

Constant Mean Curvature Invariant Surfaces in \mathbb{L}^3 and a Blaschke's Variational Problem

Álvaro Pámpano Llarena

Young Researcher Workshop on Differential Geometry in Minkowski Space

Granada, April 17-20, 2017

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

OBJECTIVE 1 (EXTENDED BLASCHKE'S PROBLEM)

Completely solve an extended Blaschke's Variational problem in the Minkowski n-space, \mathbb{L}^n .

Then, following the idea of [3] and [4],

Objective 1 (Extended Blaschke's Problem)

Completely solve an extended Blaschke's Variational problem in the Minkowski n-space, \mathbb{L}^n .

Then, following the idea of [3] and [4],

• Evolve these critical curves under their associated Killing.

Objective 1 (Extended Blaschke's Problem)

Completely solve an extended Blaschke's Variational problem in the Minkowski n-space, \mathbb{L}^n .

Then, following the idea of [3] and [4],

• Evolve these critical curves under their associated Killing.

• The generated surfaces S_{γ} have CMC.

Objective 1 (Extended Blaschke's Problem)

Completely solve an extended Blaschke's Variational problem in the Minkowski n-space, \mathbb{L}^n .

Then, following the idea of [3] and [4],

- Evolve these critical curves under their associated Killing.
- The generated surfaces S_{γ} have CMC.

OBJECTIVE 2 (CMC INVARIANT SURFACES)

Characterize constant mean curvature ξ -invariant surfaces S of \mathbb{L}^3 .

Objective 1 (Extended Blaschke's Problem)

Completely solve an extended Blaschke's Variational problem in the Minkowski n-space, \mathbb{L}^n .

Then, following the idea of [3] and [4],

- Evolve these critical curves under their associated Killing.
- The generated surfaces S_{γ} have CMC.

OBJECTIVE 2 (CMC INVARIANT SURFACES)

Characterize constant mean curvature ξ -invariant surfaces S of \mathbb{L}^3 .

For this purpose,

• Get a geodesic foliation of *S*.

Objective 1 (Extended Blaschke's Problem)

Completely solve an extended Blaschke's Variational problem in the Minkowski n-space, \mathbb{L}^n .

Then, following the idea of [3] and [4],

- Evolve these critical curves under their associated Killing.
- The generated surfaces S_{γ} have CMC.

OBJECTIVE 2 (CMC INVARIANT SURFACES)

Characterize constant mean curvature ξ -invariant surfaces S of \mathbb{L}^3 .

For this purpose,

- Get a geodesic foliation of *S*.
- Leaves are critical for the Blaschke's problem.

Objective 1 (Extended Blaschke's Problem)

Completely solve an extended Blaschke's Variational problem in the Minkowski n-space, \mathbb{L}^n .

Then, following the idea of [3] and [4],

- Evolve these critical curves under their associated Killing.
- The generated surfaces S_{γ} have CMC.

OBJECTIVE 2 (CMC INVARIANT SURFACES)

Characterize constant mean curvature ξ -invariant surfaces S of \mathbb{L}^3 .

For this purpose,

- Get a geodesic foliation of *S*.
- Leaves are critical for the Blaschke's problem.
- Finally, study isometric deformations.

<□ > < @ > < E > < E > E のQ @

$1.\,$ Extension of a Blaschke's Variational Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $1. \ \mbox{Extension}$ of a Blaschke's Variational Problem
- 2. Constant Mean Curvature Invariant Surfaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $1.\,$ Extension of a Blaschke's Variational Problem
- 2. Constant Mean Curvature Invariant Surfaces
- 3. Isometric Deformations of These Surfaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. Curvature Energy Functional

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Curvature Energy Functional
- 2. Reduction Theorem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Curvature Energy Functional
- 2. Reduction Theorem
- 3. Euler-Lagrange Equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Curvature Energy Functional
- 2. Reduction Theorem
- 3. Euler-Lagrange Equations
- 4. Critical Curves

- 1. Curvature Energy Functional
- 2. Reduction Theorem
- 3. Euler-Lagrange Equations
- 4. Critical Curves
- 5. Planar Critical Curves

• We denote by $\Omega_{p_op_1}$ the space of smooth immersed curves of \mathbb{L}^n joining two points of it, and verifying that $\kappa - \mu > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We denote by $\Omega_{p_op_1}$ the space of smooth immersed curves of \mathbb{L}^n joining two points of it, and verifying that $\kappa \mu > 0$.
- We are going to consider the curvature energy functional acting on $\Omega_{p_op_1}$

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} = \int_0^L \sqrt{\kappa(s) - \mu} \, ds \,,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\mu \in \mathbb{R}$ is a fixed real constant.

