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Let X : ¥ — R3 be the immersion of an oriented surface ¥.

e J. Lagrange (1760): Raised the question of how to find the
surface with least area

A[Z] ::XZ Jx |

for a given fixed boundary.

e S. Germain (1811): Proposed to study other energies such as

WIZ] = /)t H?dx .

The Willmore energy.

e W. Blaschke and G. Thomsen (~1920): The functional W is
conformally invariant.
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e P. B. Canham (1970): Proposed the minimization of the
Willmore energy as a possible explanation for the biconcave
shape of red blood cells.
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The Helfrich Energy

For an embedding X : £ — R3 the Helfrich energy is given by
H[Y] = / (a [H 4 co)® + bK) dx,
pN

where the energy parameters are:
e The bending rigidity: a > 0.
e The spontaneous curvature: ¢, € R.
e The saddle-splay modulus: b € R.

Gauss-Bonnet Theorem

The total Gaussian curvature term only affects the boundary.
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The Euler-Lagrange equation associated to H is
AH+2(H+¢c)(H[H—-c]—K)=0,
a fourth order nonlinear elliptic PDE.

Solutions:

1. Constant Mean Curvature Surfaces with H = —c,,.

2. Circular Biconcave Discoids with H?> — K = 2.
(Far from the axis of rotation.)

3. Surfaces satisfying (Palmer & A. P., submitted)

H+co:—?.

(They are an extension of singular minimal surfaces.)
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For a real constant ¢, we define the map Y% : ¥ — S} C E? by
Yo :=(H+c)X+(v,9,9),

where g := X - v is the support function and

X2 -1 X2+1>

X=X
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Theorem (Palmer & A. P., submitted)

The immersion X : ¥ — R3 is critical for the Helfrich energy H
with respect to compactly supported variations if and only if Y is
critical for

FlZ] = /z (1dZ||* + 4c,U(Z)) dx,

where U(Z) := Z4 — Zs.
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Axially Symmetric Discs (Palmer & A. P., submitted)
An axially symmetric disc critical for H must be:

(1) A planar disc (H = —c, = 0).

(11) A spherical cap (H = —c, # 0).

(111) A domain whose mean curvature satisfies

v
H—i—co:—f.

e The surface must be a topological disc. Annular domains in
circular biconcave discoids are critical for H.
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The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

E[z] ::/Z<a[H+co]2+bK) dz+7gz (ar? + B) ds,

where o« > 0 and 3 > 0.
Boundary Conditions
The Euler-Lagrange equations on the boundary 9% are:
a(H+c))+br, = 0,
J/'l/—aanH—f—bTé = 0,
Jon+a(H+c)+bK = 0,

where J is a vector field along 0% defined by

J:=2aT" + (3om2 — B) T.



Ground State Equilibria

Assume H + ¢, = 0 holds on X.



Ground State Equilibria

Assume H + ¢, = 0 holds on X. Then, the Euler-Lagrange
equations reduce to

bk, = 0, on 0%,
Jv4br, = 0, on 9%,

J,-n—ng = 0, on 9% .



Ground State Equilibria

Assume H + ¢, = 0 holds on X. Then, the Euler-Lagrange
equations reduce to

bk, = 0, on 0%,
Jv4br, = 0, on 9%,
J,-n—ng = 0, on 9% .

Boundary Curves (Palmer & A. P., 2021)

Let X : ¥ — R3 be an equilibrium with H + ¢, = 0. Then, each
boundary component C is a simple and closed critical curve for

FIC] = FlCl ::/C([n+;t]2+)\) ds,

where 1 := £b/(2) and X := B/a — p?.
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e B. Palmer and A. Pdmpano, The Euler-Helfrich Functional,
submitted.

Thank You!



