

Boundary Value Problems for the Helfrich Energy

Álvaro Pámpano Llarena

4th Geometric Analysis Festivals *Texas Tech University*

October 2021

Let $X : \Sigma \to \mathbb{R}^3$ be the immersion of an oriented surface Σ .

Let $X : \Sigma \to \mathbb{R}^3$ be the immersion of an oriented surface Σ .

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma \, ,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for a given fixed boundary.

Let $X : \Sigma \to \mathbb{R}^3$ be the immersion of an oriented surface Σ .

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma,$$

for a given fixed boundary.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma$$
 .

Let $X : \Sigma \to \mathbb{R}^3$ be the immersion of an oriented surface Σ .

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma,$$

for a given fixed boundary.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Willmore energy.

Let $X : \Sigma \to \mathbb{R}^3$ be the immersion of an oriented surface Σ .

• J. Lagrange (1760): Raised the question of how to find the surface with least area

$$\mathcal{A}[\Sigma] := \int_{\Sigma} d\Sigma,$$

for a given fixed boundary.

• S. Germain (1811): Proposed to study other energies such as

$$\mathcal{W}[\Sigma] := \int_{\Sigma} H^2 \, d\Sigma \, .$$

The Willmore energy.

• W. Blaschke and G. Thomsen (\sim 1920): The functional ${\cal W}$ is conformally invariant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• P. B. Canham (1970): Proposed the minimization of the Willmore energy as a possible explanation for the biconcave shape of red blood cells.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• W. Helfrich (1973): Based on liquid cristallography, suggested the extension

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b K
ight) d\Sigma \, ,$$

to model biological membranes.

• W. Helfrich (1973): Based on liquid cristallography, suggested the extension

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o
ight]^2 + b \mathcal{K}
ight) d\Sigma \,,$$

to model biological membranes.

For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b \mathcal{K} \right) d\Sigma \,,$$

(ロ)、(型)、(E)、(E)、 E) の(の)

For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma \,,$$

where the energy parameters are:

• The bending rigidity: a > 0.

For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma \,,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where the energy parameters are:

- The bending rigidity: a > 0.
- The spontaneous curvature: $c_o \in \mathbb{R}$.

For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma \,,$$

where the energy parameters are:

- The bending rigidity: a > 0.
- The spontaneous curvature: $c_o \in \mathbb{R}$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

For an embedding $X : \Sigma \to \mathbb{R}^3$ the Helfrich energy is given by

$$\mathcal{H}[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma \,,$$

where the energy parameters are:

- The bending rigidity: a > 0.
- The spontaneous curvature: $c_o \in \mathbb{R}$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

Gauss-Bonnet Theorem

The total Gaussian curvature term only affects the boundary.

The Euler-Lagrange equation associated to \mathcal{H} is

$$\Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) = 0 \,,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

a fourth order nonlinear elliptic PDE.

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) = 0 \,,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

a fourth order nonlinear elliptic PDE.

Solutions:

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) = 0 \,,$$

a fourth order nonlinear elliptic PDE.

Solutions:

1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) = 0 \,,$$

a fourth order nonlinear elliptic PDE.

Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Circular Biconcave Discoids with $H^2 K = c_o^2$.

The Euler-Lagrange equation associated to ${\mathcal H}$ is

$$\Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) = 0 \,,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

a fourth order nonlinear elliptic PDE.

Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Circular Biconcave Discoids with $H^2 K = c_o^2$. (Far from the axis of rotation.)

The Euler-Lagrange equation associated to \mathcal{H} is

$$\Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) = 0 \,,$$

a fourth order nonlinear elliptic PDE.

Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Circular Biconcave Discoids with $H^2 K = c_o^2$. (Far from the axis of rotation.)
- 3. Surfaces satisfying (Palmer & A. P., submitted)

$$H + c_o = -\frac{\nu_3}{z}$$

The Euler-Lagrange equation associated to \mathcal{H} is

$$\Delta H + 2 \left(H + c_o \right) \left(H \left[H - c_o \right] - K \right) = 0 \,,$$

a fourth order nonlinear elliptic PDE.

