

The Euler-Helfrich Variational Problem

Álvaro Pámpano Llarena

PDGMP Seminar Texas Tech University

Lubbock, March 17 (2021)

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion of an oriented surface Σ .

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion of an oriented surface Σ .

• J. Lagrange: The area (functional)

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma.$$

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion of an oriented surface Σ .

• J. Lagrange: The area (functional)

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma.$$

• S. Germain: The bending energy (aka the Willmore energy)

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

Let $X : \Sigma \to \mathbb{R}^3$ be an immersion of an oriented surface Σ .

• J. Lagrange: The area (functional)

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma.$$

• S. Germain: The bending energy (aka the Willmore energy)

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

• W. Helfrich: The Helfrich energy

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b K
ight) d\Sigma \,.$$

For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

For an embedding $X: \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where the energy parameters are:

• The bending rigidity: a > 0.

For an embedding $X: \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where the energy parameters are:

- The bending rigidity: a > 0.
- The saddle-splay modulus: $b \in \mathbb{R}$.

For an embedding $X: \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where the energy parameters are:

- The bending rigidity: a > 0.
- The saddle-splay modulus: $b \in \mathbb{R}$.
- The spontaneous curvature: $c_o \in \mathbb{R}$.

For an embedding $X: \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

where the energy parameters are:

- The bending rigidity: a > 0.
- The saddle-splay modulus: $b \in \mathbb{R}$.
- The spontaneous curvature: $c_o \in \mathbb{R}$.

Physical Process

Model lipid bilayers formed from a double layer of phospholipids (a hydrophilic head and a hydrophobic tail). These membranes tend to close.

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented). Different problems depending on the nature of $\partial \Sigma$:

Assume that Σ is a connected, oriented, compact surface with boundary $\partial\Sigma$ (positively oriented).

Different problems depending on the nature of $\partial \Sigma$:

• The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.
- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.

Assume that Σ is a connected, oriented, compact surface with boundary $\partial \Sigma$ (positively oriented).

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable.
- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.
- The Euler-Helfrich Problem. The boundary components of $\partial \Sigma$ are elastic.

The Euler-Helfrich Problem

For an embedding $X : \Sigma \to \mathbb{R}^3$ we consider the total energy

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where a > 0, $b \in \mathbb{R}$, $\alpha > 0$ and $\beta \in \mathbb{R}$.

The Euler-Helfrich Problem

For an embedding $X : \Sigma \to \mathbb{R}^3$ we consider the total energy

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

where a > 0, $b \in \mathbb{R}$, $\alpha > 0$ and $\beta \in \mathbb{R}$.

Rescaling

Let $X : \Sigma \to \mathbb{R}^3$ be critical for *E*. Then,

$$2ac_o\int_{\Sigma} (H+c_o) d\Sigma + \beta \mathcal{L}[\partial \Sigma] = \alpha \int_{\partial \Sigma} \kappa^2 ds.$$

The Euler-Helfrich Problem

For an embedding $X : \Sigma \to \mathbb{R}^3$ we consider the total energy

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

where a > 0, $b \in \mathbb{R}$, $\alpha > 0$ and $\beta \in \mathbb{R}$.

Rescaling

Let $X : \Sigma \to \mathbb{R}^3$ be critical for E. Then,

$$2ac_o\int_{\Sigma} (H+c_o) d\Sigma + \beta \mathcal{L}[\partial \Sigma] = \alpha \int_{\partial \Sigma} \kappa^2 ds.$$

In particular, if $H + c_o \equiv 0$ holds, $\beta > 0$.