- We denote by $\Omega_{p_op_1}$ the space of smooth immersed curves of \mathbb{L}^n joining two points of it, and verifying that $\kappa \mu > 0$.
- We are going to consider the curvature energy functional acting on $\Omega_{p_op_1}$

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} = \int_0^L \sqrt{\kappa(s) - \mu} \, ds \,,$$

where $\mu \in \mathbb{R}$ is a fixed real constant.

 Take into account that κ = μ would be a global minimum if we were considering L¹([0, L]) as the space of curves.

- We denote by $\Omega_{p_op_1}$ the space of smooth immersed curves of \mathbb{L}^n joining two points of it, and verifying that $\kappa \mu > 0$.
- We are going to consider the curvature energy functional acting on $\Omega_{p_op_1}$

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} = \int_0^L \sqrt{\kappa(s) - \mu} \, ds \, ,$$

where $\mu \in \mathbb{R}$ is a fixed real constant.

- Take into account that κ = μ would be a global minimum if we were considering L¹([0, L]) as the space of curves.
- Observe that the case $\mu = 0$ was studied by Blaschke in the Euclidean 3-Space, [2].

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space.

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space. Then, we obtain

REDUCTION THEOREM ([1])

A critical point of Θ must lie in a 3-dimensional totally geodesic submanifold of \mathbb{L}^n .

From the first variation formula and the Frenet-Serret equations we get that rank $\gamma \leq 3$. Moreover, we can prove that there exists a parallel normal subbundle which contains the first normal space. Then, we obtain

REDUCTION THEOREM ([1])

A critical point of Θ must lie in a 3-dimensional totally geodesic submanifold of \mathbb{L}^n .

Thus, we are interested in studying critical curves in the Minkowski 3-Space, \mathbb{L}^3 .

EULER-LAGRANGE EQUATIONS

(ロ)、(型)、(E)、(E)、 E) の(の)

The Euler-Lagrange equations for the curvature energy functional $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu}$, in \mathbb{L}^3 can be written as

$$\begin{aligned} \frac{d^2}{ds^2} (\frac{\varepsilon_2}{\sqrt{\kappa-\mu}}) + \frac{1}{\sqrt{\kappa-\mu}} (\varepsilon_1 \kappa^2 - \varepsilon_3 \tau^2) &= 2\varepsilon_1 \kappa \sqrt{\kappa-\mu} \,, \\ \frac{d}{ds} (\frac{\tau}{\kappa-\mu}) &= 0 \,. \end{aligned}$$

The Euler-Lagrange equations for the curvature energy functional $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu}$, in \mathbb{L}^3 can be written as

$$egin{array}{lll} rac{d^2}{ds^2}(rac{arepsilon_2}{\sqrt{\kappa-\mu}})+rac{1}{\sqrt{\kappa-\mu}}(arepsilon_1\kappa^2-arepsilon_3 au^2)&=&2arepsilon_1\kappa\sqrt{\kappa-\mu}\,,\ &rac{d}{ds}(rac{ au}{\kappa-\mu})&=&0\,. \end{array}$$

Under suitable boundary conditions, solutions of these equations are critical curves for our energy functional.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Consider that the curvature is constant, $\kappa = \kappa_o \in \mathbb{R}^+$.

- Consider that the curvature is constant, $\kappa = \kappa_o \in \mathbb{R}^+$.
- Then the second Euler-Lagrange equation

$$\frac{d}{ds}(\frac{\tau}{\kappa-\mu})=0\,,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

implies that the torsion is constant, that is, $\tau = \tau_o \in \mathbb{R}^+$.

- Consider that the curvature is constant, $\kappa = \kappa_o \in \mathbb{R}^+$.
- Then the second Euler-Lagrange equation

$$\frac{d}{ds}(\frac{\tau}{\kappa-\mu})=0\,,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

implies that the torsion is constant, that is, $\tau = \tau_o \in \mathbb{R}^+$.

