

The Euler-Helfrich Variational Problem

Álvaro Pámpano Llarena

PDGMP Seminar

Texas Tech University
Lubbock, March 17 (2021)

Variational Problems for Surfaces

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion of an oriented surface Σ.

Variational Problems for Surfaces

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion of an oriented surface Σ.

- J. Lagrange: The area (functional)

$$
\mathcal{A}[\Sigma]:=\int_{\Sigma} d \Sigma .
$$

Variational Problems for Surfaces

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion of an oriented surface Σ.

- J. Lagrange: The area (functional)

$$
\mathcal{A}[\Sigma]:=\int_{\Sigma} d \Sigma
$$

- S. Germain: The bending energy (aka the Willmore energy)

$$
\mathcal{W}[\Sigma]:=\int_{\Sigma} H^{2} d \Sigma
$$

Variational Problems for Surfaces

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be an immersion of an oriented surface Σ.

- J. Lagrange: The area (functional)

$$
\mathcal{A}[\Sigma]:=\int_{\Sigma} d \Sigma .
$$

- S. Germain: The bending energy (aka the Willmore energy)

$$
\mathcal{W}[\Sigma]:=\int_{\Sigma} H^{2} d \Sigma
$$

- W. Helfrich: The Helfrich energy

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma .
$$

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

where the energy parameters are:

- The bending rigidity: $a>0$.

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

where the energy parameters are:

- The bending rigidity: $a>0$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

where the energy parameters are:

- The bending rigidity: $a>0$.
- The saddle-splay modulus: $b \in \mathbb{R}$.
- The spontaneous curvature: $c_{o} \in \mathbb{R}$.

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

where the energy parameters are:

- The bending rigidity: $a>0$.
- The saddle-splay modulus: $b \in \mathbb{R}$.
- The spontaneous curvature: $c_{o} \in \mathbb{R}$.

Physical Process

Model lipid bilayers formed from a double layer of phospholipids (a hydrophilic head and a hydrophobic tail). These membranes tend to close.

Boundary Problems

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).

Boundary Problems

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).
Different problems depending on the nature of $\partial \Sigma$:

Boundary Problems

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).
Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.

Boundary Problems

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).
Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.

Boundary Problems

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).
Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.
- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.

Boundary Problems

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).
Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.
- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.
- The Euler-Helfrich Problem. The boundary components of $\partial \Sigma$ are elastic.

The Euler-Helfrich Problem

The Euler-Helfrich Problem

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ we consider the total energy

$$
E[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma+\oint_{\partial \Sigma}\left(\alpha \kappa^{2}+\beta\right) d s
$$

where $a>0, b \in \mathbb{R}, \alpha>0$ and $\beta \in \mathbb{R}$.

The Euler-Helfrich Problem

The Euler-Helfrich Problem

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ we consider the total energy

$$
E[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma+\oint_{\partial \Sigma}\left(\alpha \kappa^{2}+\beta\right) d s
$$

where $a>0, b \in \mathbb{R}, \alpha>0$ and $\beta \in \mathbb{R}$.

Rescaling

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be critical for E. Then,

$$
2 a c_{0} \int_{\Sigma}\left(H+c_{o}\right) d \Sigma+\beta \mathcal{L}[\partial \Sigma]=\alpha \int_{\partial \Sigma} \kappa^{2} d s
$$

The Euler-Helfrich Problem

The Euler-Helfrich Problem

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ we consider the total energy

$$
E[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma+\oint_{\partial \Sigma}\left(\alpha \kappa^{2}+\beta\right) d s
$$

where $a>0, b \in \mathbb{R}, \alpha>0$ and $\beta \in \mathbb{R}$.

Rescaling

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be critical for E. Then,

$$
2 a c_{0} \int_{\Sigma}\left(H+c_{o}\right) d \Sigma+\beta \mathcal{L}[\partial \Sigma]=\alpha \int_{\partial \Sigma} \kappa^{2} d s
$$

In particular, if $H+c_{o} \equiv 0$ holds, $\beta>0$.

