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h being a constant. It is related with:
e The linear Schrodinger equation.
e The time-dependent linear oscillator.
e Simplest example of an Ermakov system.
e Many applications...

Here we will consider the EMP equation with constant coefficients,
i. e.
a(s) = a, € R.
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Construction of the Associated Curve

Take any p € R and r € {0,1}. Then we have the ambient space,
M?(p).

e If r =0 we consider ¢ = e» = 3 = 1.

e If r=1, one ¢; = —1 and the others are +1.
Then, take a 1 € R such that

2
Qo = €1E2U° F €1p.

Now, for any solution of the EMP equation, we define (natural)
1
492(s)

where e € R is only related with h and ¢;.

k(s) = +up and 7(s)=

e
4¢°(s)’
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Introduction to Curvature Energies

e 1691: J. Bernoulli.
Proposed the problem of determining the shape of elastic rods
(bending deformation of rods).

e 1742: D. Bernoulli.
In a letter to L. Euler suggested to study elasticae as
minimizers of the bending energy,

E(y) = /112 ds.
v
e 1744: L. Euler.

Described the shape of planar elasticae (partially solved by J.
Bernoulli 1692-1694).
e 1930: W. Blaschke.

®m=Lﬁ$.
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In M3(p) we are going to consider the curvature energy functional

@u(v>=Lm:/0L¢mds,

where 1 € R is a fixed real constant.

e Take into account that kK = 4 would be a global minimum if
we were considering L1([0, L]) as the space of curves.

EULER-LAGRANGE EQUATIONS

&£ (= + L (k2 — 16372 + £2p)
52 = = 1€3 2p

2kVK — 1,

d T
— = 0.
ds (ﬂ—ﬂ)
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Binormal Evolution Surfaces

Since M3(p) is complete,

1. Consider the one-parameter group of isometries determined by

the flow of 1
I=-——B
NN
that is, {¢+,t € R}. (Langer & Singer, 1984)
2. Now, consider the surface S, := {x(s, t) := ¢+(7(s))}.

3. The surface S, is an invariant surface whose mean curvature is
H= —E&182.

4. Since i € R is fixed, S, has constant mean curvature.
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Ilustration in S3(p)

(Arroyo, Garay & —, 2019)
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Summary

In conclusion:
e A solution of the EMP equation defines...

e ... acurve in M3(p) which is a critical point of the extended
Blaschke's energy.

e Then, the evolution under the naturally associated Killing
vector field in the direction of the binormal of this curve
produces...

e ... an invariant CMC surface in M3(p).

THEOREM (Arroyo, Garay & —, 2018)

Let S2 be an invariant CMC surface of M3(p) (S2 is a warped
product surface) , then the warping function is a solution of the
EMP equation with constant coefficients.
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