• Thus, γ must be a Frenet helix.

- Consider that the curvature is constant, $\kappa = \kappa_o \in \mathbb{R}^+$.
- Then the second Euler-Lagrange equation

$$\frac{d}{ds}(\frac{\tau}{\kappa-\mu})=0\,,$$

implies that the torsion is constant, that is, $\tau = \tau_o \in \mathbb{R}^+$.

- Thus, γ must be a Frenet helix.
- Moreover, substituting this in the first Euler-Lagrange equation we get the relation

$$\kappa_o = \mu + \sqrt{\mu^2 - \varepsilon_1 \varepsilon_3 \tau_o^2}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose now that the curvature is not constant,
Suppose now that the curvature is not constant, then let's call

$$\begin{aligned} \mathbf{a} &= -\varepsilon_1 \varepsilon_2 \mu^2 \,, \\ \mathbf{b} &= 4\varepsilon_2 \mathbf{d} + 2\varepsilon_1 \varepsilon_2 \mu \,, \\ \mathbf{c} &= -\varepsilon_1 \varepsilon_2 - \varepsilon_2 \varepsilon_3 \mathbf{e}^2 \,, \end{aligned}$$

and $\Delta = 4ac - b^2 = -16d^2 - 16\varepsilon_1\mu d + 4\varepsilon_1\varepsilon_3\mu^2 e^2$, where *d*, *e* are real constants (constants of integration).

Suppose now that the curvature is not constant, then let's call

$$\begin{aligned} \mathbf{a} &= -\varepsilon_1 \varepsilon_2 \mu^2 \,, \\ \mathbf{b} &= 4\varepsilon_2 \mathbf{d} + 2\varepsilon_1 \varepsilon_2 \mu \,, \\ \mathbf{c} &= -\varepsilon_1 \varepsilon_2 - \varepsilon_2 \varepsilon_3 \mathbf{e}^2 \,, \end{aligned}$$

and $\Delta = 4ac - b^2 = -16d^2 - 16\varepsilon_1\mu d + 4\varepsilon_1\varepsilon_3\mu^2 e^2$, where d, e are real constants (constants of integration). Then, calling $x = \kappa - \mu$, the first integrals of the Euler-Lagrange equations reduce to

$$x_s^2 = 4x^2(cx^2 + bx + a),$$

$$\tau = ex.$$

Suppose now that the curvature is not constant, then let's call

$$\begin{aligned} \mathbf{a} &= -\varepsilon_1 \varepsilon_2 \mu^2 \,, \\ \mathbf{b} &= 4\varepsilon_2 \mathbf{d} + 2\varepsilon_1 \varepsilon_2 \mu \,, \\ \mathbf{c} &= -\varepsilon_1 \varepsilon_2 - \varepsilon_2 \varepsilon_3 \mathbf{e}^2 \,, \end{aligned}$$

and $\Delta = 4ac - b^2 = -16d^2 - 16\varepsilon_1\mu d + 4\varepsilon_1\varepsilon_3\mu^2 e^2$, where d, e are real constants (constants of integration). Then, calling $x = \kappa - \mu$, the first integrals of the Euler-Lagrange equations reduce to

$$x_s^2 = 4x^2(cx^2 + bx + a),$$

 $\tau = ex.$

Thus, the following cases are not possible:

1.
$$\Delta \ge 0$$
 and $c < 0$,
2. $a \le 0$, $2d = -\varepsilon_1 \mu$ and $e^2 = -\varepsilon_1 \varepsilon_3$.

We can integrate the first integrals of Euler-Lagrange equations, and get the curvature of the critical curves, in the other cases.

We can integrate the first integrals of Euler-Lagrange equations, and get the curvature of the critical curves, in the other cases.

1. If $\Delta \neq 0$ and $a \neq 0$

$$\kappa(s) = rac{2 a + \mu (b + \sqrt{|\Delta|} f(2 \mu s))}{-b + \sqrt{|\Delta|} f(2 \mu s)} \, ,$$

where, $f(x) = \sinh x$, if $\Delta > 0$ and a > 0; $f(x) = \cosh x$, if $\Delta < 0$ and a > 0; and $f(x) = \sin x$, if $\Delta < 0$ and a < 0.