The Euler-Lagrange equations for equilibria of E are:

$$\Delta H + 2(H + c_o)(H[H - c_o] - K) = 0, \quad \text{on } \Sigma$$

The Euler-Lagrange equations for equilibria of E are:

$$\Delta H + 2(H + c_o)(H[H - c_o] - K) = 0, \quad \text{on } \Sigma,$$

$$a(H + c_o) + b\kappa_n = 0, \quad \text{on } \partial \Sigma$$

The Euler-Lagrange equations for equilibria of *E* are:

$$\begin{split} \Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) &= 0, & \text{on } \Sigma, \\ a \left(H + c_o \right) + b \kappa_n &= 0, & \text{on } \partial \Sigma, \\ J' \cdot \nu - a \partial_n H + b \tau'_g &= 0, & \text{on } \partial \Sigma \end{split}$$

The Euler-Lagrange equations for equilibria of *E* are:

$$\begin{split} \Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) &= 0, & \text{on } \Sigma, \\ a \left(H + c_o \right) + b \kappa_n &= 0, & \text{on } \partial \Sigma, \\ J' \cdot \nu - a \partial_n H + b \tau'_g &= 0, & \text{on } \partial \Sigma, \\ J' \cdot n + a \left(H + c_o \right)^2 + b K &= 0, & \text{on } \partial \Sigma, \end{split}$$

・ロト・日本・モート モー うへぐ

The Euler-Lagrange equations for equilibria of E are:

$$\Delta H + 2(H + c_o)(H[H - c_o] - K) = 0, \quad \text{on } \Sigma,$$

$$a(H+c_o)+b\kappa_n = 0, \qquad \text{on } \partial\Sigma_{\sigma}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

$$J' \cdot \nu - a \partial_n H + b \tau'_g = 0, \qquad \text{on } \partial \Sigma,$$

$$J' \cdot n + a \left(H + c_o\right)^2 + bK = 0, \qquad \text{on } \partial \Sigma,$$

where

$$J := 2\alpha T'' + \left(3\alpha \kappa^2 - \beta\right) T$$

is the Noether current associated to translational invariance of elastic curves.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Assume $H + c_o \equiv 0$ holds on Σ .

Assume $H + c_o \equiv 0$ holds on Σ . Then, the Euler-Lagrange equations reduce to

$$\begin{array}{rcl} b\kappa_n &=& 0\,, & & \text{on }\partial\Sigma\,, \\ J'\cdot\nu+b\tau_g' &=& 0\,, & & \text{on }\partial\Sigma\,, \\ J'\cdot n-b\tau_g^2 &=& 0\,, & & \text{on }\partial\Sigma\,. \end{array}$$

Assume $H + c_o \equiv 0$ holds on Σ . Then, the Euler-Lagrange equations reduce to

$$\begin{array}{rcl} b\kappa_n &=& 0\,, & & \text{on }\partial\Sigma\,, \\ J'\cdot\nu+b\tau_g' &=& 0\,, & & \text{on }\partial\Sigma\,, \\ J'\cdot n-b\tau_g^2 &=& 0\,, & & \text{on }\partial\Sigma\,. \end{array}$$

Boundary Curves

Let $X : \Sigma \to \mathbb{R}^3$ be an equilibrium with $H + c_o \equiv 0$. Then, each boundary component *C* is a simple and closed critical curve for

$$\mathsf{F}[\mathsf{C}] \equiv \mathsf{F}_{\mu,\lambda}[\mathsf{C}] := \int_{\mathsf{C}} \left(\left[\kappa + \mu\right]^2 + \lambda
ight) \mathsf{d} \mathsf{s} \, ,$$

Assume $H + c_o \equiv 0$ holds on Σ . Then, the Euler-Lagrange equations reduce to

$b\kappa_n$	=	0,	on $\partial \Sigma$,
$J'\cdot \nu + b au_g'$	=	0,	$\text{ on }\partial\Sigma,$
$J' \cdot n - b\tau_g^2$	=	0,	on $\partial\Sigma$.