Euler-Lagrange Equations

Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E are:

$$
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right)=0, \quad \text { on } \Sigma
$$

Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E are:

$$
\begin{aligned}
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right) & =0, & & \text { on } \Sigma, \\
a\left(H+c_{o}\right)+b \kappa_{n} & =0, & & \text { on } \partial \Sigma
\end{aligned}
$$

Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E are:

$$
\begin{aligned}
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right) & =0, & & \text { on } \Sigma, \\
a\left(H+c_{o}\right)+b \kappa_{n} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot \nu-a \partial_{n} H+b \tau_{g}^{\prime} & =0, & & \text { on } \partial \Sigma
\end{aligned}
$$

Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E are:

$$
\begin{aligned}
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right) & =0, & & \text { on } \Sigma, \\
a\left(H+c_{o}\right)+b \kappa_{n} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot \nu-a \partial_{n} H+b \tau_{g}^{\prime} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot n+a\left(H+c_{o}\right)^{2}+b K & =0, & & \text { on } \partial \Sigma,
\end{aligned}
$$

Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E are:

$$
\begin{aligned}
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right) & =0, & & \text { on } \Sigma, \\
a\left(H+c_{0}\right)+b \kappa_{n} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot \nu-a \partial_{n} H+b \tau_{g}^{\prime} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot n+a\left(H+c_{o}\right)^{2}+b K & =0, & & \text { on } \partial \Sigma,
\end{aligned}
$$

where

$$
J:=2 \alpha T^{\prime \prime}+\left(3 \alpha \kappa^{2}-\beta\right) T
$$

is the Noether current associated to translational invariance of elastic curves.

Ground State Equilibria

Assume $H+c_{o} \equiv 0$ holds on Σ.

Ground State Equilibria

Assume $H+c_{o} \equiv 0$ holds on Σ. Then, the Euler-Lagrange equations reduce to

$$
\begin{aligned}
b \kappa_{n} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot \nu+b \tau_{g}^{\prime} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot n-b \tau_{g}^{2} & =0, & & \text { on } \partial \Sigma .
\end{aligned}
$$

Ground State Equilibria

Assume $H+c_{o} \equiv 0$ holds on Σ. Then, the Euler-Lagrange equations reduce to

$$
\begin{aligned}
b \kappa_{n} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot \nu+b \tau_{g}^{\prime} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot n-b \tau_{g}^{2} & =0, & & \text { on } \partial \Sigma .
\end{aligned}
$$

Boundary Curves

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be an equilibrium with $H+c_{o} \equiv 0$. Then, each boundary component C is a simple and closed critical curve for

$$
F[C] \equiv F_{\mu, \lambda}[C]:=\int_{C}\left([\kappa+\mu]^{2}+\lambda\right) d s
$$

Ground State Equilibria

Assume $H+c_{o} \equiv 0$ holds on Σ. Then, the Euler-Lagrange equations reduce to

$$
\begin{aligned}
b \kappa_{n} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot \nu+b \tau_{g}^{\prime} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot n-b \tau_{g}^{2} & =0, & & \text { on } \partial \Sigma .
\end{aligned}
$$

Boundary Curves

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be an equilibrium with $H+c_{o} \equiv 0$. Then, each boundary component C is a simple and closed critical curve for

$$
F[C] \equiv F_{\mu, \lambda}[C]:=\int_{C}\left([\kappa+\mu]^{2}+\lambda\right) d s
$$

where $\mu:= \pm b /(2 \alpha)$ and $\lambda:=\beta / \alpha-\mu^{2}$.

Results of Topological Discs

Equilibria

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{o}$ disc type surface critical for E.

Results of Topological Discs

Equilibria

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{o}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.*

Results of Topological Discs

Equilibria

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{0}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.*
2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha / \beta}$ and $c_{0}=0$.

Results of Topological Discs

Equilibria

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{0}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.*
2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha / \beta}$ and $c_{0}=0$.

Idea of the proof:

- Elastic curves are torus knots $G(q, p)$ with $2 p<q$ and the surface is a Seifert surface.

Results of Topological Discs

Equilibria

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{o}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.*
2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha / \beta}$ and $c_{0}=0$.

Idea of the proof:

- Elastic curves are torus knots $G(q, p)$ with $2 p<q$ and the surface is a Seifert surface.
- Nitsche's argument involving the Hopf differential.

Disc Type Critical Surfaces ($c_{o}=0$ and $b=0$)

Disc Type Critical Surfaces $\left(c_{o}=0\right.$ and $\left.b=0\right)$

Figure: Minimal Surface Spanned by $G(3,1)$.

