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EMP Equation

The Ermakov-Milne-Pinney (EMP) equation is the second order
nonlinear differential equation (Ermakov, 1880)

φ′′(s) + α(s)φ(s) =
h

φ3(s)
,

h being a constant. It is related with:

• The linear Schrödinger equation.

• The time-dependent linear oscillator.

• Simplest example of an Ermakov system.

• Many applications...

Here we will consider the EMP equation with constant coefficients,
i. e.

α(s) = αo ∈ R.
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Construction of the Associated Curve

Take any ρ ∈ R and r ∈ {0, 1}. Then we have the ambient space,
M3

r (ρ).

• If r = 0 we consider ε1 = ε2 = ε3 = 1.

• If r = 1, one εi = −1 and the others are +1.

Then, take a µ ∈ R such that

αo = ε1ε2µ
2 + ε1ρ.

Now, for any solution of the EMP equation, we define (natural)

κ(s) =
1

4φ2(s)
+ µ and τ(s) =

e

4φ2(s)
,

where e ∈ R is only related with h and εi .
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Introduction to Curvature Energies

• 1691: J. Bernoulli.
Proposed the problem of determining the shape of elastic rods
(bending deformation of rods).

• 1742: D. Bernoulli.
In a letter to L. Euler suggested to study elasticae as
minimizers of the bending energy,

E(γ) =

∫
γ
κ2 ds .

• 1744: L. Euler.
Described the shape of planar elasticae (partially solved by J.
Bernoulli 1692-1694).

• 1930: W. Blaschke.

Θ(γ) =

∫
γ

√
κ ds .
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Extended Blaschke’s Curvature Energy

In M3
r (ρ) we are going to consider the curvature energy functional

Θµ(γ) =

∫
γ

√
κ− µ =

∫ L

0

√
κ(s)− µ ds ,

where µ ∈ R is a fixed real constant.

• Take into account that κ = µ would be a global minimum if
we were considering L1([0, L]) as the space of curves.

Euler-Lagrange equations

d2

ds2

(
ε1ε2√
κ− µ

)
+

1√
κ− µ

(
κ2 − ε1ε3τ2 + ε2ρ

)
= 2κ

√
κ− µ ,

d

ds

(
τ

κ− µ

)
= 0 .
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Binormal Evolution Surfaces

Since M3
r (ρ) is complete,

1. Consider the one-parameter group of isometries determined by
the flow of

I =
1

2
√
κ− µ

B,

that is, {φt , t ∈ R}. (Langer & Singer, 1984)

2. Now, consider the surface Sγ := {x(s, t) := φt(γ(s))}.
3. The surface Sγ is an invariant surface whose mean curvature is

H = −ε1ε2µ.

4. Since µ ∈ R is fixed, Sγ has constant mean curvature.
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Summary

In conclusion:

• A solution of the EMP equation defines...

• ... a curve in M3
r (ρ) which is a critical point of the extended

Blaschke’s energy.

• Then, the evolution under the naturally associated Killing
vector field in the direction of the binormal of this curve
produces...

• ... an invariant CMC surface in M3
r (ρ).

Theorem (Arroyo, Garay & –, 2018)

Let S2 be an invariant CMC surface of M3
r (ρ) (S2 is a warped

product surface) , then the warping function is a solution of the
EMP equation with constant coefficients.
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