2. If $\Delta = 0$ and a > 0

$$k(s) = \frac{\mu + (2a - b\mu) \exp 2\mu s}{1 - b \exp 2\mu s}$$

•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2. If $\Delta = 0$ and a > 0

$$k(s) = \frac{\mu + (2a - b\mu) \exp 2\mu s}{1 - b \exp 2\mu s}.$$

3. If $\Delta < 0$ and a = 0, that is, $(\mu = 0)$

$$k(s)=\frac{b}{-c+b^2s^2}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. If $\Delta = 0$ and a > 0

$$k(s) = \frac{\mu + (2a - b\mu) \exp 2\mu s}{1 - b \exp 2\mu s}.$$

3. If $\Delta < 0$ and a = 0, that is, $(\mu = 0)$

$$k(s)=rac{b}{-c+b^2s^2}$$
 .

4. If $\Delta = 0$ and a = 0, that is, $(\mu = d = 0)$

$$k(s)=\frac{1}{2\sqrt{cs}}.$$

Observe that, in all the cases, the torsion of the solutions is given by $% \left({{{\mathbf{x}}_{i}}} \right)$

$$\tau = \boldsymbol{e}(\kappa - \mu),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $e \in \mathbb{R}$ is one of the constants of integration.

Observe that, in all the cases, the torsion of the solutions is given by

$$\tau = e(\kappa - \mu),$$

where $e \in \mathbb{R}$ is one of the constants of integration.

Fundamental Theorem of Curves in \mathbb{L}^3

The curvature and torsion (together with the causal characters ε_i of the Frenet frame) determine a unique curve up to rigid motions.

Observe that, in all the cases, the torsion of the solutions is given by

$$\tau = e(\kappa - \mu),$$

where $e \in \mathbb{R}$ is one of the constants of integration.

Fundamental Theorem of Curves in \mathbb{L}^3

The curvature and torsion (together with the causal characters ε_i of the Frenet frame) determine a unique curve up to rigid motions.

 When μ = 0, our critical curves are Lancret curves, that is, curves making a constant angle with a fixed direction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observe that, in all the cases, the torsion of the solutions is given by

$$\tau = e(\kappa - \mu),$$

where $e \in \mathbb{R}$ is one of the constants of integration.

Fundamental Theorem of Curves in \mathbb{L}^3

The curvature and torsion (together with the causal characters ε_i of the Frenet frame) determine a unique curve up to rigid motions.

- When μ = 0, our critical curves are Lancret curves, that is, curves making a constant angle with a fixed direction.
- On the other hand, if $\mu \neq 0$, our critical curves are Bertrand curves.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Take $\tau=$ 0, and suppose that γ lies in a Riemannian plane, $\gamma\subset \mathbb{R}^2$,

Take $\tau = 0$, and suppose that γ lies in a Riemannian plane, $\gamma \subset \mathbb{R}^2$, then we have

Delaunay Curves ([1], [3])

Critical curves of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ in \mathbb{R}^2 are precisely the Delaunay curves, that is, the roulettes of foci of conics (lines, circles, catenaries, nodaries and undularies).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Take $\tau = 0$, and suppose that γ lies in a Riemannian plane, $\gamma \subset \mathbb{R}^2$, then we have

Delaunay Curves ([1], [3])

Critical curves of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ in \mathbb{R}^2 are precisely the Delaunay curves, that is, the roulettes of foci of conics (lines, circles, catenaries, nodaries and undularies).

If γ lies in a Lorentzian plane, $\gamma \subset \mathbb{L}^2$,

Take $\tau = 0$, and suppose that γ lies in a Riemannian plane, $\gamma \subset \mathbb{R}^2$, then we have

Delaunay Curves ([1], [3])

Critical curves of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ in \mathbb{R}^2 are precisely the Delaunay curves, that is, the roulettes of foci of conics (lines, circles, catenaries, nodaries and undularies).

