Solutions of the
 Ermakov-Milne-Pinney Equation and Invariant CMC Surfaces

Álvaro Pámpano Llarena

International Conference
Geometry, Differential Equations and Analysis

Kharkiv, June 17-21 2019

EMP Equation

EMP Equation

The Ermakov-Milne-Pinney (EMP) equation is the second order nonlinear differential equation (Ermakov, 1880)

$$
\phi^{\prime \prime}(s)+\alpha(s) \phi(s)=\frac{h}{\phi^{3}(s)}
$$

h being a constant.

EMP Equation

The Ermakov-Milne-Pinney (EMP) equation is the second order nonlinear differential equation (Ermakov, 1880)

$$
\phi^{\prime \prime}(s)+\alpha(s) \phi(s)=\frac{h}{\phi^{3}(s)}
$$

h being a constant. It is related with:

- The linear Schrödinger equation.
- The time-dependent linear oscillator.
- Simplest example of an Ermakov system.
- Many applications...

EMP Equation

The Ermakov-Milne-Pinney (EMP) equation is the second order nonlinear differential equation (Ermakov, 1880)

$$
\phi^{\prime \prime}(s)+\alpha(s) \phi(s)=\frac{h}{\phi^{3}(s)}
$$

h being a constant. It is related with:

- The linear Schrödinger equation.
- The time-dependent linear oscillator.
- Simplest example of an Ermakov system.
- Many applications...

Here we will consider the EMP equation with constant coefficients, i. e.

$$
\alpha(s)=\alpha_{o} \in \mathbb{R}
$$

Construction of the Associated Curve

Construction of the Associated Curve

Take any $\rho \in \mathbb{R}$ and $r \in\{0,1\}$.

Construction of the Associated Curve

Take any $\rho \in \mathbb{R}$ and $r \in\{0,1\}$. Then we have the ambient space, $M_{r}^{3}(\rho)$.

Construction of the Associated Curve

Take any $\rho \in \mathbb{R}$ and $r \in\{0,1\}$. Then we have the ambient space, $M_{r}^{3}(\rho)$.

- If $r=0$ we consider $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=1$.

Construction of the Associated Curve

Take any $\rho \in \mathbb{R}$ and $r \in\{0,1\}$. Then we have the ambient space, $M_{r}^{3}(\rho)$.

- If $r=0$ we consider $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=1$.
- If $r=1$, one $\varepsilon_{i}=-1$ and the others are +1 .

Construction of the Associated Curve

Take any $\rho \in \mathbb{R}$ and $r \in\{0,1\}$. Then we have the ambient space, $M_{r}^{3}(\rho)$.

- If $r=0$ we consider $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=1$.
- If $r=1$, one $\varepsilon_{i}=-1$ and the others are +1 .

Then, take a $\mu \in \mathbb{R}$ such that

$$
\alpha_{o}=\varepsilon_{1} \varepsilon_{2} \mu^{2}+\varepsilon_{1} \rho
$$

Construction of the Associated Curve

Take any $\rho \in \mathbb{R}$ and $r \in\{0,1\}$. Then we have the ambient space, $M_{r}^{3}(\rho)$.

- If $r=0$ we consider $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=1$.
- If $r=1$, one $\varepsilon_{i}=-1$ and the others are +1 .

Then, take a $\mu \in \mathbb{R}$ such that

$$
\alpha_{o}=\varepsilon_{1} \varepsilon_{2} \mu^{2}+\varepsilon_{1} \rho .
$$

Now, for any solution of the EMP equation, we define (natural)

$$
\kappa(s)=\frac{1}{4 \phi^{2}(s)}+\mu \quad \text { and } \quad \tau(s)=\frac{e}{4 \phi^{2}(s)}
$$

Construction of the Associated Curve

Take any $\rho \in \mathbb{R}$ and $r \in\{0,1\}$. Then we have the ambient space, $M_{r}^{3}(\rho)$.

- If $r=0$ we consider $\varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=1$.
- If $r=1$, one $\varepsilon_{i}=-1$ and the others are +1 .

Then, take a $\mu \in \mathbb{R}$ such that

$$
\alpha_{o}=\varepsilon_{1} \varepsilon_{2} \mu^{2}+\varepsilon_{1} \rho .
$$

Now, for any solution of the EMP equation, we define (natural)

$$
\kappa(s)=\frac{1}{4 \phi^{2}(s)}+\mu \quad \text { and } \quad \tau(s)=\frac{e}{4 \phi^{2}(s)}
$$

where $e \in \mathbb{R}$ is only related with h and ε_{i}.

Introduction to Curvature Energies

Introduction to Curvature Energies

- 1691: J. Bernoulli.

Introduction to Curvature Energies

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformation of rods).

Introduction to Curvature Energies

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformation of rods).

