion X .
Motivation:

• Mathematical Motivation. The Darboux frame captures how a
curve is contained in the surface.

• Physical Motivation. Replace the boundary rod with a
boundary ribbon.
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The Total Energy

Let τg := n′ · ν be the geodesic torsion of the boundary. Then, for
an immersion X : Σ→ R3 our total energy is

E [X ] := σ

∫
Σ
dΣ +

∮
∂Σ

(
ακ2 +$τg

2 + β
)
ds ,

where the energy parameters represent:

• σ > 0 is the surface tension,

• α > 0 is the flexural rigidity,

• $ > 0 is the torsional rigidity, and

• β ∈ R is the edge tension.

Observe that α and $ are related by the Poisson’s ratio ε
(ε ∈ [−1, 1/2]),

α = (1 + ε)$ .
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• $ > 0 is the torsional rigidity, and

• β ∈ R is the edge tension.

Observe that α and $ are related by the Poisson’s ratio ε
(ε ∈ [−1, 1/2]),

α = (1 + ε)$ .
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Euler-Lagrange Equations (1)

1. We first consider compactly supported variations, obtaining

H ≡ 0 , on Σ ,

i.e. a critical immersion must be minimal.

2. We take now normal variations δX = ψν to get along the
boundary ∂Σ,

0 =

∮
∂Σ

(
J ′ · [ψν]− 2$τ ′g∂nψ

)
ds ,

where J := 2αT ′′ +
(
3ακ2 +$τ2

g − β
)
T + 2$τgT × T ′.

This implies:
• J ′ · ν ≡ 0 on ∂Σ, and
• τg is (locally) constant. (Also if the frame is critical!)

3. Finally, from tangent variations we also get

J ′ · n + σ ≡ 0 , on ∂Σ .
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Euler-Lagrange Equations (2)

The Euler-Lagrange equations for equilibria of E [X ] are:

H = 0 , on Σ ,

J ′ · ν = 0 , on ∂Σ ,

J ′ · n + σ = 0 , on ∂Σ ,

together with τg being constant along the boundary.

It may have
different (constant) values on different boundary components.

• We can combine the last two Euler-Lagrange equations in a
vector form, obtaining

J ′ + σn = 0

along the boundary ∂Σ. So, for each boundary component C ,∮
C
n ds = 0

holds.
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Local Equilibrium Configurations

Theorem (Palmer & —, 2020)

There exists a curve C and a minimal surface with boundary Σ,
such that C ⊂ ∂Σ and the Euler-Lagrange equations are satisfied
along C .

Idea of the proof (constructing the surface):

1. The boundary condition J ′ + σn = 0 can be written as a
system (in κg and κn) of ODE with real analytic coefficients.
Therefore, the solutions κg and κn are real analytic functions.

2. These functions together with the constant τg determine a
(unique) real analytic curve C (s) and a normal ν along C .

3. We now apply Björling’s Formula

X (z) := <
(
C (z) + i

∫ z

so

C ′(ω)× ν(ω) dω

)
.
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Global Results for Topological Discs

Let X : Σ ∼= D → R3 be an immersion of a topological disc D.

Theorem (Palmer & —, 2020)

Let X : Σ ∼= D → R3 be an immersion of a minimal surface of disc
type having constant geodesic torsion along the boundary ∂Σ.
Then, the surface is a planar domain.

Corollary (Palmer & —, 2020)

Let X : Σ ∼= D → R3 be an immersion of a disc type critical for
E [X ], then the surface is a compact domain in the plane bounded
by an area-constrained elastic curve.
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Area-Constrained Elastic Curves

• Associated Euler-Lagrange equation:

2ακ′′ +
(
ακ2 − β

)
κ± σ = 0 .

• Physically: elastic rods under a constant perpendicular force
directed along their length (not only at the ends).

• Alternative names: elasticae under pressure, buckled rings.

Figure: (Wegner, 2019)
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Non Planar Example

Consider domains in a minimal helicoid of the type:

• They are critical for E [X ] having partially elastic boundary.
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Intrinsic Variational Problem

1. Fix a minimal immersion X : Σ→ R3.

2. Search for curves lying in the surface enclosing a compact
domain of prescribed area ∆, i.e. critical curves for

F [C ] := σA[∆] +

∮
C

(
ακ2 +$τ2

g + β
)
ds .

3. Assume α = $, i.e. ε = 0 (for instance, cork).

4. We have the intrinsic Kirchhoff-Plateau problem

F̃ [C ] := σA[∆] +

∮
C

(
α
[
κ2
g − K

]
+ β

)
ds ,

since the Gaussian curvature K along ∂Σ is given by
K := −κ2

n − τ2
g .
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domain of prescribed area ∆, i.e. critical curves for

F [C ] := σA[∆] +

∮
C

(
ακ2 +$τ2

g + β
)
ds .

3. Assume α = $, i.e. ε = 0 (for instance, cork).

4. We have the intrinsic Kirchhoff-Plateau problem

F̃ [C ] := σA[∆] +

∮
C

(
α
[
κ2
g − K

]
+ β

)
ds ,

since the Gaussian curvature K along ∂Σ is given by
K := −κ2

n − τ2
g .



Enneper’s Minimal Surface

For the fixed Enneper’s minimal surface,

we consider domains
corresponding with planar circular discs:

• They are critical for F̃ [C ]. Here, the parameter β, i.e. the
length of the boundary, is changing.

• There are more examples. For instance: the catenoid.
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