If γ lies in a Lorentzian plane, $\gamma \subset \mathbb{L}^2,$ we can prove

HANO-NOMIZU CURVES ([1], [5])

The locus of the origin when a part of a spacelike quadratic curve is rolled along a spacelike line is a spacelike critical curve for $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ in \mathbb{L}^2 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. Killing Vector Fields

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- 1. Killing Vector Fields
- 2. Evolution of Critical Curves

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1. Killing Vector Fields
- 2. Evolution of Critical Curves
- 3. Geodesic Foliations of Invariant Surfaces

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.That is, if the following equations hold

 $W(\mathbf{v})(\bar{t},0)=W(\kappa)(\bar{t},0)=W(\tau)(\bar{t},0)=0\,.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.That is, if the following equations hold

 $W(\mathbf{v})(\overline{t},0) = W(\kappa)(\overline{t},0) = W(\tau)(\overline{t},0) = 0.$

Let's consider the functional $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ acting on the space $\Omega_{\rho_o \rho_1}$, then

Associated Killing Vector Field along γ ([3])

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position.That is, if the following equations hold

 $W(\mathbf{v})(\overline{t},0) = W(\kappa)(\overline{t},0) = W(\tau)(\overline{t},0) = 0.$

Let's consider the functional $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ acting on the space $\Omega_{\rho_o \rho_1}$, then

Associated Killing Vector Field along γ ([3])

The vector field $\mathcal{I} = \frac{1}{2\sqrt{\kappa-\mu}}B$ is a Killing vector field along γ , if and only if, γ verifies the Euler-Lagrange equations (γ may have a restriction on its length).

Since \mathbb{L}^3 is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$\mathcal{I} = \frac{1}{2\sqrt{\kappa - \mu}}B,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

that is, $\{\phi_t, t \in \mathbb{R}\}$.

Since \mathbb{L}^3 is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$\mathcal{I} = \frac{1}{2\sqrt{\kappa - \mu}}B,$$

that is, $\{\phi_t, t \in \mathbb{R}\}$.

2. Now, consider the surface $S_{\gamma} := \{x(s,t) := \phi_t(\gamma(s))\}.$

Since \mathbb{L}^3 is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$\mathcal{I} = \frac{1}{2\sqrt{\kappa - \mu}}B,$$

that is, $\{\phi_t, t \in \mathbb{R}\}$.

- 2. Now, consider the surface $S_{\gamma} := \{x(s,t) := \phi_t(\gamma(s))\}.$
- 3. The surface S_{γ} is a \mathcal{I} -invariant surface

Since \mathbb{L}^3 is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$\mathcal{I} = \frac{1}{2\sqrt{\kappa - \mu}}B,$$

that is, $\{\phi_t, t \in \mathbb{R}\}$.

- 2. Now, consider the surface $S_{\gamma} := \{x(s, t) := \phi_t(\gamma(s))\}.$
- 3. The surface S_{γ} is a \mathcal{I} -invariant surface whose mean curvature is

$$H=-\varepsilon_1\varepsilon_2\mu.$$

Since \mathbb{L}^3 is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$\mathcal{I} = \frac{1}{2\sqrt{\kappa - \mu}}B,$$

that is, $\{\phi_t, t \in \mathbb{R}\}$.

- 2. Now, consider the surface $S_{\gamma} := \{x(s, t) := \phi_t(\gamma(s))\}.$
- 3. The surface S_{γ} is a \mathcal{I} -invariant surface whose mean curvature is

$$H = -\varepsilon_1 \varepsilon_2 \mu.$$

4. As $\mu \in \mathbb{R}$ is fixed, S_{γ} has constant mean curvature.

Since \mathbb{L}^3 is complete,

1. Consider the one-parameter group of isometries determined by the flow of

$$\mathcal{I} = \frac{1}{2\sqrt{\kappa - \mu}}B,$$

that is, $\{\phi_t, t \in \mathbb{R}\}$.

- 2. Now, consider the surface $S_{\gamma} := \{x(s, t) := \phi_t(\gamma(s))\}.$
- 3. The surface S_{γ} is a \mathcal{I} -invariant surface whose mean curvature is

$$H = -\varepsilon_1 \varepsilon_2 \mu.$$

4. As $\mu \in \mathbb{R}$ is fixed, S_{γ} has constant mean curvature.

Foliations of Invariant Surfaces

For the converse, assume that S is a non-degenerate \mathcal{G}_{ξ} -invariant surface of \mathbb{L}^3 , i.e., for any $x \in S$ and $\Phi_t \in \mathcal{G}_{\xi}$ we have $\Phi_t(S) = S$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Foliations of Invariant Surfaces

For the converse, assume that S is a non-degenerate \mathcal{G}_{ξ} -invariant surface of \mathbb{L}^3 , i.e., for any $x \in S$ and $\Phi_t \in \mathcal{G}_{\xi}$ we have $\Phi_t(S) = S$.

