

Álvaro Pámpano Llarena Texas Tech University

Geometry, PDE and Mathematical Physics Seminar

February 11, 2025

Modeling Biological Membranes

Modeling Biological Membranes

W. Helfrich (1973) suggested to study the critical points of

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b K
ight) d\Sigma \,,$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

to model biological membranes.

The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma \,,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where the energy parameters are:

- The bending rigidity: a > 0.
- The spontaneous curvature: $c_o \in \mathbb{R}$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

where the energy parameters are:

- The bending rigidity: a > 0.
- The spontaneous curvature: $c_o \in \mathbb{R}$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

Gauss-Bonnet Theorem

The total Gaussian curvature term only affects the boundary.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

a fourth order nonlinear elliptic PDE.

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

a fourth order nonlinear elliptic PDE.

Special Solutions:

1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.

The Euler-Lagrange equation associated to \mathcal{H} is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

a fourth order nonlinear elliptic PDE.

Special Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Right Cylinders over elastic curves (circular at rest), i.e., critical points of

$$oldsymbol{\Theta}[\gamma] := \int_{\gamma} \left(\kappa + \mu
ight)^2 ds$$
 .

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

a fourth order nonlinear elliptic PDE.

Special Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Right Cylinders over elastic curves (circular at rest), i.e., critical points of

$$oldsymbol{\Theta}[\gamma] := \int_{\gamma} \left(\kappa + \mu
ight)^2 ds$$
 .

3. Circular Biconcave Discoids with $H^2 - K = c_o^2$.

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta(H+c_o)+2(H+c_o)(H[H-c_o]-K)=0,$$

a fourth order nonlinear elliptic PDE.

Special Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Right Cylinders over elastic curves (circular at rest), i.e., critical points of

$$oldsymbol{\Theta}[\gamma] := \int_{\gamma} \left(\kappa + \mu
ight)^2 ds$$
 .

3. Circular Biconcave Discoids with $H^2 - K = c_o^2$. (Far from the axis of rotation.)

Circular Biconcave Discoids

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Circular Biconcave Discoids

Proposition (López, Palmer & P., Preprint) Let $\psi \in C_o^{\infty}(\Sigma)$ and consider normal variations $\delta X = \psi \nu$, then

$$\delta \mathcal{H}[\Sigma] = 8\pi c_o \psi_{|_{r=0}} \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Palmer & P., 2022)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

Theorem (Palmer & P., 2022)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

(III) A domain whose mean curvature satisfies

$$H + c_o = -\frac{\nu_3}{z}$$

(The Reduced Membrane Equation.)

Theorem (Palmer & P., 2022)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

(III) A domain whose mean curvature satisfies

$$H + c_o = -\frac{\nu_3}{z}$$

(The Reduced Membrane Equation.)

• The surface must be a topological disc. Annular domains in circular biconcave discoids are critical for *H*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $1. \ \mbox{Introduce the second order operator}$

$$\mathcal{L}[f] := \Delta f + 2(H[H - c_o] - K)f.$$

 $1. \ \mbox{Introduce the second order operator}$

$$\mathcal{L}[f] := \Delta f + 2(H[H - c_o] - K)f.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. The Euler-Lagrange equation is $\mathcal{L}[H + c_o] = 0$.

 $1. \ \mbox{Introduce the second order operator}$

$$\mathcal{L}[f] := \Delta f + 2(H[H - c_o] - K)f.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 2. The Euler-Lagrange equation is $\mathcal{L}[H + c_o] = 0$.
- 3. We compute that $\mathcal{L}[(H + c_o)z + \nu_3] = 0$.

 $1. \ \mbox{Introduce the second order operator}$

$$\mathcal{L}[f] := \Delta f + 2(H[H - c_o] - K)f.$$

- 2. The Euler-Lagrange equation is $\mathcal{L}[H + c_o] = 0$.
- 3. We compute that $\mathcal{L}[(H + c_o)z + \nu_3] = 0$.
- 4. Since the surface is axially symmetric, $\mathcal{L}[f]$ is a second order ordinary differential equation.

1. Introduce the second order operator

$$\mathcal{L}[f] := \Delta f + 2(H[H - c_o] - K)f.$$

- 2. The Euler-Lagrange equation is $\mathcal{L}[H + c_o] = 0$.
- 3. We compute that $\mathcal{L}[(H + c_o)z + \nu_3] = 0$.
- Since the surface is axially symmetric, L[f] is a second order ordinary differential equation.
- 5. Since the surface is regular, our solutions are regular (hence, their derivatives at the cut with the axis of rotation are zero).