- 1742: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as
minimizers of the bending energy,

$$
\mathcal{E}(\gamma)=\int_{\gamma} \kappa^{2} d s
$$

Introduction to Curvature Energies

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformation of rods).

- 1742: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as
minimizers of the bending energy,

$$
\mathcal{E}(\gamma)=\int_{\gamma} \kappa^{2} d s
$$

- 1744: L. Euler.

Described the shape of planar elasticae

Introduction to Curvature Energies

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformation of rods).

- 1742: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as
minimizers of the bending energy,

$$
\mathcal{E}(\gamma)=\int_{\gamma} \kappa^{2} d s
$$

- 1744: L. Euler.

Described the shape of planar elasticae (partially solved by J. Bernoulli 1692-1694).

Introduction to Curvature Energies

- 1691: J. Bernoulli.

Proposed the problem of determining the shape of elastic rods (bending deformation of rods).

- 1742: D. Bernoulli.

In a letter to L. Euler suggested to study elasticae as
minimizers of the bending energy,

$$
\mathcal{E}(\gamma)=\int_{\gamma} \kappa^{2} d s
$$

- 1744: L. Euler.

Described the shape of planar elasticae (partially solved by J. Bernoulli 1692-1694).

- 1930: W. Blaschke.

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \sqrt{\kappa} d s
$$

Extended Blaschke's Curvature Energy

In $M_{r}^{3}(\rho)$ we are going to consider the curvature energy functional

$$
\boldsymbol{\Theta}_{\mu}(\gamma)=\int_{\gamma} \sqrt{\kappa-\mu}=\int_{0}^{L} \sqrt{\kappa(s)-\mu} d s
$$

where $\mu \in \mathbb{R}$ is a fixed real constant.

Extended Blaschke's Curvature Energy

In $M_{r}^{3}(\rho)$ we are going to consider the curvature energy functional

$$
\boldsymbol{\Theta}_{\mu}(\gamma)=\int_{\gamma} \sqrt{\kappa-\mu}=\int_{0}^{L} \sqrt{\kappa(s)-\mu} d s
$$

where $\mu \in \mathbb{R}$ is a fixed real constant.

- Take into account that $\kappa=\mu$ would be a global minimum if we were considering $L^{1}([0, L])$ as the space of curves.

Extended Blaschke's Curvature Energy

In $M_{r}^{3}(\rho)$ we are going to consider the curvature energy functional

$$
\boldsymbol{\Theta}_{\mu}(\gamma)=\int_{\gamma} \sqrt{\kappa-\mu}=\int_{0}^{L} \sqrt{\kappa(s)-\mu} d s
$$

where $\mu \in \mathbb{R}$ is a fixed real constant.

- Take into account that $\kappa=\mu$ would be a global minimum if we were considering $L^{1}([0, L])$ as the space of curves.

EULER-LAGRANGE EQUATIONS

$$
\begin{aligned}
\frac{d^{2}}{d s^{2}}\left(\frac{\varepsilon_{1} \varepsilon_{2}}{\sqrt{\kappa-\mu}}\right)+\frac{1}{\sqrt{\kappa-\mu}}\left(\kappa^{2}-\varepsilon_{1} \varepsilon_{3} \tau^{2}+\varepsilon_{2} \rho\right) & =2 \kappa \sqrt{\kappa-\mu} \\
\frac{d}{d s}\left(\frac{\tau}{\kappa-\mu}\right) & =0
\end{aligned}
$$

Binormal Evolution Surfaces

Binormal Evolution Surfaces

Since $M_{r}^{3}(\rho)$ is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

that is, $\left\{\phi_{t}, t \in \mathbb{R}\right\}$. (Langer \& Singer, 1984)

Binormal Evolution Surfaces

Since $M_{r}^{3}(\rho)$ is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

that is, $\left\{\phi_{t}, t \in \mathbb{R}\right\}$. (Langer \& Singer, 1984)
2. Now, consider the surface $S_{\gamma}:=\left\{x(s, t):=\phi_{t}(\gamma(s))\right\}$.

Binormal Evolution Surfaces

Since $M_{r}^{3}(\rho)$ is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

that is, $\left\{\phi_{t}, t \in \mathbb{R}\right\}$. (Langer \& Singer, 1984)
2. Now, consider the surface $S_{\gamma}:=\left\{x(s, t):=\phi_{t}(\gamma(s))\right\}$.