GEODESIC FOLIATION BY CRITICAL CURVES ([1])

A ξ -invariant CMC surface S of \mathbb{L}^3 admits a local geodesic parametrization where the leaves provide a geodesic foliation by critical curves of the extended Blaschke's problem with $\mu = -\varepsilon_1 \varepsilon_2 H$.

Foliations of Invariant Surfaces

For the converse, assume that S is a non-degenerate \mathcal{G}_{ξ} -invariant surface of \mathbb{L}^3 , i.e., for any $x \in S$ and $\Phi_t \in \mathcal{G}_{\xi}$ we have $\Phi_t(S) = S$.

GEODESIC FOLIATION BY CRITICAL CURVES ([1])

A ξ -invariant CMC surface S of \mathbb{L}^3 admits a local geodesic parametrization where the leaves provide a geodesic foliation by critical curves of the extended Blaschke's problem with $\mu = -\varepsilon_1 \varepsilon_2 H$.

Thus, every ξ -invariant CMC surface is

A ruled surface or,
Foliations of Invariant Surfaces

For the converse, assume that S is a non-degenerate \mathcal{G}_{ξ} -invariant surface of \mathbb{L}^3 , i.e., for any $x \in S$ and $\Phi_t \in \mathcal{G}_{\xi}$ we have $\Phi_t(S) = S$.

GEODESIC FOLIATION BY CRITICAL CURVES ([1])

A ξ -invariant CMC surface S of \mathbb{L}^3 admits a local geodesic parametrization where the leaves provide a geodesic foliation by critical curves of the extended Blaschke's problem with $\mu = -\varepsilon_1 \varepsilon_2 H$.

Thus, every ξ -invariant CMC surface is

- A ruled surface or,
- It is generated by evolving a critical curve of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa + \varepsilon_1 \varepsilon_2 H} \, ds$ under the flow of the Killing vector field ξ .

ISOMETRIC DEFORMATIONS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. Deformations by Isometric Surfaces

ISOMETRIC DEFORMATIONS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Deformations by Isometric Surfaces
- 2. Orbits of Deformations

DEFORMATIONS BY ISOMETRIC SURFACES (1)

・ロト・日本・モート モー うへぐ

Suppose that the critical curve γ of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ has constant curvature κ_o

Suppose that the critical curve γ of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ has constant curvature κ_o , then we know that γ is a Frenet helix with

$$\begin{aligned} \kappa &= \kappa_o = \mu + \sqrt{\mu^2 - \varepsilon_2 \varepsilon_3 \tau_o^2} \,, \\ \tau &= \tau_o \,, \end{aligned}$$

DEFORMATIONS BY ISOMETRIC SURFACES (1)

Suppose that the critical curve γ of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$ has constant curvature κ_o , then we know that γ is a Frenet helix with

$$\begin{aligned} \kappa &= \kappa_o = \mu + \sqrt{\mu^2 - \varepsilon_2 \varepsilon_3 \tau_o^2} \,, \\ \tau &= \tau_o \,, \end{aligned}$$

and these helices can only generate congruence surfaces to the following ones (depending on the causal character of ε_i)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

If the following relations involving the constants d and e,

- 1. If $\Delta \neq 0$ and $a \neq 0$, $\Delta = \nu b^2$,
- 2. If $\Delta = 0$ and a > 0, (this does not give an isometric deformation),
- 3. If $\Delta < 0$ and a = 0, $c = \nu b^2$ and
- 4. If $\Delta = a = 0$, (as d = 0, there is no biparametric family)

there is no any constraint,

are verified for some $\nu \in \mathbb{R}$ and for each correpondent solution of the Euler-Lagrange equations

If the following relations involving the constants d and e,

- 1. If $\Delta \neq 0$ and $a \neq 0$, $\Delta = \nu b^2$,
- 2. If $\Delta = 0$ and a > 0, (this does not give an isometric deformation),
- 3. If $\Delta < 0$ and a = 0, $c = \nu b^2$ and
- 4. If $\Delta = a = 0$, (as d = 0, there is no biparametric family)

there is no any constraint,

are verified for some $\nu\in\mathbb{R}$ and for each correpondent solution of the Euler-Lagrange equations, we can prove

ISOMETRIC DEFORMATIONS ([1])

For each real constant μ , let $\{S_{\gamma}\}_{d,e}$ be the family of ξ -invariant surfaces shaped on a critical curve γ of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$.