1. Introduce the second order operator

$$\mathcal{L}[f] := \Delta f + 2(H[H - c_o] - K)f.$$

- 2. The Euler-Lagrange equation is $\mathcal{L}[H + c_o] = 0$.
- 3. We compute that $\mathcal{L}[(H + c_o)z + \nu_3] = 0$.
- Since the surface is axially symmetric, L[f] is a second order ordinary differential equation.
- 5. Since the surface is regular, our solutions are regular (hence, their derivatives at the cut with the axis of rotation are zero).
- 6. In conclusion, they are multiples of each other:

$$A(H+c_o)=(H+c_o)z+\nu_3.$$

1. Taking variations $\delta X = E_3$, we compute the flux formula

$$0 = \delta \mathcal{H}[\Omega] = \int_{\Omega} \mathcal{L}[H + c_o] \nu_3 d\Sigma + \oint_{\partial \Omega} (H + c_o)^2 \partial_n \left(\frac{\nu_3}{H + c_o} + z\right) ds,$$

for any subdomain $\Omega \subset \Sigma$.

1. Taking variations $\delta X = E_3$, we compute the flux formula

$$0 = \delta \mathcal{H}[\Omega] = \int_{\Omega} \mathcal{L}[H + c_o] \nu_3 \, d\Sigma + \oint_{\partial \Omega} (H + c_o)^2 \partial_n \left(\frac{\nu_3}{H + c_o} + z\right) ds \,,$$

for any subdomain $\Omega \subset \Sigma$.

2. Since Σ is critical for \mathcal{H} , $\mathcal{L}[H + c_o] = 0$ holds.

1. Taking variations $\delta X = E_3$, we compute the flux formula

$$0 = \delta \mathcal{H}[\Omega] = \int_{\Omega} \mathcal{L}[H + c_o] \nu_3 d\Sigma + \oint_{\partial \Omega} (H + c_o)^2 \partial_n \left(\frac{\nu_3}{H + c_o} + z\right) ds,$$

for **any** subdomain $\Omega \subset \Sigma$.

- 2. Since Σ is critical for \mathcal{H} , $\mathcal{L}[H + c_o] = 0$ holds.
- 3. Since Σ is axially symmetric,

$$r_1(H+c_o)^2\partial_n(\star)+r_2(H+c_o)^2\partial_n(\star)=0$$

1. Taking variations $\delta X = E_3$, we compute the flux formula

$$0 = \delta \mathcal{H}[\Omega] = \int_{\Omega} \mathcal{L}[H + c_o] \nu_3 d\Sigma + \oint_{\partial \Omega} (H + c_o)^2 \partial_n \left(\frac{\nu_3}{H + c_o} + z\right) ds,$$

for **any** subdomain $\Omega \subset \Sigma$.

- 2. Since Σ is critical for \mathcal{H} , $\mathcal{L}[H + c_o] = 0$ holds.
- 3. Since Σ is axially symmetric,

$$r_1(H+c_o)^2\partial_n(\star)+r_2(H+c_o)^2\partial_n(\star)=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4. Since Σ is a topological disc, we can let $r_2 \rightarrow 0$.

1. Taking variations $\delta X = E_3$, we compute the flux formula

$$0 = \delta \mathcal{H}[\Omega] = \int_{\Omega} \mathcal{L}[H + c_o] \nu_3 d\Sigma + \oint_{\partial \Omega} (H + c_o)^2 \partial_n \left(\frac{\nu_3}{H + c_o} + z\right) ds,$$

for **any** subdomain $\Omega \subset \Sigma$.

- 2. Since Σ is critical for \mathcal{H} , $\mathcal{L}[H + c_o] = 0$ holds.
- 3. Since Σ is axially symmetric,

$$r_1(H+c_o)^2\partial_n(\star)+r_2(H+c_o)^2\partial_n(\star)=0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 4. Since Σ is a topological disc, we can let $r_2 \rightarrow 0$.
- 5. Hence, $H + c_o \equiv 0$, or $(\star) = A$ holds.

