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Historical Background

Let X : Σ→ R3 be the immersion of an oriented surface Σ.

• J. Lagrange (1760): Raised the question of how to find the
surface with least area

A[Σ] :=

∫
Σ
dΣ ,

for a given fixed boundary.

• S. Germain (1811): Proposed to study other energies such as

W[Σ] :=

∫
Σ
H2 dΣ .

The Willmore energy.

• W. Blaschke and G. Thomsen (∼1920): The functional W is
conformally invariant.
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Modeling Biological Membranes

• P. B. Canham (1970): Proposed the minimization of the
Willmore energy as a possible explanation for the biconcave
shape of red blood cells.
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For an embedding X : Σ→ R3 the Helfrich energy is given by

H[Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ ,

where the energy parameters are:

• The bending rigidity: a > 0.

• The spontaneous curvature: co ∈ R.

• The saddle-splay modulus: b ∈ R.

Gauss-Bonnet Theorem

The total Gaussian curvature term only affects the boundary.
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Euler-Lagrange Equation

The Euler-Lagrange equation associated to H is

∆H + 2 (H + co) (H [H − co ]− K ) = 0 ,

a fourth order nonlinear elliptic PDE.

Solutions:

1. Constant Mean Curvature Surfaces with H ≡ −co .

2. Circular Biconcave Discoids with H2 − K = c2
o .

(Far from the axis of rotation.)

3. Surfaces satisfying (Palmer & A. P., submitted)

H + co = −ν3

z
.

(They are an extension of singular minimal surfaces.)
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Modified Conformal Gauss Map

For a real constant co we define the map Y co : Σ→ S4
1 ⊂ E5

1 by

Y co := (H + co)X + (ν, q, q),

where q := X · ν is the support function and

X :=

(
X ,

X 2 − 1

2
,
X 2 + 1

2

)
.

Theorem (Palmer & A. P., submitted)

The immersion X : Σ→ R3 is critical for the Helfrich energy H
with respect to compactly supported variations if and only if Y co is
critical for

F [Z ] :=

∫
Σ

(
‖dZ‖2 + 4coU(Z )

)
dΣ ,

where U(Z ) := Z4 − Z5.
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Special Solutions

Assume that Y co lies in the hyperplane 〈Y co , ω〉 = 0. Depending
on the causal character of ω we have:

1. Case ω := (0, 0, 0, 1, 1) is a null vector. Then, the surface has
constant mean curvature H ≡ −co .

2. Case ω := (0, 0, 0, 0, 1) is a timelike vector. Necessarily co = 0
must hold, i.e., the surface is Willmore.

3. Case ω := (0, 0, 1, 0, 0) is a spacelike vector. Then,

H + co = −ν3

z
.

(Satisfied by axially symmetric discs.)
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Axially Symmetric Discs (Palmer & A. P., submitted)

An axially symmetric disc critical for H must be:

(i) A planar disc (H ≡ −co = 0).

(ii) A spherical cap (H ≡ −co 6= 0).

(iii) A domain whose mean curvature satisfies

H + co = −ν3

z
.

• The surface must be a topological disc. Annular domains in
circular biconcave discoids are critical for H.
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Boundary Problems

Different problems depending on the nature of ∂Σ:

• The Free Boundary Problem. The boundary ∂Σ lies in a fixed
supporting surface.

• The Fixed Boundary Problem. The boundary ∂Σ is prescribed
and immovable. (Plateau’s problem).

• The Thread Problem. Only the length of the boundary ∂Σ is
prescribed.
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The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

E [Σ] :=

∫
Σ

(
a [H + co ]2 + bK

)
dΣ +

∮
∂Σ

(
ακ2 + β

)
ds ,

where α > 0 and β > 0.

Boundary Conditions

The Euler-Lagrange equations on the boundary ∂Σ are:

a (H + co) + bκn = 0 ,

J ′ · ν − a∂nH + bτ ′g = 0 ,

J ′ · n + a (H + co)2 + bK = 0 ,

where J is a vector field along ∂Σ defined by

J := 2αT ′′ +
(
3ακ2 − β

)
T .
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Ground State Equilibria

Assume H + co ≡ 0 holds on Σ.

Then, the Euler-Lagrange
equations reduce to

bκn = 0 , on ∂Σ ,

J ′ · ν + bτ ′g = 0 , on ∂Σ ,

J ′ · n − bτ2
g = 0 , on ∂Σ .

Boundary Curves (Palmer & A. P., 2021)

Let X : Σ→ R3 be an equilibrium with H + co ≡ 0. Then, each
boundary component C is a simple and closed critical curve for

F [C ] ≡ Fµ,λ[C ] :=

∫
C

(
[κ+ µ]2 + λ

)
ds ,

where µ := ±b/(2α) and λ := β/α− µ2.
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Results of Topological Discs

Equilibria (Palmer & A. P., 2021)

Let X : Σ→ R3 be a CMC H = −co disc type surface critical for
E . Then:

1. Case b = 0. The boundary is either a circle of radius
√
α/β

or a simple closed elastic curve representing a torus knot of
type G (q, 1) for q > 2.

2. Case b 6= 0. The surface is a planar disc bounded by a circle
of radius

√
α/β and co = 0.

Idea of the proof:

• Elastic curves are torus knots G (q, p) with 2p < q and the
surface is a Seifert surface.

• Nitsche’s argument involving the Hopf differential.
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• B. Palmer and A. Pámpano, Minimizing Configurations for
Elastic Surface Energies with Elastic Boundaries, Journal of
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