If the following relations involving the constants d and e,

- 1. If $\Delta \neq 0$ and $a \neq 0$, $\Delta = \nu b^2$,
- 2. If $\Delta = 0$ and a > 0, (this does not give an isometric deformation),
- 3. If $\Delta < 0$ and a = 0, $c = \nu b^2$ and
- 4. If $\Delta = a = 0$, (as d = 0, there is no biparametric family)

there is no any constraint,

are verified for some $\nu\in\mathbb{R}$ and for each correpondent solution of the Euler-Lagrange equations, we can prove

ISOMETRIC DEFORMATIONS ([1])

For each real constant μ , let $\{S_{\gamma}\}_{d,e}$ be the family of ξ -invariant surfaces shaped on a critical curve γ of $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa - \mu} \, ds$. Under the relations above (except for case 2), the family $\{S_{\gamma}\}_d$ is generated by isometric surfaces with the same constant mean curvature $H = -\varepsilon_1 \varepsilon_2 \mu$.

Deformations of Riemannian CMC Surfaces

・ロト・日本・モート モー うへぐ

Let S_{γ} be a Riemannian surface of \mathbb{L}^3 ,

Deformations of Riemannian CMC Surfaces

Let S_{γ} be a Riemannian surface of \mathbb{L}^3 , then the orbits are

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

DEFORMATIONS OF RIEMANNIAN CMC SURFACES

Let S_{γ} be a Riemannian surface of \mathbb{L}^3 , then the orbits are

ROTATIONAL SPACELIKE SURFACES ([1])

Any spacelike surface of CMC can be isometrically deformed into a spacelike rotational CMC surface, except for the yellow cases.

Let S_{γ} be a Lorentzian surface of \mathbb{L}^3 with timelike profile curve γ .

・ロト・日本・モート モー うへぐ

Let S_{γ} be a Lorentzian surface of \mathbb{L}^3 with timelike profile curve γ . Then, we have the following orbits of the isometric deformations

Now, if γ is a spacelike profile curve of a Lorentzian surface S_γ of \mathbb{L}^3

・ロト・日本・モト・モート ヨー うへで

Now, if γ is a spacelike profile curve of a Lorentzian surface S_{γ} of \mathbb{L}^3 , the isometric deformations appear in the following diagrams

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

References

- 1. J. Arroyo, O. J. Garay and A. Pámpano, Invariant Surfaces of Constant Mean Curvature, In preparation, 2017.
- 2. W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativittstheorie I: Elementare Differentialgeometrie, Springer, Berlin, 1930.
- O. J. Garay and A. Pámpano, Binormal Evolution of Curves with Prescribed Velocity, WSEAS transactions on fluid mechanics 11, 2016, pp. 112-120.
- 4. O. J. Garay and A. Pámpano, Binormal Motion of Curves with Constant Torsion in 3-Spaces, Preprint, 2017.
- J. Hano and K. Nomizu, Surfaces of Revolution with Constant Mean Curvature in Lorentz-Minkowski Space, Tohoku Math. Journ., vol. 36 (1984), 427-437.
- R. López, Timelike Surfaces with Constant Mean Curvature in Lorentz 3-Space, Tohoku Mathematical Journal 52 (2000), no. 4, 515-532.
- N. Sasahara, Spacelike helicoidal surfaces with constant mean curvature in Minkowski 3-space, Tokyo J. Math., vol. 23 (2000).

The End

Acknowledgements: This research was supported by by MINECO-FEDER grant MTM2014-54804-P and Gobierno Vasco grant IT1094-16. The author has also been supported by Programa Predoctoral de Formacion de Personal Investigador No Doctor, Gobierno Vasco, 2015.