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Modeling Biological Membranes

W. Helfrich (1973) suggested to study the critical points of

H[Σ] :=

∫
Σ

(
a [H + co ]

2 + bK
)
dΣ ,

to model biological membranes.
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The Helfrich Energy

Let Σ be a compact (with or without boundary) surface. For an
embedding X : Σ → R3 the Helfrich energy is given by

H[Σ] :=

∫
Σ

(
a [H + co ]

2 + bK
)
dΣ ,

where the energy parameters are:

• The bending rigidity: a > 0.

• The spontaneous curvature: co ∈ R.
• The saddle-splay modulus: b ∈ R.

Gauss-Bonnet Theorem

The total Gaussian curvature term only affects the boundary.
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Euler-Lagrange Equation

The Euler-Lagrange equation associated to H is

∆(H + co) + 2 (H + co) (H [H − co ]− K ) = 0 ,

a fourth order nonlinear elliptic PDE.

Special Solutions:

1. Constant Mean Curvature Surfaces with H ≡ −co .

2. Right Cylinders over elastic curves (circular at rest), i.e.,
critical points of

Θ[γ] :=

∫
γ
(κ+ µ)2 ds .

3. Circular Biconcave Discoids with H2 − K = c2o .
(Far from the axis of rotation.)
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Circular Biconcave Discoids

Proposition (López, Palmer & P., Preprint)

Let ψ ∈ C∞
o (Σ) and consider normal variations δX = ψν, then

δH[Σ] = 8πcoψ|r=0
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Axially Symmetric Solutions

Theorem (Palmer & P., 2022)

An axially symmetric disc critical for H must be:

(i) A planar disc (H ≡ −co = 0).

(ii) A spherical cap (H ≡ −co ̸= 0).

(iii) A domain whose mean curvature satisfies

H + co = −ν3
z
.

(The Reduced Membrane Equation.)

• The surface must be a topological disc. Annular domains in
circular biconcave discoids are critical for H.
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Sketch of the (First) Proof

1. Introduce the second order operator

L[f ] := ∆f + 2(H[H − co ]− K )f .

2. The Euler-Lagrange equation is L[H + co ] = 0.

3. We compute that L[(H + co)z + ν3] = 0.

4. Since the surface is axially symmetric, L[f ] is a second order
ordinary differential equation.

5. Since the surface is regular, our solutions are regular (hence,
their derivatives at the cut with the axis of rotation are zero).

6. In conclusion, they are multiples of each other:

A(H + co) = (H + co)z + ν3 .
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Sketch of the (Second) Proof

1. Taking variations δX = E3, we compute the flux formula

0 = δH[Ω] =

∫
Ω
L[H + co ] ν3 dΣ

+

∮
∂Ω

(H + co)
2∂n

(
ν3

H + co
+ z

)
ds ,

for any subdomain Ω ⊂ Σ.

2. Since Σ is critical for H, L[H + co ] = 0 holds.

3. Since Σ is axially symmetric,

r1(H + co)
2∂n(⋆) + r2(H + co)

2∂n(⋆) = 0 .

4. Since Σ is a topological disc, we can let r2 → 0.

5. Hence, H + co ≡ 0, or (⋆) = A holds.
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Reduced Membrane Equation

The reduced membrane equation is the Euler-Lagrange equation for

G[Σ] :=
∫
Σ

1

z2
dΣ− 2co

∫
Ω

1

z2
dV = Ã[Σ]− 2co

∫
Ω
|z |dṼ .

Solutions can be viewed as:

• Capillary surfaces with constant gravity in H3.

• Weighted CMC surfaces for the density ϕ = −2 log|z |.
• Extended (−2)-singular minimal surfaces.

Theorem (Palmer & P., 2022)

A sufficiently regular immersion satisfying the reduced membrane
equation is critical for the Helfrich energy H.