Solutions:

- 1. Constant Mean Curvature Surfaces with $H \equiv -c_o$.
- 2. Circular Biconcave Discoids with $H^2 K = c_o^2$. (Far from the axis of rotation.)
- 3. Surfaces satisfying (Palmer & A. P., submitted)

$$H + c_o = -\frac{\nu_3}{z}$$

(They are an extension of singular minimal surfaces.)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For a real constant $\mathit{c_o}$ we define the map $Y^{\mathit{c_o}}:\Sigma\to\mathbb{S}^4_1\subset\mathbb{E}^5_1$ by

 $Y^{c_o} := (H + c_o) \underline{X} + (\nu, q, q),$

For a real constant $\mathit{c_o}$ we define the map $Y^{\mathit{c_o}}:\Sigma\to\mathbb{S}^4_1\subset\mathbb{E}^5_1$ by

 $Y^{c_o} := (H + c_o) \underline{X} + (\nu, q, q),$

where $q := X \cdot \nu$ is the support function and

$$\underline{X} := \left(X, \frac{X^2-1}{2}, \frac{X^2+1}{2}\right).$$

For a real constant c_o we define the map $Y^{c_o}:\Sigma o\mathbb{S}^4_1\subset\mathbb{E}^5_1$ by

 $Y^{c_o} := (H + c_o) \underline{X} + (\nu, q, q),$

where $q := X \cdot \nu$ is the support function and

$$\underline{X} := \left(X, \frac{X^2-1}{2}, \frac{X^2+1}{2}\right).$$

Theorem (Palmer & A. P., submitted)

The immersion $X : \Sigma \to \mathbb{R}^3$ is critical for the Helfrich energy \mathcal{H} with respect to compactly supported variations if and only if Y^{c_0} is critical for

$$\mathcal{F}[Z] := \int_{\Sigma} \left(\|dZ\|^2 + 4c_o U(Z) \right) d\Sigma \,,$$

where $U(Z) := Z_4 - Z_5$.

(ロ)、(型)、(E)、(E)、 E) の(の)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$.

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector.

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.

2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector.

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

- 1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.
- 2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector. Necessarily $c_o = 0$ must hold, i.e., the surface is Willmore.

Assume that Y^{c_0} lies in the hyperplane $\langle Y^{c_0}, \omega \rangle = 0$. Depending on the causal character of ω we have:

- 1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.
- 2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector. Necessarily $c_o = 0$ must hold, i.e., the surface is Willmore.

3. Case $\omega := (0, 0, 1, 0, 0)$ is a spacelike vector.

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

- 1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.
- 2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector. Necessarily $c_o = 0$ must hold, i.e., the surface is Willmore.
- 3. Case $\omega := (0, 0, 1, 0, 0)$ is a spacelike vector. Then,

$$H+c_o=-\frac{\nu_3}{z}.$$

Assume that Y^{c_o} lies in the hyperplane $\langle Y^{c_o}, \omega \rangle = 0$. Depending on the causal character of ω we have:

- 1. Case $\omega := (0, 0, 0, 1, 1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv -c_o$.
- 2. Case $\omega := (0, 0, 0, 0, 1)$ is a timelike vector. Necessarily $c_o = 0$ must hold, i.e., the surface is Willmore.
- 3. Case $\omega := (0, 0, 1, 0, 0)$ is a spacelike vector. Then,

$$H + c_o = -\frac{\nu_3}{z}$$

(Satisfied by axially symmetric discs.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axially Symmetric Discs (Palmer & A. P., submitted)

An axially symmetric disc critical for \mathcal{H} must be:

Axially Symmetric Discs (Palmer & A. P., submitted) An axially symmetric disc critical for \mathcal{H} must be: (I) A planar disc ($H \equiv -c_o = 0$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axially Symmetric Discs (Palmer & A. P., submitted)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

Axially Symmetric Discs (Palmer & A. P., submitted)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

(III) A domain whose mean curvature satisfies

$$H + c_o = -\frac{\nu_3}{z}$$

Axially Symmetric Discs (Palmer & A. P., submitted)

An axially symmetric disc critical for \mathcal{H} must be:

- (I) A planar disc $(H \equiv -c_o = 0)$.
- (II) A spherical cap $(H \equiv -c_o \neq 0)$.

(III) A domain whose mean curvature satisfies

$$H + c_o = -\frac{\nu_3}{z}$$

• The surface must be a topological disc. Annular domains in circular biconcave discoids are critical for *H*.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Different problems depending on the nature of $\partial\Sigma$:

Different problems depending on the nature of $\partial \Sigma$:

• The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable. (Plateau's problem).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable. (Plateau's problem).

• The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable. (Plateau's problem).

• The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $\alpha > 0$ and $\beta > 0$.