Boundary Curves

Let $X : \Sigma \to \mathbb{R}^3$ be an equilibrium with $H + c_o \equiv 0$. Then, each boundary component *C* is a simple and closed critical curve for

$$F[C] \equiv F_{\mu,\lambda}[C] := \int_C \left(\left[\kappa + \mu\right]^2 + \lambda \right) ds \,,$$

where $\mu := \pm b/(2\alpha)$ and $\lambda := \beta/\alpha - \mu^2$.

Equilibria

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for E.

Equilibria

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.*

Equilibria

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.*
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Equilibria

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.*
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Idea of the proof:

• Elastic curves are torus knots G(q, p) with 2p < q and the surface is a Seifert surface.

Equilibria

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.*
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Idea of the proof:

• Elastic curves are torus knots G(q, p) with 2p < q and the surface is a Seifert surface.

• Nitsche's argument involving the Hopf differential.

FIGURE: Minimal Surface Spanned by G(3, 1).

FIGURE: Minimal Surface Spanned by G(4, 1).

FIGURE: Minimal Surface Spanned by G(5, 1).

FIGURE: Minimal Surface Spanned by G(6, 1).

(ロ)、(型)、(E)、(E)、 E) の(の)

Consider first an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with b = 0.

Consider first an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with b = 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Boundary curves are simple and closed elastic curves.

Consider first an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with b = 0.

- Boundary curves are simple and closed elastic curves.
- If they are circles of radii $\sqrt{\alpha/\beta}$, plenty of examples: Delaunay surfaces, Riemann's minimal examples,...

Consider first an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with b = 0.

- Boundary curves are simple and closed elastic curves.
- If they are circles of radii $\sqrt{\alpha/\beta}$, plenty of examples: Delaunay surfaces, Riemann's minimal examples,...
- Otherwise, boundary components are torus knots G(q, p) with 2p < q.

Consider first an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with b = 0.

- Boundary curves are simple and closed elastic curves.
- If they are circles of radii $\sqrt{\alpha/\beta}$, plenty of examples: Delaunay surfaces, Riemann's minimal examples,...
- Otherwise, boundary components are torus knots G(q, p) with 2p < q.
- The boundary knots may not be unknotted, although they are of the same type.

Consider first an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with b = 0.

- Boundary curves are simple and closed elastic curves.
- If they are circles of radii $\sqrt{\alpha/\beta}$, plenty of examples: Delaunay surfaces, Riemann's minimal examples,...
- Otherwise, boundary components are torus knots G(q, p) with 2p < q.
- The boundary knots may not be unknotted, although they are of the same type.

• Algorithm based on the mean curvature flow for fixed boundary.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

FIGURE: Minimal Surface Spanned by Two G(3, 1).

FIGURE: Minimal Surface Spanned by Two G(4, 1).

FIGURE: Minimal Surface Spanned by Two G(5,1).

FIGURE: Minimal Surface Spanned by Two G(6, 1).

FIGURE: Minimal Surface Spanned by Two G(5,2).

Consider now an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with $b \neq 0$.

Consider now an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with $b \neq 0$.

• Boundary curves are simple and closed elastic curves circular at rest.

Consider now an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with $b \neq 0$.

- Boundary curves are simple and closed elastic curves circular at rest.
- Moreover, since $b \neq 0$, $\kappa_n \equiv 0$ holds and boundary curves are asymptotic curves.

Consider now an embedding of a topological annulus $X : \Sigma \to \mathbb{R}^3$ with CMC $H = -c_o$ critical for E with $b \neq 0$.

- Boundary curves are simple and closed elastic curves circular at rest.
- Moreover, since $b \neq 0$, $\kappa_n \equiv 0$ holds and boundary curves are asymptotic curves.
- Local solutions: Björling's fomula,...

Axially Symmetric

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ equilibria for E with $b \neq 0$. If any boundary component is a circle, then the surface is axially symmetric, i.e. a part of a Delaunay surface.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

THE END

• B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, *Journal of Nonlinear Science*, **31-23** (2021).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

THE END

 B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, *Journal of Nonlinear Science*, **31-23** (2021).

Thank You!