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Let X : ¥ — R3 be an immersion of an oriented surface ¥.

e J. Lagrange: The area (functional)

A[Z] ::/z Jx .

e S. Germain: The bending energy (aka the Willmore energy)

WIZ] = /X H? dx .

e W. Helfrich: The Helfrich energy

H[T] = /Z <a [H+ co]? + bK) dx .
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The Helfrich Energy

For an embedding X : £ — R3 the Helfrich energy is given by
H[T] = / (alH + col? + bK) %,
X

where the energy parameters are:
e The bending rigidity: a > 0.
e The saddle-splay modulus: b € R.

e The spontaneous curvature: ¢, € R.

Physical Process

Model lipid bilayers formed from a double layer of phospholipids (a
hydrophilic head and a hydrophobic tail). These membranes tend
to close.
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Boundary Problems

Assume that X is a connected, oriented, compact surface with
boundary OX (positively oriented).
Different problems depending on the nature of 0%:
e The Free Boundary Problem. The boundary 9% lies in a fixed
supporting surface.

e The Fixed Boundary Problem. The boundary 0X is prescribed
and immovable.

e The Thread Problem. Only the length of the boundary 9% is
prescribed.

e The Euler-Helfrich Problem. The boundary components of 9%
are elastic.
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The Euler-Helfrich Problem

The Euler-Helfrich Problem
For an embedding X : ¥ — R3 we consider the total energy

E[%] ;:/ (a[H+co]2+bK> dz+7§ (ar® + B) ds,
> ox
where a >0, be R, o >0 and 5 € R.

Rescaling
Let X : ¥ — R3 be critical for E. Then,
2aco/ (H + c,) dX + BL[OXY] = a/ K2 ds.
pX ox

In particular, if H+ ¢, =0 holds, g > 0.
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Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E are:

AH+2(H+c)(H[H—-c)]—K) = 0, on ¥,
a(H+c))+ bk, = 0, on 0%,
J-v—ad,H+bry, = 0, on 0%,
Jon+a(H+c)?+bK = 0, on 0%,

where
J:=2aT" + (3cm2 — 6) T

is the Noether current associated to translational invariance of
elastic curves.
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Ground State Equilibria

Assume H + ¢, = 0 holds on X. Then, the Euler-Lagrange
equations reduce to

bk, = 0, on 0%,
Jv4br, = 0, on 9%,
J,-n—ng = 0, on 9% .

Boundary Curves

Let X : ¥ — R3 be an equilibrium with H + ¢, = 0. Then, each
boundary component C is a simple and closed critical curve for

FIC] = FlCl ::/C([n+;t]2+)\) ds,

where 1 := £b/(2) and X := B/a — p?.
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Results of Topological Discs

Equilibria
Let X : ¥ — R3 be a CMC H = —c, disc type surface critical for
E. Then:

1. Case b = 0. The boundary is either a circle of radius \/«a/f3
or a simple closed elastic curve representing a torus knot of

type G(q,1) for g > 2.*
2. Case b # 0. The surface is a planar disc bounded by a circle

of radius \/a/f3 and ¢, = 0.

Idea of the proof:

e Elastic curves are torus knots G(q, p) with 2p < g and the
surface is a Seifert surface.

e Nitsche's argument involving the Hopf differential.
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Results of Topological Annuli

Consider first an embedding of a topological annulus X : ¥ — R3
with CMC H = —¢, critical for E with b = 0.

Boundary curves are simple and closed elastic curves.

If they are circles of radii \/W plenty of examples:
Delaunay surfaces, Riemann’s minimal examples,...

Otherwise, boundary components are torus knots G(q, p) with
2p < q.

The boundary knots may not be unknotted, although they are
of the same type.

Algorithm based on the mean curvature flow for fixed
boundary.
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Results of Topological Annuli

Consider now an embedding of a topological annulus X : ¥ — R3
with CMC H = —¢, critical for E with b # 0.

e Boundary curves are simple and closed elastic curves circular
at rest.

e Moreover, since b # 0, k, = 0 holds and boundary curves are
asymptotic curves.

e Local solutions: Bjorling's fomula,...

Axially Symmetric

Let X : ¥ — R3 be a CMC H = —c, equilibria for E with b # 0.
If any boundary component is a circle, then the surface is axially
symmetric, i.e. a part of a Delaunay surface.
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e B. Palmer and A. Pampano, Minimizing Configurations for
Elastic Surface Energies with Elastic Boundaries, Journal of
Nonlinear Science, 31-23 (2021).
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Thank You!