Disc Type Critical Surfaces $\left(c_{o}=0\right.$ and $\left.b=0\right)$

Figure: Minimal Surface Spanned by $G(4,1)$.

Disc Type Critical Surfaces $\left(c_{o}=0\right.$ and $\left.b=0\right)$

Figure: Minimal Surface Spanned by $G(5,1)$.

Disc Type Critical Surfaces $\left(c_{o}=0\right.$ and $\left.b=0\right)$

Figure: Minimal Surface Spanned by $G(6,1)$.

Results of Topological Annuli

Results of Topological Annuli

Consider first an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b=0$.

Results of Topological Annuli

Consider first an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b=0$.

- Boundary curves are simple and closed elastic curves.

Results of Topological Annuli

Consider first an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b=0$.

- Boundary curves are simple and closed elastic curves.
- If they are circles of radii $\sqrt{\alpha / \beta}$, plenty of examples:

Delaunay surfaces, Riemann's minimal examples,...

Results of Topological Annuli

Consider first an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b=0$.

- Boundary curves are simple and closed elastic curves.
- If they are circles of radii $\sqrt{\alpha / \beta}$, plenty of examples: Delaunay surfaces, Riemann's minimal examples,...
- Otherwise, boundary components are torus knots $G(q, p)$ with $2 p<q$.

Results of Topological Annuli

Consider first an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b=0$.

- Boundary curves are simple and closed elastic curves.
- If they are circles of radii $\sqrt{\alpha / \beta}$, plenty of examples: Delaunay surfaces, Riemann's minimal examples,...
- Otherwise, boundary components are torus knots $G(q, p)$ with $2 p<q$.
- The boundary knots may not be unknotted, although they are of the same type.

Results of Topological Annuli

Consider first an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b=0$.

- Boundary curves are simple and closed elastic curves.
- If they are circles of radii $\sqrt{\alpha / \beta}$, plenty of examples: Delaunay surfaces, Riemann's minimal examples,...
- Otherwise, boundary components are torus knots $G(q, p)$ with $2 p<q$.
- The boundary knots may not be unknotted, although they are of the same type.
- Algorithm based on the mean curvature flow for fixed boundary.

Critical Annulus ($c_{o}=0$ and $b=0$)

Critical Annulus ($c_{o}=0$ and $b=0$)

Figure: Minimal Surface Spanned by Two $G(3,1)$.

Critical Annulus ($c_{o}=0$ and $b=0$)

Figure: Minimal Surface Spanned by Two $G(4,1)$.

Critical Annulus ($c_{o}=0$ and $b=0$)

Figure: Minimal Surface Spanned by Two $G(5,1)$.

Critical Annulus ($c_{o}=0$ and $b=0$)

Figure: Minimal Surface Spanned by Two $G(6,1)$.

Critical Annulus ($c_{o}=0$ and $b=0$)

Figure: Minimal Surface Spanned by Two $G(5,2)$.

Results of Topological Annuli

Consider now an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b \neq 0$.

Results of Topological Annuli

Consider now an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b \neq 0$.

- Boundary curves are simple and closed elastic curves circular at rest.

Results of Topological Annuli

Consider now an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b \neq 0$.

- Boundary curves are simple and closed elastic curves circular at rest.
- Moreover, since $b \neq 0, \kappa_{n} \equiv 0$ holds and boundary curves are asymptotic curves.

Results of Topological Annuli

Consider now an embedding of a topological annulus $X: \Sigma \rightarrow \mathbb{R}^{3}$ with CMC $H=-c_{0}$ critical for E with $b \neq 0$.

- Boundary curves are simple and closed elastic curves circular at rest.
- Moreover, since $b \neq 0, \kappa_{n} \equiv 0$ holds and boundary curves are asymptotic curves.
- Local solutions: Björling's fomula,...

Axially Symmetric

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{0}$ equilibria for E with $b \neq 0$. If any boundary component is a circle, then the surface is axially symmetric, i.e. a part of a Delaunay surface.

Nodoidal Domains

Nodoidal Domains

Nodoidal Domains

Nodoidal Domains

THE END

- B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, Journal of Nonlinear Science, 31-23 (2021).

THE END

- B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, Journal of Nonlinear Science, 31-23 (2021).

Thank You!