• The right cylinders over elastic curves satisfy the reduced
membrane equation.
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dV = Ã[Σ]− 2co

∫
Ω
|z |dṼ .
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Modified (Conformal) Gauss Map

For a real constant co we define the map Y co : Σ → S41 ⊂ E5
1 by

Y co := (H + co)X + (ν, q, q),

where q := X · ν is the support function and

X :=

(
X ,

X 2 − 1

2
,
X 2 + 1

2

)
.

Theorem (Palmer & P., 2022)

The immersion X : Σ → R3 is critical for the Helfrich energy H
with respect to compactly supported variations if and only if

∆Y co + ∥dY co∥2Y co = 2co(0, 0, 0, 1, 1)
T .

(The map Y co fails to be an immersion where H2 − K = c2o .)
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Special Solutions

Assume that Y co lies in the hyperplane ⟨Y co , ω⟩ = 0. Depending
on the causal character of ω we have:

1. Case ω := (0, 0, 0, 1, 1) is a null vector. Then, the surface has
constant mean curvature H ≡ −co .

2. Case ω := (0, 0, 0, 0, 1) is a timelike vector. Necessarily co = 0
must hold, i.e., the surface is Willmore.

3. Case ω := (0, 0, 1, 0, 0) is a spacelike vector. Then,

H + co = −ν3
z
.

(The Reduced Membrane Equation.)
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Second Variation Formula

Theorem (Palmer & P., 2024)

Let X : Σ → R3 be an immersion critical for the Helfrich energy H
satisfying the reduced membrane equation. Then, for every
f ∈ C∞

o (Σ) and normal variations δX = f ν,

δ2H[Σ] =

∫
Σ
f F [f ] dΣ+

1

2

∫
∂Σ

L[f ] ∂nf ds ,

where

F [f ] :=
1

2

(
P∗ +

2

z2

)
◦ P[f ] .

(Here, P is the operator arising as twice the variation of the
quantity H + ν3/z , P

∗ is its adjoint operator, and L comes from
twice the variation of H.)

• Compute the second variation through the flux formula.
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The Operator P as a Jacobi Operator

If z ̸= 0 everywhere on the surface,

δ2H[Σ] =
1

2

∫
Σ
P[f ]

(
P +

2

z2

)
[f ] dΣ+

∮
∂Σ

(∂nf )
2∂nz

z
ds .

Proposition (Palmer & P., 2024)

Let X : Σ → R3 be an immersion satisfying the reduced membrane
equation. Then, for every f ∈ C∞

o (Σ) and admissible normal
variations δX = f ν,

δ2G[Σ] = −
∫
Σ

f P[f ]

z2
dΣ .

Admissible variations are those that preserve the (hyperbolic)
gravitational potential energy.
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Symmetry Breaking Bifurcation

Theorem (Palmer & P., 2024)

Above surface Σ0 is embedded in a one parameter family of axially
symmetric solutions of the reduced membrane equation
(parameterized by co) which all share the same boundary circle.
Precisely, at Σ0, a non-axially symmetric branch bifurcates.
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Applications to Closed Helfrich Surfaces

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed surface and X : Σ −→ R3 a C3 immersion
satisfying the reduced membrane equation. Then, X (Σ) is a
Helfrich surface which intersects the plane {z = 0} orthogonally in
geodesic circles.

Theorem (López, Palmer & P., Preprint)

If, in addition, ∂nH is constant along any connected component of
X (Σ) ∩ {z = 0}, then the surface is axially symmetric.
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Profile Curves



Axially Symmetric Helfrich Topological Spheres

Theorem (López, Palmer & P., Preprint)

Let Σ be a closed genus zero surface and X : Σ −→ R3 an axially
symmetric immersion with non-constant mean curvature.

The
immersion is critical for the Helfrich energy H if and only if it
satisfies the reduced membrane equation and∫

Σ
(H + co) dΣ = 0 .

• They belong to an infinite discrete family.

• They are symmetric with respect to {z = 0}.
• On the top part (and bottom), ν3 has at least one change of
sign.
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