3 . The surface S_{γ} is an invariant surface

Binormal Evolution Surfaces

Since $M_{r}^{3}(\rho)$ is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

that is, $\left\{\phi_{t}, t \in \mathbb{R}\right\}$. (Langer \& Singer, 1984)
2. Now, consider the surface $S_{\gamma}:=\left\{x(s, t):=\phi_{t}(\gamma(s))\right\}$.
3. The surface S_{γ} is an invariant surface whose mean curvature is

$$
H=-\varepsilon_{1} \varepsilon_{2} \mu .
$$

Binormal Evolution Surfaces

Since $M_{r}^{3}(\rho)$ is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

that is, $\left\{\phi_{t}, t \in \mathbb{R}\right\}$. (Langer \& Singer, 1984)
2. Now, consider the surface $S_{\gamma}:=\left\{x(s, t):=\phi_{t}(\gamma(s))\right\}$.
3. The surface S_{γ} is an invariant surface whose mean curvature is

$$
H=-\varepsilon_{1} \varepsilon_{2} \mu .
$$

4. Since $\mu \in \mathbb{R}$ is fixed, S_{γ} has constant mean curvature.

Illustration in $\mathbb{S}^{3}(\rho)$

Illustration in $\mathbb{S}^{3}(\rho)$

(Arroyo, Garay \& -, 2019)

Summary

In conclusion:

Summary

In conclusion:

- A solution of the EMP equation defines...

Summary

In conclusion:

- A solution of the EMP equation defines...
- ... a curve in $M_{r}^{3}(\rho)$ which is a critical point of the extended Blaschke's energy.

Summary

In conclusion:

- A solution of the EMP equation defines...
- ... a curve in $M_{r}^{3}(\rho)$ which is a critical point of the extended Blaschke's energy.
- Then, the evolution under the naturally associated Killing vector field in the direction of the binormal of this curve produces...

Summary

In conclusion:

- A solution of the EMP equation defines...
- ... a curve in $M_{r}^{3}(\rho)$ which is a critical point of the extended Blaschke's energy.
- Then, the evolution under the naturally associated Killing vector field in the direction of the binormal of this curve produces...
- ... an invariant CMC surface in $M_{r}^{3}(\rho)$.

Summary

In conclusion:

- A solution of the EMP equation defines...
- ... a curve in $M_{r}^{3}(\rho)$ which is a critical point of the extended Blaschke's energy.
- Then, the evolution under the naturally associated Killing vector field in the direction of the binormal of this curve produces...
- ... an invariant CMC surface in $M_{r}^{3}(\rho)$.

ThEOREM (Arroyo, Garay \& -, 2018)
Let S^{2} be an invariant CMC surface of $M_{r}^{3}(\rho)$

Summary

In conclusion:

- A solution of the EMP equation defines...
- ... a curve in $M_{r}^{3}(\rho)$ which is a critical point of the extended Blaschke's energy.
- Then, the evolution under the naturally associated Killing vector field in the direction of the binormal of this curve produces...
- ... an invariant CMC surface in $M_{r}^{3}(\rho)$.

THEOREM (Arroyo, Garay \& -, 2018)
Let S^{2} be an invariant CMC surface of $M_{r}^{3}(\rho)\left(S^{2}\right.$ is a warped product surface)

Summary

In conclusion:

- A solution of the EMP equation defines...
- ... a curve in $M_{r}^{3}(\rho)$ which is a critical point of the extended Blaschke's energy.
- Then, the evolution under the naturally associated Killing vector field in the direction of the binormal of this curve produces...
- ... an invariant CMC surface in $M_{r}^{3}(\rho)$.

THEOREM (Arroyo, Garay \& -, 2018)
Let S^{2} be an invariant CMC surface of $M_{r}^{3}(\rho)\left(S^{2}\right.$ is a warped product surface), then the warping function

Summary

In conclusion:

- A solution of the EMP equation defines...
- ... a curve in $M_{r}^{3}(\rho)$ which is a critical point of the extended Blaschke's energy.
- Then, the evolution under the naturally associated Killing vector field in the direction of the binormal of this curve produces...
- ... an invariant CMC surface in $M_{r}^{3}(\rho)$.

ThEOREM (Arroyo, Garay \& -, 2018)
Let S^{2} be an invariant CMC surface of $M_{r}^{3}(\rho)\left(S^{2}\right.$ is a warped product surface), then the warping function is a solution of the EMP equation with constant coefficients.

References

1. J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Anal. App., 462 (2018), 1644-1668.
2. J. Arroyo, O. J. Garay and A. Pámpano, Delaunay Surfaces in $\mathbb{S}^{3}(\rho)$, To appear in Filomat, (2019).
3. W. Blaschke, Vorlesungen uber Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitatstheorie I: Elementare Differenntialgeometrie, Springer, (1930).
4. L. Euler, Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Lattisimo Sensu Accepti, Bousquet, Lausannae et Genevae, 24 (1744).
5. E. Pinney, The Nonlinear Differential Equation $y^{\prime \prime}+p(x) y^{\prime}+c y^{3}=0$, Proc. A. M. S., 1 (1950).

THE END

Acknowledgements: Research partially supported by MINECO-FEDER, MTM2014-54804-P and by Gobierno Vasco, IT1094-16.

