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Objective

Objective 1 (Extended Blaschke’s Problem)

Completely solve an extended Blaschke’s Variational problem in
the Minkowski n-space, Ln.

Then, following the idea of [3] and [4],

• Evolve these critical curves under their associated Killing.

• The generated surfaces Sγ have CMC.

Objective 2 (CMC Invariant Surfaces)

Characterize constant mean curvature ξ-invariant surfaces S of L3.

For this purpose,

• Get a geodesic foliation of S .

• Leaves are critical for the Blaschke’s problem.

• Finally, study isometric deformations.
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Curvature Energy Functional

• We denote by Ωpop1 the space of smooth immersed curves of
Ln joining two points of it, and verifying that κ− µ > 0.

• We are going to consider the curvature energy functional
acting on Ωpop1

Θ(γ) =

∫
γ

√
κ− µ =

∫ L

0

√
κ(s)− µ ds ,

where µ ∈ R is a fixed real constant.

• Take into account that κ = µ would be a global minimum if
we were considering L1([0, L]) as the space of curves.

• Observe that the case µ = 0 was studied by Blaschke in the
Euclidean 3-Space, [2].
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Reduction Theorem

From the first variation formula and the Frenet-Serret equations we
get that rankγ ≤ 3.Moreover, we can prove that there exists a
parallel normal subbundle which contains the first normal
space.Then, we obtain

Reduction Theorem ([1])

A critical point of Θ must lie in a 3-dimensional totally geodesic
submanifold of Ln.

Thus, we are interested in studying critical curves in the Minkowski
3-Space, L3.
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Euler-Lagrange Equations

The Euler-Lagrange equations for the curvature energy functional
Θ(γ) =

∫
γ

√
κ− µ, in L3 can be written as

d2

ds2
(

ε2√
κ− µ

) +
1√
κ− µ

(ε1κ
2 − ε3τ2) = 2ε1κ

√
κ− µ ,

d

ds
(

τ

κ− µ
) = 0 .

Under suitable boundary conditions, solutions of these equations
are critical curves for our energy functional.
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Solutions with Constant Curvature

• Consider that the curvature is constant, κ = κo ∈ R+.

• Then the second Euler-Lagrange equation

d

ds
(

τ

κ− µ
) = 0 ,

implies that the torsion is constant, that is, τ = τo ∈ R+.

• Thus, γ must be a Frenet helix.

• Moreover, substituting this in the first Euler-Lagrange
equation we get the relation

κo = µ+
√
µ2 − ε1ε3τ2o .
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Solutions with Non-Constant Curvature

Suppose now that the curvature is not constant,

then let’s call

a = −ε1ε2µ2 ,
b = 4ε2d + 2ε1ε2µ ,

c = −ε1ε2 − ε2ε3e2 ,

and ∆ = 4ac − b2 = −16d2− 16ε1µd + 4ε1ε3µ
2e2, where d , e are

real constants (constants of integration).Then, calling x = κ− µ,
the first integrals of the Euler-Lagrange equations reduce to

x2s = 4x2(cx2 + bx + a) ,

τ = ex .

Thus, the following cases are not possible:

1. ∆ ≥ 0 and c < 0,

2. a ≤ 0, 2d = −ε1µ and e2 = −ε1ε3.
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Solutions with Non-Constant Curvature

We can integrate the first integrals of Euler-Lagrange equations,
and get the curvature of the critical curves, in the other cases.

1. If ∆ 6= 0 and a 6= 0

κ(s) =
2a + µ(b +

√
|∆|f (2µs))

−b +
√
|∆|f (2µs)

,

where, f (x) = sinh x , if ∆ > 0 and a > 0; f (x) = cosh x , if
∆ < 0 and a > 0; and f (x) = sin x , if ∆ < 0 and a < 0.
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Solutions with Non-Constant Curvature

2. If ∆ = 0 and a > 0

k(s) =
µ+ (2a− bµ) exp 2µs

1− b exp 2µs
.

3. If ∆ < 0 and a = 0, that is, (µ = 0)

k(s) =
b

−c + b2s2
.

4. If ∆ = 0 and a = 0, that is, (µ = d = 0)

k(s) =
1

2
√
cs
.
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Critical Curves

Observe that, in all the cases, the torsion of the solutions is given
by

τ = e(κ− µ) ,

where e ∈ R is one of the constants of integration.

Fundamental Theorem of Curves in L3

The curvature and torsion (together with the causal characters εi
of the Frenet frame) determine a unique curve up to rigid motions.

• When µ = 0, our critical curves are Lancret curves, that is,
curves making a constant angle with a fixed direction.

• On the other hand, if µ 6= 0, our critical curves are Bertrand
curves.
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Planar Critical Curves

Take τ = 0, and suppose that γ lies in a Riemannian plane,
γ ⊂ R2, then we have

Delaunay Curves ([1], [3])

Critical curves of Θ(γ) =
∫
γ

√
κ− µ ds in R2 are precisely the

Delaunay curves, that is, the roulettes of foci of conics (lines,
circles, catenaries, nodaries and undularies).

If γ lies in a Lorentzian plane, γ ⊂ L2,we can prove

Hano-Nomizu Curves ([1], [5])

The locus of the origin when a part of a spacelike quadratic curve
is rolled along a spacelike line is a spacelike critical curve for
Θ(γ) =

∫
γ

√
κ− µ ds in L2.
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Killing Vector Fields

A vector field W along γ, which infinitesimally preserves unit speed
parametrization is said to be a Killing vector field along γ if it
evolves in the direction of W without changing shape, only
position.That is, if the following equations hold

W (v)(t̄, 0) = W (κ)(t̄, 0) = W (τ)(t̄, 0) = 0 .

