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Let X : ¥ — R3 be an immersion of an oriented surface ¥. The
area (functional) is given by

AIX] ::/z Js.

Definition

The immersion X : ¥ — R3 is said to be minimal (or the surface ¥
is said to be minimal) if it is a critical point of A[X].

For compactly supported variations §.X,
SA[X] = 2/ Hy - §X d¥,
X

where H is the mean curvature and v is the unit normal to X.
So, the immersion is minimal if and only if H = 0.



Minimal Surfaces with Boundary

Assume that X is a connected, oriented, compact surface with
boundary OX (positively oriented).



Minimal Surfaces with Boundary

Assume that X is a connected, oriented, compact surface with
boundary OX (positively oriented).
Different problems depending on the nature of 0%:



Minimal Surfaces with Boundary

Assume that X is a connected, oriented, compact surface with
boundary OX (positively oriented).
Different problems depending on the nature of 0%:

e The Free Boundary Problem. The boundary 9% lies in a fixed
supporting surface.



Minimal Surfaces with Boundary

Assume that X is a connected, oriented, compact surface with
boundary OX (positively oriented).
Different problems depending on the nature of 0%:

e The Free Boundary Problem. The boundary 9% lies in a fixed
supporting surface.

e The Plateau Problem. The boundary 0% is prescribed and
immovable (fixed boundary).



Minimal Surfaces with Boundary

Assume that X is a connected, oriented, compact surface with
boundary OX (positively oriented).
Different problems depending on the nature of 0%:

e The Free Boundary Problem. The boundary 9% lies in a fixed
supporting surface.

e The Plateau Problem. The boundary 0% is prescribed and
immovable (fixed boundary).

e The Thread Problem. Only the length of the boundary 0% is
prescribed.



Minimal Surfaces with Boundary

Assume that X is a connected, oriented, compact surface with
boundary OX (positively oriented).
Different problems depending on the nature of 0%:

e The Free Boundary Problem. The boundary 9% lies in a fixed
supporting surface.

e The Plateau Problem. The boundary 0% is prescribed and
immovable (fixed boundary).

e The Thread Problem. Only the length of the boundary 0% is
prescribed.

e The Euler-Plateau Problem. The boundary components of 0%
are elastic



Minimal Surfaces with Boundary

Assume that X is a connected, oriented, compact surface with
boundary OX (positively oriented).
Different problems depending on the nature of 0%:

e The Free Boundary Problem. The boundary 9% lies in a fixed
supporting surface.

e The Plateau Problem. The boundary 0% is prescribed and
immovable (fixed boundary).

e The Thread Problem. Only the length of the boundary 0% is
prescribed.

e The Euler-Plateau Problem. The boundary components of 0%
are elastic: (Giomi & Mahadevan, 2012)

EP[X] =0 A[X] + yiz (om2 + ) ds.
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(Extension of) the Euler-Plateau Problem

The Euler-Plateau problem combines two of the oldest objects in
Differential Geometry:

e Elastic Curves (Levien, 2008), and
e Minimal Surfaces.

However, physically, it can be improved: including a total Gaussian
curvature term.

The Euler-Plateau Problem with Elastic Modulus

For an immersion X : ¥ — R3 we consider the total energy
E[X] := 0 A[X] + 7 / K dx +f (ax® + B) ds,
JX ox

where 0 > 0,7 # 0, « >0 and 8 € R.
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Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E[X] are:

H = 0,

kn = 0,

Jvenr, = 0,
Jl-n—777'§+0' = 0,

on X,
on 0%,
on 0%,
on 0%,

where 7, denotes the geodesic torsion along the boundary.
e The vector field J is defined as (Langer & Singer, 1984):

J:=2aT" + (3om2 — 6) T.
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Boundary Curves

Since K, = 0 on 0%, the boundary is composed of closed
asymptotic curves. (Ghomi, 2019)

Using it, we rewrite the other boundary conditions as

Tg(2a/<ag+77)2 = c,
2amg+(araé—2a7§—6)mg—777'g2+a = 0,

where c € R.
We will assume (when necessary) that 2akg + 1 # 0.

If 7, = 0 on one point of the boundary component C, then C
is an area-constrained planar elastic curve.

Among them, there are always area-constrained elastic circles.
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Area-Constrained Elastic Curves

e Associated Euler-Lagrange equation:
2aky + (ary — B) kg + 0 =0.

e Physically: elastic rods under a constant perpendicular force
directed along their length (not only at the ends).

e Alternative names: elasticae under pressure, buckled rings.

(OO

FIGURE: (Wegner, 2019)
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Inelastic Boundary

We consider first the case o = 0, i.e. inelastic boundary.
Using an argument involving the Cauchy-Kovalevskaya Theorem

we can prove:
Theorem

If X : ¥ — R3is critical for E[X] with o = 0, then 3 < 0 and the
surface is a planar disk bounded by a circle of radius —f3/o.

e We are using in an essential way the closure of the boundary
components.

e The condition § < 0 can also be obtained after rescaling.

e From now on, we will assume o > 0 holds.
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Equilibrium Configurations

We study first equilibria when 7, = 0 in, at least, one boundary
point.
Theorem

Any critical surface for E[X] is a planar domain bounded by
area-constrained elasticae.

e We need to assume that 2akg + 1 # 0.

e The argument involves the distribution of zeros of
holomorphic differentials.

e It is possible to have different topologies.

Corollary

Axially symmetric critical surfaces are planar disks bounded by an
area-constrained elastic circle.
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Equilibrium Configurations of Genus Zero

e First, we analyze topological disks.

e Adapting an argument due to Nitsche (Nitsche, 1985) (and also
used in (Palmer & —, Submitted)), we get:

Theorem

Disk type critical surfaces are planar and bounded by
area-constrained elastic curves.

e We use the analyticity of the Hopf Differential (Hopf, 1946/56).
e However, “local” non-planar examples can be found.

e Solving the Bjorling's Problem (Bjoérling, 1844).
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Arbitrary Number of Boundary Components

Let us go back to study equilibria with genus zero and, now, with
m > 1 boundary components.

e Recall that if 7, = 0 on a boundary point (and we assume
2akg +n # 0), then the surface is planar.

e Assume 7, # 0 everywhere on 9%. By the Maximum Principle
we have
Theorem

If 7, > 0 everywhere (or 7, < 0), then the critical surfaces of
genus zero are topological annuli.

Proposition

If the surface is a topological annulus, then 7, > 0 (or 7, < 0)
holds everywhere.
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Non Planar Example

Consider domains in a minimal helicoid of the type (Palmer & —,
2020):

e They are critical for E[X] having partially elastic boundary.
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Thank You!