(ロ)、(型)、(E)、(E)、 E) のQ(()

The reduced membrane equation is the Euler-Lagrange equation for

$$\mathcal{G}[\Sigma] := \int_{\Sigma} \frac{1}{z^2} d\Sigma - 2c_o \int_{\Omega} \frac{1}{z^2} dV = \widetilde{\mathcal{A}}[\Sigma] - 2c_o \int_{\Omega} |z| d\widetilde{V}.$$

The reduced membrane equation is the Euler-Lagrange equation for

$$\mathcal{G}[\Sigma] := \int_{\Sigma} rac{1}{z^2} \, d\Sigma - 2c_o \int_{\Omega} rac{1}{z^2} \, dV = \widetilde{\mathcal{A}}[\Sigma] - 2c_o \int_{\Omega} |z| d\widetilde{V} \, .$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solutions can be viewed as:

- Capillary surfaces with constant gravity in \mathbb{H}^3 .
- Weighted CMC surfaces for the density $\phi = -2 \log |z|$.
- Extended (-2)-singular minimal surfaces.

The reduced membrane equation is the Euler-Lagrange equation for

$$\mathcal{G}[\Sigma] := \int_{\Sigma} rac{1}{z^2} \, d\Sigma - 2c_o \int_{\Omega} rac{1}{z^2} \, dV = \widetilde{\mathcal{A}}[\Sigma] - 2c_o \int_{\Omega} |z| d\widetilde{V} \, .$$

Solutions can be viewed as:

- Capillary surfaces with constant gravity in \mathbb{H}^3 .
- Weighted CMC surfaces for the density $\phi = -2 \log |z|$.
- Extended (-2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane equation is critical for the Helfrich energy \mathcal{H} .

The reduced membrane equation is the Euler-Lagrange equation for

$$\mathcal{G}[\Sigma] := \int_{\Sigma} rac{1}{z^2} \, d\Sigma - 2c_o \int_{\Omega} rac{1}{z^2} \, dV = \widetilde{\mathcal{A}}[\Sigma] - 2c_o \int_{\Omega} |z| d\widetilde{V} \, .$$

Solutions can be viewed as:

- Capillary surfaces with constant gravity in \mathbb{H}^3 .
- Weighted CMC surfaces for the density $\phi = -2 \log |z|$.
- Extended (-2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane equation is critical for the Helfrich energy \mathcal{H} .

• The right cylinders over elastic curves satisfy the reduced membrane equation.

Modified (Conformal) Gauss Map

Modified (Conformal) Gauss Map

For a real constant $\mathit{c_o}$ we define the map $Y^{\mathit{c_o}}:\Sigma\to\mathbb{S}^4_1\subset\mathbb{E}^5_1$ by

 $Y^{c_o} := (H + c_o) \underline{X} + (\nu, q, q),$

where $q := X \cdot \nu$ is the support function and

$$\underline{X} := \left(X, \frac{X^2 - 1}{2}, \frac{X^2 + 1}{2}\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modified (Conformal) Gauss Map

For a real constant c_o we define the map $Y^{c_o}:\Sigma\to \mathbb{S}^4_1\subset \mathbb{E}^5_1$ by

 $Y^{c_o} := (H + c_o) \underline{X} + (\nu, q, q),$

where $q := X \cdot \nu$ is the support function and

$$\underline{X} := \left(X, \frac{X^2 - 1}{2}, \frac{X^2 + 1}{2}\right).$$

Theorem (Palmer & P., 2022)

The immersion $X : \Sigma \to \mathbb{R}^3$ is critical for the Helfrich energy \mathcal{H} with respect to compactly supported variations if and only if

$$\Delta Y^{c_o} + \|dY^{c_o}\|^2 Y^{c_o} = 2c_o(0,0,0,1,1)^T$$

(The map Y^{c_o} fails to be an immersion where $H^2 - K = c_o^2$.)

Assume that Y^{c_0} lies in the hyperplane $\langle Y^{c_0}, \omega \rangle = 0$. Depending on the causal character of ω we have:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assume that Y^{c_0} lies in the hyperplane $\langle Y^{c_0}, \omega \rangle = 0$. Depending on the causal character of ω we have:

1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.

Assume that Y^{c_0} lies in the hyperplane $\langle Y^{c_0}, \omega \rangle = 0$. Depending on the causal character of ω we have:

- 1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.
- 2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector. Necessarily $c_o = 0$ must hold, i.e., the surface is Willmore.

