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Variational Problems for Surfaces

Let X : Σ→ R3 be an immersion of an oriented surface Σ.

• J. Lagrange: The area (functional)

A[Σ] :=

∫
Σ
dΣ .

• S. Germain: The bending energy (aka the Willmore energy)

W[Σ] :=

∫
Σ
H2 dΣ .

• W. Helfrich: The Helfrich energy

H[Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ .
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The Helfrich Energy

For an embedding X : Σ→ R3 the Helfrich energy is given by

H[Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ ,

where the energy parameters are:

• The bending rigidity: a > 0.

• The saddle-splay modulus: b ∈ R.

• The spontaneous curvature: co ∈ R.

Physical Process

Model lipid bilayers formed from a double layer of phospholipids (a
hydrophilic head and a hydrophobic tail). These membranes tend
to close.
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Boundary Problems

Assume that Σ is a connected, oriented, compact surface with
boundary ∂Σ (positively oriented).

Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Fixed Boundary Problem. The boundary ∂Σ is prescribed
and immovable.

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• The Euler-Helfrich Problem. The boundary components of ∂Σ
are elastic.



Boundary Problems

Assume that Σ is a connected, oriented, compact surface with
boundary ∂Σ (positively oriented).
Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Fixed Boundary Problem. The boundary ∂Σ is prescribed
and immovable.

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• The Euler-Helfrich Problem. The boundary components of ∂Σ
are elastic.



Boundary Problems

Assume that Σ is a connected, oriented, compact surface with
boundary ∂Σ (positively oriented).
Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Fixed Boundary Problem. The boundary ∂Σ is prescribed
and immovable.

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• The Euler-Helfrich Problem. The boundary components of ∂Σ
are elastic.



Boundary Problems

Assume that Σ is a connected, oriented, compact surface with
boundary ∂Σ (positively oriented).
Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Fixed Boundary Problem. The boundary ∂Σ is prescribed
and immovable.

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• The Euler-Helfrich Problem. The boundary components of ∂Σ
are elastic.



Boundary Problems

Assume that Σ is a connected, oriented, compact surface with
boundary ∂Σ (positively oriented).
Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Fixed Boundary Problem. The boundary ∂Σ is prescribed
and immovable.

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• The Euler-Helfrich Problem. The boundary components of ∂Σ
are elastic.



Boundary Problems

Assume that Σ is a connected, oriented, compact surface with
boundary ∂Σ (positively oriented).
Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Fixed Boundary Problem. The boundary ∂Σ is prescribed
and immovable.

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.

• The Euler-Helfrich Problem. The boundary components of ∂Σ
are elastic.



The Euler-Helfrich Problem

The Euler-Helfrich Problem

For an embedding X : Σ→ R3 we consider the total energy

E [Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ +

∮
∂Σ

(
ακ2 + β

)
ds ,

where a > 0, b ∈ R, α > 0 and β ∈ R.

Rescaling

Let X : Σ→ R3 be critical for E . Then,

2aco

∫
Σ

(H + co) dΣ + βL[∂Σ] = α

∫
∂Σ
κ2 ds .

In particular, if H + co ≡ 0 holds, β > 0.
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Euler-Lagrange Equations

The Euler-Lagrange equations for equilibria of E are:

∆H + 2 (H + co) (H [H − co ]− K ) = 0 , on Σ ,

a (H + co) + bκn = 0 , on ∂Σ ,

J ′ · ν − a∂nH + bτ ′g = 0 , on ∂Σ ,

J ′ · n + a (H + co)2 + bK = 0 , on ∂Σ ,

where
J := 2αT ′′ +

(
3ακ2 − β

)
T

is the Noether current associated to translational invariance of
elastic curves.
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Ground State Equilibria

Assume H + co ≡ 0 holds on Σ.

Then, the Euler-Lagrange
equations reduce to

bκn = 0 , on ∂Σ ,

J ′ · ν + bτ ′g = 0 , on ∂Σ ,

J ′ · n − bτ2
g = 0 , on ∂Σ .

Boundary Curves

Let X : Σ→ R3 be an equilibrium with H + co ≡ 0. Then, each
boundary component C is a simple and closed critical curve for

F [C ] ≡ Fµ,λ[C ] :=

∫
C

(
[κ+ µ]2 + λ

)
ds ,

where µ := ±b/(2α) and λ := β/α− µ2.
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Results of Topological Discs

Equilibria

Let X : Σ→ R3 be a CMC H = −co disc type surface critical for
E .

Then:

1. Case b = 0. The boundary is either a circle of radius
√
α/β

or a simple closed elastic curve representing a torus knot of
type G (q, 1) for q > 2.*

2. Case b 6= 0. The surface is a planar disc bounded by a circle
of radius

√
α/β and co = 0.

Idea of the proof:

• Elastic curves are torus knots G (q, p) with 2p < q and the
surface is a Seifert surface.

• Nitsche’s argument involving the Hopf differential.
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Disc Type Critical Surfaces (co = 0 and b = 0)

Figure: Minimal Surface Spanned by G (3, 1).
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Figure: Minimal Surface Spanned by G (4, 1).
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Figure: Minimal Surface Spanned by G (5, 1).



