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Minimal Surfaces

Let X : Σ→ R3 be an immersion of an oriented surface Σ.

The
area (functional) is given by

A[X ] :=

∫
Σ
dΣ .

Definition

The immersion X : Σ→ R3 is said to be minimal (or the surface Σ
is said to be minimal) if it is a critical point of A[X ].

For compactly supported variations δX ,

δA[X ] = −2

∫
Σ
Hν · δX dΣ ,

where H is the mean curvature and ν is the unit normal to Σ.
So, the immersion is minimal if and only if H ≡ 0.
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Minimal Surfaces with Boundary

Assume that Σ is a connected, oriented, compact surface with
boundary ∂Σ (positively oriented).

Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Plateau Problem. The boundary ∂Σ is prescribed and
immovable (fixed boundary).

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• The Euler-Plateau Problem. The boundary components of ∂Σ
are elastic: (Giomi & Mahadevan, 2012)

EP[X ] := σA[X ] +

∮
∂Σ

(
ακ2 + β

)
ds .
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(Extension of) the Euler-Plateau Problem

The Euler-Plateau problem combines two of the oldest objects in
Differential Geometry:

• Elastic Curves (Levien, 2008), and

• Minimal Surfaces.

However, physically, it can be improved: including a total Gaussian
curvature term.

The Euler-Plateau Problem with Elastic Modulus

For an immersion X : Σ→ R3 we consider the total energy

E [X ] := σA[X ] + η

∫
Σ
K dΣ +

∮
∂Σ

(
ακ2 + β

)
ds ,

where σ > 0, η 6= 0, α ≥ 0 and β ∈ R.
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Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E [X ] are:

H = 0 , on Σ ,

κn = 0 , on ∂Σ ,

J ′ · ν + ητ ′g = 0 , on ∂Σ ,

J ′ · n − ητ2
g + σ = 0 , on ∂Σ ,

where τg denotes the geodesic torsion along the boundary.

• The vector field J is defined as (Langer & Singer, 1984):

J := 2αT ′′ +
(
3ακ2 − β

)
T .
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Boundary Curves

• Since κn = 0 on ∂Σ, the boundary is composed of closed
asymptotic curves. (Ghomi, 2019)

• Using it, we rewrite the other boundary conditions as

τg (2ακg + η)2 = c ,

2ακ′′g +
(
ακ2

g − 2ατ2
g − β

)
κg − ητ2

g + σ = 0 ,

where c ∈ R.

• We will assume (when necessary) that 2ακg + η 6= 0.

• If τg = 0 on one point of the boundary component C , then C
is an area-constrained planar elastic curve.

• Among them, there are always area-constrained elastic circles.
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Area-Constrained Elastic Curves

• Associated Euler-Lagrange equation:

2ακ′′g +
(
ακ2

g − β
)
κg + σ = 0 .

• Physically: elastic rods under a constant perpendicular force
directed along their length (not only at the ends).

• Alternative names: elasticae under pressure, buckled rings.

Figure: (Wegner, 2019)
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Inelastic Boundary

We consider first the case α = 0, i.e. inelastic boundary.

Using an argument involving the Cauchy-Kovalevskaya Theorem
we can prove:

Theorem

If X : Σ→ R3 is critical for E [X ] with α = 0, then β < 0 and the
surface is a planar disk bounded by a circle of radius −β/σ.

• We are using in an essential way the closure of the boundary
components.

• The condition β < 0 can also be obtained after rescaling.

• From now on, we will assume α > 0 holds.
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Equilibrium Configurations

We study first equilibria when τg = 0 in, at least, one boundary
point.

Theorem

Any critical surface for E [X ] is a planar domain bounded by
area-constrained elasticae.

• We need to assume that 2ακg + η 6= 0.

• The argument involves the distribution of zeros of
holomorphic differentials.

• It is possible to have different topologies.

Corollary

Axially symmetric critical surfaces are planar disks bounded by an
area-constrained elastic circle.
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Equilibrium Configurations of Genus Zero

• First, we analyze topological disks.

• Adapting an argument due to Nitsche (Nitsche, 1985) (and also
used in (Palmer & —, Submitted)), we get:

Theorem

Disk type critical surfaces are planar and bounded by
area-constrained elastic curves.

• We use the analyticity of the Hopf Differential (Hopf, 1946/56).

• However, “local” non-planar examples can be found.

• Solving the Björling’s Problem (Björling, 1844).
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• Solving the Björling’s Problem (Björling, 1844).
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Arbitrary Number of Boundary Components

Let us go back to study equilibria with genus zero and, now, with
m > 1 boundary components.

• Recall that if τg = 0 on a boundary point (and we assume
2ακg + η 6= 0), then the surface is planar.

• Assume τg 6= 0 everywhere on ∂Σ. By the Maximum Principle
we have

Theorem

If τg > 0 everywhere (or τg < 0), then the critical surfaces of
genus zero are topological annuli.

Proposition

If the surface is a topological annulus, then τg > 0 (or τg < 0)
holds everywhere.
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Non Planar Example

Consider domains in a minimal helicoid of the type (Palmer & —,

2020):

• They are critical for E [X ] having partially elastic boundary.
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