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

- 1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.
- 2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector. Necessarily $c_o = 0$ must hold, i.e., the surface is Willmore.
- 3. Case $\omega := (0, 0, 1, 0, 0)$ is a spacelike vector. Then,

$$H + c_o = -\frac{\nu_3}{z}$$

(The Reduced Membrane Equation.)

Second Variation Formula

Second Variation Formula

Theorem (Palmer & P., 2024)

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion critical for the Helfrich energy \mathcal{H} satisfying the reduced membrane equation. Then, for every $f \in \mathcal{C}^{\infty}_o(\Sigma)$ and normal variations $\delta X = f\nu$,

$$\delta^2 \mathcal{H}[\Sigma] = \int_{\Sigma} f F[f] \, d\Sigma + \frac{1}{2} \int_{\partial \Sigma} L[f] \, \partial_n f \, ds \,,$$

where

$$F[f] := \frac{1}{2} \left(P^* + \frac{2}{z^2} \right) \circ P[f].$$

(Here, *P* is the operator arising as twice the variation of the quantity $H + \nu_3/z$, *P*^{*} is its adjoint operator, and *L* comes from twice the variation of *H*.)

Second Variation Formula

Theorem (Palmer & P., 2024)

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion critical for the Helfrich energy \mathcal{H} satisfying the reduced membrane equation. Then, for every $f \in \mathcal{C}^{\infty}_o(\Sigma)$ and normal variations $\delta X = f\nu$,

$$\delta^2 \mathcal{H}[\Sigma] = \int_{\Sigma} f F[f] \, d\Sigma + \frac{1}{2} \int_{\partial \Sigma} L[f] \, \partial_n f \, ds \,,$$

where

$$F[f] := \frac{1}{2} \left(P^* + \frac{2}{z^2} \right) \circ P[f].$$

(Here, *P* is the operator arising as twice the variation of the quantity $H + \nu_3/z$, *P*^{*} is its adjoint operator, and *L* comes from twice the variation of *H*.)

• Compute the second variation through the flux formula.

The Operator P as a Jacobi Operator

If $z \neq 0$ everywhere on the surface,

$$\delta^{2}\mathcal{H}[\Sigma] = \frac{1}{2}\int_{\Sigma} P[f]\left(P + \frac{2}{z^{2}}\right)[f]\,d\Sigma + \oint_{\partial\Sigma} (\partial_{n}f)^{2}\frac{\partial_{n}z}{z}\,ds\,.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Operator P as a Jacobi Operator

If $z \neq 0$ everywhere on the surface,

$$\delta^{2}\mathcal{H}[\Sigma] = \frac{1}{2}\int_{\Sigma} P[f]\left(P + \frac{2}{z^{2}}\right)[f]\,d\Sigma + \oint_{\partial\Sigma} (\partial_{n}f)^{2}\frac{\partial_{n}z}{z}\,ds\,.$$

Proposition (Palmer & P., 2024)

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion satisfying the reduced membrane equation. Then, for every $f \in C_o^{\infty}(\Sigma)$ and admissible normal variations $\delta X = f\nu$,

$$\delta^2 \mathcal{G}[\Sigma] = -\int_{\Sigma} \frac{f P[f]}{z^2} d\Sigma.$$

Admissible variations are those that preserve the (hyperbolic) gravitational potential energy.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Palmer & P., 2024)

Above surface Σ_0 is embedded in a one parameter family of axially symmetric solutions of the reduced membrane equation (parameterized by c_o) which all share the same boundary circle.

Theorem (Palmer & P., 2024)

Above surface Σ_0 is embedded in a one parameter family of axially symmetric solutions of the reduced membrane equation (parameterized by c_o) which all share the same boundary circle. Precisely, at Σ_0 , a non-axially symmetric branch bifurcates.

Theorem (Palmer & P., 2024)

Subdomains of Σ_0 are stable and superdomains of Σ_0 are unstable for the functional \mathcal{G} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Palmer & P., 2024)

Subdomains of Σ_0 are stable and superdomains of Σ_0 are unstable for the functional \mathcal{G} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (Palmer & P., 2024)

Subdomains of Σ_0 are stable and superdomains of Σ_0 are unstable for the functional \mathcal{G} .