Let’s consider the functional Θ(γ) =
∫
γ

√
κ− µ ds acting on the

space Ωpop1 , then

Associated Killing Vector Field along γ ([3])

The vector field I = 1
2
√
κ−µB is a Killing vector field along γ, if

and only if, γ verifies the Euler-Lagrange equations (γ may have a
restriction on its length).
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Evolution of Critical Curves

Since L3 is complete,

1. Consider the one-parameter group of isometries determined by
the flow of

I =
1

2
√
κ− µ

B,

that is, {φt , t ∈ R}.

2. Now, consider the surface Sγ := {x(s, t) := φt(γ(s))}.
3. The surface Sγ is a I-invariant surface whose mean curvature

is
H = −ε1ε2µ.

4. As µ ∈ R is fixed, Sγ has constant mean curvature.
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Foliations of Invariant Surfaces

For the converse, assume that S is a non-degenerate Gξ-invariant
surface of L3, i.e., for any x ∈ S and Φt ∈ Gξ we have Φt(S) = S .

Geodesic Foliation by Critical Curves ([1])

A ξ-invariant CMC surface S of L3 admits a local geodesic
parametrization where the leaves provide a geodesic foliation by
critical curves of the extended Blaschke’s problem with
µ = −ε1ε2H.

Thus, every ξ-invariant CMC surface is

• A ruled surface or,

• It is generated by evolving a critical curve of
Θ(γ) =

∫
γ

√
κ+ ε1ε2H ds under the flow of the Killing vector

field ξ.
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Deformations by Isometric Surfaces (1)

Suppose that the critical curve γ of Θ(γ) =
∫
γ

√
κ− µ ds has

constant curvature κo

, then we know that γ is a Frenet helix with

κ = κo = µ+
√
µ2 − ε2ε3τ2o ,

τ = τo ,

and these helices can only generate congruence surfaces to the
following ones (depending on the causal character of εi )

(a) ε1ε2 = −1 (b) ε3 = −1
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(c) ε1ε2 = −1 (d) ε3 = −1



Deformations by Isometric Surfaces (1)

Suppose that the critical curve γ of Θ(γ) =
∫
γ

√
κ− µ ds has

constant curvature κo , then we know that γ is a Frenet helix with

κ = κo = µ+
√
µ2 − ε2ε3τ2o ,

τ = τo ,

and these helices can only generate congruence surfaces to the
following ones (depending on the causal character of εi )

(e) ε1ε2 = −1 (f) ε3 = −1



Deformations by Isometric Surfaces (2)

If the following relations involving the constants d and e,

1. If ∆ 6= 0 and a 6= 0, ∆ = νb2,
2. If ∆ = 0 and a > 0, (this does not give an isometric

deformation),
3. If ∆ < 0 and a = 0, c = νb2 and
4. If ∆ = a = 0, (as d = 0, there is no biparametric family)

there is no any constraint,

are verified for some ν ∈ R and for each correpondent solution of
the Euler-Lagrange equations, we can prove

Isometric Deformations ([1])

For each real constant µ, let {Sγ}d ,e be the family of ξ-invariant
surfaces shaped on a critical curve γ of
Θ(γ) =

∫
γ

√
κ− µ ds.Under the relations above (except for case

2), the family {Sγ}d is generated by isometric surfaces with the
same constant mean curvature H = −ε1ε2µ.
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Deformations of Riemannian CMC Surfaces

Let Sγ be a Riemannian surface of L3,

then the orbits are

(g) H = 0 (h) H 6= 0

Rotational Spacelike Surfaces ([1])

Any spacelike surface of CMC can be isometrically deformed into a
spacelike rotational CMC surface, except for the yellow cases.



Deformations of Riemannian CMC Surfaces

Let Sγ be a Riemannian surface of L3,then the orbits are

(i) H = 0 (j) H 6= 0

Rotational Spacelike Surfaces ([1])

Any spacelike surface of CMC can be isometrically deformed into a
spacelike rotational CMC surface, except for the yellow cases.



Deformations of Riemannian CMC Surfaces

Let Sγ be a Riemannian surface of L3,then the orbits are

(k) H = 0 (l) H 6= 0

Rotational Spacelike Surfaces ([1])

Any spacelike surface of CMC can be isometrically deformed into a
spacelike rotational CMC surface, except for the yellow cases.



Deformations of Lorentzian Surfaces

Let Sγ be a Lorentzian surface of L3 with timelike profile curve
γ.

Then, we have the following orbits of the isometric deformations

(m) H = 0 (n) H 6= 0



Deformations of Lorentzian Surfaces

Let Sγ be a Lorentzian surface of L3 with timelike profile curve
γ.Then, we have the following orbits of the isometric deformations

(o) H = 0 (p) H 6= 0



Deformations of Lorentzian Surfaces

Now, if γ is a spacelike profile curve of a Lorentzian surface Sγ of
L3

, the isometric deformations appear in the following diagrams

(q) H = 0 (r) H 6= 0



Deformations of Lorentzian Surfaces

Now, if γ is a spacelike profile curve of a Lorentzian surface Sγ of
L3, the isometric deformations appear in the following diagrams

(s) H = 0 (t) H 6= 0
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