Disc Type Critical Surfaces (co = 0 and b = 0)

Figure: Minimal Surface Spanned by G (6, 1).



Results of Topological Annuli

Consider first an embedding of a topological annulus X : Σ→ R3

with CMC H = −co critical for E with b = 0.

• Boundary curves are simple and closed elastic curves.

• If they are circles of radii
√
α/β, plenty of examples:

Delaunay surfaces, Riemann’s minimal examples,...

• Otherwise, boundary components are torus knots G (q, p) with
2p < q.

• The boundary knots may not be unknotted, although they are
of the same type.

• Algorithm based on the mean curvature flow for fixed
boundary.



Results of Topological Annuli

Consider first an embedding of a topological annulus X : Σ→ R3

with CMC H = −co critical for E with b = 0.

• Boundary curves are simple and closed elastic curves.

• If they are circles of radii
√
α/β, plenty of examples:

Delaunay surfaces, Riemann’s minimal examples,...

• Otherwise, boundary components are torus knots G (q, p) with
2p < q.

• The boundary knots may not be unknotted, although they are
of the same type.

• Algorithm based on the mean curvature flow for fixed
boundary.



Results of Topological Annuli

Consider first an embedding of a topological annulus X : Σ→ R3

with CMC H = −co critical for E with b = 0.

• Boundary curves are simple and closed elastic curves.

• If they are circles of radii
√
α/β, plenty of examples:

Delaunay surfaces, Riemann’s minimal examples,...

• Otherwise, boundary components are torus knots G (q, p) with
2p < q.

• The boundary knots may not be unknotted, although they are
of the same type.

• Algorithm based on the mean curvature flow for fixed
boundary.



Results of Topological Annuli

Consider first an embedding of a topological annulus X : Σ→ R3

with CMC H = −co critical for E with b = 0.

• Boundary curves are simple and closed elastic curves.

• If they are circles of radii
√
α/β, plenty of examples:

Delaunay surfaces, Riemann’s minimal examples,...

• Otherwise, boundary components are torus knots G (q, p) with
2p < q.

• The boundary knots may not be unknotted, although they are
of the same type.

• Algorithm based on the mean curvature flow for fixed
boundary.



Results of Topological Annuli

Consider first an embedding of a topological annulus X : Σ→ R3

with CMC H = −co critical for E with b = 0.

• Boundary curves are simple and closed elastic curves.

• If they are circles of radii
√
α/β, plenty of examples:

Delaunay surfaces, Riemann’s minimal examples,...

• Otherwise, boundary components are torus knots G (q, p) with
2p < q.

• The boundary knots may not be unknotted, although they are
of the same type.

• Algorithm based on the mean curvature flow for fixed
boundary.



Results of Topological Annuli

Consider first an embedding of a topological annulus X : Σ→ R3

with CMC H = −co critical for E with b = 0.

• Boundary curves are simple and closed elastic curves.

• If they are circles of radii
√
α/β, plenty of examples:

Delaunay surfaces, Riemann’s minimal examples,...

• Otherwise, boundary components are torus knots G (q, p) with
2p < q.

• The boundary knots may not be unknotted, although they are
of the same type.

• Algorithm based on the mean curvature flow for fixed
boundary.



Results of Topological Annuli

Consider first an embedding of a topological annulus X : Σ→ R3

with CMC H = −co critical for E with b = 0.

• Boundary curves are simple and closed elastic curves.

• If they are circles of radii
√
α/β, plenty of examples:

Delaunay surfaces, Riemann’s minimal examples,...

• Otherwise, boundary components are torus knots G (q, p) with
2p < q.

• The boundary knots may not be unknotted, although they are
of the same type.

• Algorithm based on the mean curvature flow for fixed
boundary.



Critical Annulus (co = 0 and b = 0)

Figure: Minimal Surface Spanned by Two G (3, 1).



Critical Annulus (co = 0 and b = 0)

Figure: Minimal Surface Spanned by Two G (3, 1).



Critical Annulus (co = 0 and b = 0)

Figure: Minimal Surface Spanned by Two G (4, 1).



Critical Annulus (co = 0 and b = 0)

Figure: Minimal Surface Spanned by Two G (5, 1).



Critical Annulus (co = 0 and b = 0)

Figure: Minimal Surface Spanned by Two G (6, 1).



Critical Annulus (co = 0 and b = 0)

Figure: Minimal Surface Spanned by Two G (5, 2).



Results of Topological Annuli

Consider now an embedding of a topological annulus X : Σ→ R3

with CMC H = −co critical for E with b 6= 0.

• Boundary curves are simple and closed elastic curves circular
at rest.

• Moreover, since b 6= 0, κn ≡ 0 holds and boundary curves are
asymptotic curves.

• Local solutions: Björling’s fomula,...

Axially Symmetric

Let X : Σ→ R3 be a CMC H = −co equilibria for E with b 6= 0.
If any boundary component is a circle, then the surface is axially
symmetric, i.e. a part of a Delaunay surface.
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THE END

• B. Palmer and A. Pámpano, Minimizing Configurations for
Elastic Surface Energies with Elastic Boundaries, Journal of
Nonlinear Science, 31-23 (2021).

Thank You!
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