Theorem (Palmer & P., 2024)

Subdomains of Σ_0 are stable and superdomains of Σ_0 are unstable for the functional \mathcal{G} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bifurcating Branch

・ロト ・四ト ・ヨト ・ヨト

ж

Conjecture

It is a subcritical pitchfork bifurcation.

Bifurcating Branch

・ロト ・四ト ・ヨト ・ヨト

ж

Conjecture

It is a subcritical pitchfork bifurcation.

Bifurcating Branch

・ロト ・四ト ・ヨト ・ヨト

ж

Conjecture

It is a subcritical pitchfork bifurcation.

Applications to Closed Helfrich Surfaces

Applications to Closed Helfrich Surfaces

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed surface and $X : \Sigma \longrightarrow \mathbb{R}^3$ a \mathcal{C}^3 immersion satisfying the reduced membrane equation. Then, $X(\Sigma)$ is a Helfrich surface which intersects the plane $\{z = 0\}$ orthogonally in geodesic circles.

Applications to Closed Helfrich Surfaces

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed surface and $X : \Sigma \longrightarrow \mathbb{R}^3$ a \mathcal{C}^3 immersion satisfying the reduced membrane equation. Then, $X(\Sigma)$ is a Helfrich surface which intersects the plane $\{z = 0\}$ orthogonally in geodesic circles.

Theorem (López, Palmer & P., Preprint)

If, in addition, $\partial_n H$ is constant along any connected component of $X(\Sigma) \cap \{z = 0\}$, then the surface is axially symmetric.

Profile Curves

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed genus zero surface and $X : \Sigma \longrightarrow \mathbb{R}^3$ an axially symmetric immersion with non-constant mean curvature.

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed genus zero surface and $X : \Sigma \longrightarrow \mathbb{R}^3$ an axially symmetric immersion with non-constant mean curvature. The immersion is critical for the Helfrich energy \mathcal{H} if and only if it satisfies the reduced membrane equation

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed genus zero surface and $X : \Sigma \longrightarrow \mathbb{R}^3$ an axially symmetric immersion with non-constant mean curvature. The immersion is critical for the Helfrich energy \mathcal{H} if and only if it satisfies the reduced membrane equation and

$$\int_{\Sigma} (H+c_o)\,d\Sigma=0\,.$$

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed genus zero surface and $X : \Sigma \longrightarrow \mathbb{R}^3$ an axially symmetric immersion with non-constant mean curvature. The immersion is critical for the Helfrich energy \mathcal{H} if and only if it satisfies the reduced membrane equation and

$$\int_{\Sigma} (H+c_o)\,d\Sigma=0\,.$$

They belong to an infinite discrete family.

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed genus zero surface and $X : \Sigma \longrightarrow \mathbb{R}^3$ an axially symmetric immersion with non-constant mean curvature. The immersion is critical for the Helfrich energy \mathcal{H} if and only if it satisfies the reduced membrane equation and

$$\int_{\Sigma} (H+c_o)\,d\Sigma=0\,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- They belong to an infinite discrete family.
- They are symmetric with respect to $\{z = 0\}$.

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed genus zero surface and $X : \Sigma \longrightarrow \mathbb{R}^3$ an axially symmetric immersion with non-constant mean curvature. The immersion is critical for the Helfrich energy \mathcal{H} if and only if it satisfies the reduced membrane equation and

$$\int_{\Sigma} (H+c_o)\,d\Sigma=0\,.$$

- They belong to an infinite discrete family.
- They are symmetric with respect to $\{z = 0\}$.
- On the top part (and bottom), ν_3 has at least one change of sign.

First Surfaces in the Family

THE END

- B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, J. Nonlinear Sci. 31-1 (2021), 23.
- B. Palmer and A. Pámpano, The Euler-Helfrich Functional, *Calc. Var. Partial Differ. Equ.* **61** (2022), 79.
- B. Palmer and A. Pámpano, Symmetry Breaking Bifurcation of Membranes with Boundary, Nonlinear Anal. 238 (2024), 113393.
- B. Palmer and A. Pámpano, Stability of Membranes, J. Geom. Anal., **34** (2024), 328.
- R. López, B. Palmer and A. Pámpano, Axially Symmetric Helfrich Spheres, *Preprint*, ArXiv: 2501.15668 [math.DG].

Thank You!