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

where $\alpha > 0$ and $\beta > 0$.

Boundary Conditions

The Euler-Lagrange equations on the boundary $\partial \Sigma$ are:

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

where $\alpha > 0$ and $\beta > 0$.

Boundary Conditions

The Euler-Lagrange equations on the boundary $\partial \Sigma$ are:

$$\begin{aligned} a\left(H+c_o\right)+b\kappa_n &= 0,\\ J'\cdot\nu-a\partial_nH+b\tau'_g &= 0,\\ J'\cdot n+a\left(H+c_o\right)^2+bK &= 0, \end{aligned}$$

The Euler-Helfrich energy is given by:

$$E[\Sigma] := \int_{\Sigma} \left(a \left[H + c_o \right]^2 + b K \right) d\Sigma + \oint_{\partial \Sigma} \left(\alpha \kappa^2 + \beta \right) ds \,,$$

where $\alpha > 0$ and $\beta > 0$.

Boundary Conditions

The Euler-Lagrange equations on the boundary $\partial \Sigma$ are:

$$\begin{aligned} a\left(H+c_o\right)+b\kappa_n &= 0,\\ J'\cdot\nu-a\partial_nH+b\tau_g' &= 0,\\ J'\cdot n+a\left(H+c_o\right)^2+bK &= 0, \end{aligned}$$

where J is a vector field along $\partial \Sigma$ defined by

$$J := 2\alpha T'' + (3\alpha \kappa^2 - \beta) T.$$

Ground State Equilibria

Assume $H + c_o \equiv 0$ holds on Σ .

Ground State Equilibria

Assume $H + c_o \equiv 0$ holds on Σ . Then, the Euler-Lagrange equations reduce to

$$\begin{array}{rcl} b\kappa_n &=& 0\,, & & \text{on }\partial\Sigma\,, \\ J'\cdot\nu+b\tau_g' &=& 0\,, & & \text{on }\partial\Sigma\,, \\ J'\cdot n-b\tau_g^2 &=& 0\,, & & \text{on }\partial\Sigma\,. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Ground State Equilibria

Assume $H + c_o \equiv 0$ holds on Σ . Then, the Euler-Lagrange equations reduce to

$b\kappa_n$	=	0,	on $\partial \Sigma$,
$J'\cdot \nu + b au_g'$	=	0,	$\text{ on }\partial\Sigma,$
$J' \cdot n - b\tau_g^2$	=	0,	on $\partial\Sigma$.

Boundary Curves (Palmer & A. P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be an equilibrium with $H + c_o \equiv 0$. Then, each boundary component *C* is a simple and closed critical curve for

$$F[C] \equiv F_{\mu,\lambda}[C] := \int_C \left(\left[\kappa + \mu\right]^2 + \lambda \right) ds \,,$$

where $\mu := \pm b/(2\alpha)$ and $\lambda := \beta/\alpha - \mu^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Equilibria (Palmer & A. P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for E.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Equilibria (Palmer & A. P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.

Equilibria (Palmer & A. P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Equilibria (Palmer & A. P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Idea of the proof:

Equilibria (Palmer & A. P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Idea of the proof:

• Elastic curves are torus knots G(q, p) with 2p < q and the surface is a Seifert surface.

Equilibria (Palmer & A. P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Idea of the proof:

• Elastic curves are torus knots G(q, p) with 2p < q and the surface is a Seifert surface.

• Nitsche's argument involving the Hopf differential.

Equilibria (Palmer & A. P., 2021)

Let $X : \Sigma \to \mathbb{R}^3$ be a CMC $H = -c_o$ disc type surface critical for *E*. Then:

- 1. Case b = 0. The boundary is either a circle of radius $\sqrt{\alpha/\beta}$ or a simple closed elastic curve representing a torus knot of type G(q, 1) for q > 2.
- 2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha/\beta}$ and $c_o = 0$.

Idea of the proof:

• Elastic curves are torus knots G(q, p) with 2p < q and the surface is a Seifert surface.

• Nitsche's argument involving the Hopf differential.

Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)

Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)

Minimal Discs Spanned by Elastic Curves

(Palmer & A. P., 2021)

THE END

 B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, Journal of Nonlinear Science, 31-23 (2021).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

THE END

- B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, Journal of Nonlinear Science, 31-23 (2021).
- B. Palmer and A. Pámpano, The Euler-Helfrich Functional, *submitted*.

Thank You!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <