

Boundary Value Problems for the Helfrich Energy

Álvaro Pámpano Llarena

4th Geometric Analysis Festivals

Texas Tech University

October 2021

Historical Background

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be the immersion of an oriented surface Σ.

Historical Background

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be the immersion of an oriented surface Σ.

- J. Lagrange (1760): Raised the question of how to find the surface with least area

$$
\mathcal{A}[\Sigma]:=\int_{\Sigma} d \Sigma
$$

for a given fixed boundary.

Historical Background

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be the immersion of an oriented surface Σ.

- J. Lagrange (1760): Raised the question of how to find the surface with least area

$$
\mathcal{A}[\Sigma]:=\int_{\Sigma} d \Sigma
$$

for a given fixed boundary.

- S. Germain (1811): Proposed to study other energies such as

$$
\mathcal{W}[\Sigma]:=\int_{\Sigma} H^{2} d \Sigma
$$

Historical Background

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be the immersion of an oriented surface Σ.

- J. Lagrange (1760): Raised the question of how to find the surface with least area

$$
\mathcal{A}[\Sigma]:=\int_{\Sigma} d \Sigma
$$

for a given fixed boundary.

- S. Germain (1811): Proposed to study other energies such as

$$
\mathcal{W}[\Sigma]:=\int_{\Sigma} H^{2} d \Sigma
$$

The Willmore energy.

Historical Background

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be the immersion of an oriented surface Σ.

- J. Lagrange (1760): Raised the question of how to find the surface with least area

$$
\mathcal{A}[\Sigma]:=\int_{\Sigma} d \Sigma
$$

for a given fixed boundary.

- S. Germain (1811): Proposed to study other energies such as

$$
\mathcal{W}[\Sigma]:=\int_{\Sigma} H^{2} d \Sigma
$$

The Willmore energy.

- W. Blaschke and G. Thomsen (~ 1920): The functional \mathcal{W} is conformally invariant.

Modeling Biological Membranes

Modeling Biological Membranes

- P. B. Canham (1970): Proposed the minimization of the Willmore energy as a possible explanation for the biconcave shape of red blood cells.

Modeling Biological Membranes

- W. Helfrich (1973): Based on liquid cristallography, suggested the extension

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma
$$

to model biological membranes.

Modeling Biological Membranes

- W. Helfrich (1973): Based on liquid cristallography, suggested the extension

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

to model biological membranes.

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

where the energy parameters are:

- The bending rigidity: $a>0$.

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

where the energy parameters are:

- The bending rigidity: $a>0$.
- The spontaneous curvature: $c_{o} \in \mathbb{R}$.

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

where the energy parameters are:

- The bending rigidity: $a>0$.
- The spontaneous curvature: $c_{o} \in \mathbb{R}$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

The Helfrich Energy

For an embedding $X: \Sigma \rightarrow \mathbb{R}^{3}$ the Helfrich energy is given by

$$
\mathcal{H}[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma,
$$

where the energy parameters are:

- The bending rigidity: $a>0$.
- The spontaneous curvature: $c_{o} \in \mathbb{R}$.
- The saddle-splay modulus: $b \in \mathbb{R}$.

Gauss-Bonnet Theorem

The total Gaussian curvature term only affects the boundary.

Euler-Lagrange Equation

The Euler-Lagrange equation associated to \mathcal{H} is

$$
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right)=0,
$$

a fourth order nonlinear elliptic PDE.

Euler-Lagrange Equation

The Euler-Lagrange equation associated to \mathcal{H} is

$$
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right)=0,
$$

a fourth order nonlinear elliptic PDE.

Solutions:

Euler-Lagrange Equation

The Euler-Lagrange equation associated to \mathcal{H} is

$$
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right)=0,
$$

a fourth order nonlinear elliptic PDE.

Solutions:

1. Constant Mean Curvature Surfaces with $H \equiv-c_{0}$.

Euler-Lagrange Equation

The Euler-Lagrange equation associated to \mathcal{H} is

$$
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right)=0,
$$

a fourth order nonlinear elliptic PDE.

Solutions:

1. Constant Mean Curvature Surfaces with $H \equiv-c_{0}$.
2. Circular Biconcave Discoids with $H^{2}-K=c_{o}^{2}$.

Euler-Lagrange Equation

The Euler-Lagrange equation associated to \mathcal{H} is

$$
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right)=0,
$$

a fourth order nonlinear elliptic PDE.

Solutions:

1. Constant Mean Curvature Surfaces with $H \equiv-c_{0}$.
2. Circular Biconcave Discoids with $H^{2}-K=c_{o}^{2}$. (Far from the axis of rotation.)

Euler-Lagrange Equation

The Euler-Lagrange equation associated to \mathcal{H} is

$$
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right)=0,
$$

a fourth order nonlinear elliptic PDE.

Solutions:

1. Constant Mean Curvature Surfaces with $H \equiv-c_{0}$.
2. Circular Biconcave Discoids with $H^{2}-K=c_{o}^{2}$. (Far from the axis of rotation.)
3. Surfaces satisfying (Palmer \& A. P., submitted)

$$
H+c_{o}=-\frac{\nu_{3}}{z} .
$$

Euler-Lagrange Equation

The Euler-Lagrange equation associated to \mathcal{H} is

$$
\Delta H+2\left(H+c_{o}\right)\left(H\left[H-c_{o}\right]-K\right)=0,
$$

a fourth order nonlinear elliptic PDE.

Solutions:

1. Constant Mean Curvature Surfaces with $H \equiv-c_{0}$.
2. Circular Biconcave Discoids with $H^{2}-K=c_{o}^{2}$. (Far from the axis of rotation.)
3. Surfaces satisfying (Palmer \& A. P., submitted)

$$
H+c_{o}=-\frac{\nu_{3}}{z} .
$$

(They are an extension of singular minimal surfaces.)

Modified Conformal Gauss Map

Modified Conformal Gauss Map

For a real constant c_{o} we define the map $Y^{c_{o}}: \Sigma \rightarrow \mathbb{S}_{1}^{4} \subset \mathbb{E}_{1}^{5}$ by

$$
Y^{c_{0}}:=\left(H+c_{0}\right) \underline{X}+(\nu, q, q)
$$

Modified Conformal Gauss Map

For a real constant c_{o} we define the map $Y^{c_{o}}: \Sigma \rightarrow \mathbb{S}_{1}^{4} \subset \mathbb{E}_{1}^{5}$ by

$$
Y^{c_{0}}:=\left(H+c_{0}\right) \underline{X}+(\nu, q, q),
$$

where $q:=X \cdot \nu$ is the support function and

$$
\underline{x}:=\left(x, \frac{x^{2}-1}{2}, \frac{x^{2}+1}{2}\right)
$$

Modified Conformal Gauss Map

For a real constant c_{o} we define the map $Y^{c_{o}}: \Sigma \rightarrow \mathbb{S}_{1}^{4} \subset \mathbb{E}_{1}^{5}$ by

$$
Y^{c_{0}}:=\left(H+c_{0}\right) \underline{X}+(\nu, q, q)
$$

where $q:=X \cdot \nu$ is the support function and

$$
\underline{X}:=\left(x, \frac{x^{2}-1}{2}, \frac{x^{2}+1}{2}\right)
$$

Theorem (Palmer \& A. P., submitted)
The immersion $X: \Sigma \rightarrow \mathbb{R}^{3}$ is critical for the Helfrich energy \mathcal{H} with respect to compactly supported variations if and only if $Y^{c_{o}}$ is critical for

$$
\mathcal{F}[Z]:=\int_{\Sigma}\left(\|d Z\|^{2}+4 c_{o} U(Z)\right) d \Sigma
$$

where $U(Z):=Z_{4}-Z_{5}$.

Special Solutions

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$.

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$. Depending on the causal character of ω we have:

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$. Depending on the causal character of ω we have:

1. Case $\omega:=(0,0,0,1,1)$ is a null vector.

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$. Depending on the causal character of ω we have:

1. Case $\omega:=(0,0,0,1,1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv-c_{0}$.

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$. Depending on the causal character of ω we have:

1. Case $\omega:=(0,0,0,1,1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv-c_{0}$.
2. Case $\omega:=(0,0,0,0,1)$ is a timelike vector.

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$. Depending on the causal character of ω we have:

1. Case $\omega:=(0,0,0,1,1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv-c_{0}$.
2. Case $\omega:=(0,0,0,0,1)$ is a timelike vector. Necessarily $c_{o}=0$ must hold, i.e., the surface is Willmore.

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$. Depending on the causal character of ω we have:

1. Case $\omega:=(0,0,0,1,1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv-c_{0}$.
2. Case $\omega:=(0,0,0,0,1)$ is a timelike vector. Necessarily $c_{o}=0$ must hold, i.e., the surface is Willmore.
3 . Case $\omega:=(0,0,1,0,0)$ is a spacelike vector.

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$. Depending on the causal character of ω we have:

1. Case $\omega:=(0,0,0,1,1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv-c_{0}$.
2. Case $\omega:=(0,0,0,0,1)$ is a timelike vector. Necessarily $c_{o}=0$ must hold, i.e., the surface is Willmore.
3. Case $\omega:=(0,0,1,0,0)$ is a spacelike vector. Then,

$$
H+c_{o}=-\frac{\nu_{3}}{z} .
$$

Special Solutions

Assume that $Y^{c_{o}}$ lies in the hyperplane $\left\langle Y^{c_{o}}, \omega\right\rangle=0$. Depending on the causal character of ω we have:

1. Case $\omega:=(0,0,0,1,1)$ is a null vector. Then, the surface has constant mean curvature $H \equiv-c_{0}$.
2. Case $\omega:=(0,0,0,0,1)$ is a timelike vector. Necessarily $c_{o}=0$ must hold, i.e., the surface is Willmore.
3 . Case $\omega:=(0,0,1,0,0)$ is a spacelike vector. Then,

$$
H+c_{o}=-\frac{\nu_{3}}{z} .
$$

(Satisfied by axially symmetric discs.)

Axially Symmetric Discs

Axially Symmetric Discs (Palmer \& A. P., submitted)
An axially symmetric disc critical for \mathcal{H} must be:

Axially Symmetric Discs

Axially Symmetric Discs (Palmer \& A. P., submitted)

An axially symmetric disc critical for \mathcal{H} must be:
(I) A planar disc $\left(H \equiv-c_{o}=0\right)$.

Axially Symmetric Discs

Axially Symmetric Discs (Palmer \& A. P., submitted)

An axially symmetric disc critical for \mathcal{H} must be:
(I) A planar disc $\left(H \equiv-c_{o}=0\right)$.
(iI) A spherical cap $\left(H \equiv-c_{o} \neq 0\right)$.

Axially Symmetric Discs

Axially Symmetric Discs (Palmer \& A. P., submitted)

An axially symmetric disc critical for \mathcal{H} must be:
(I) A planar disc $\left(H \equiv-c_{o}=0\right)$.
(iI) A spherical cap $\left(H \equiv-c_{0} \neq 0\right)$.
(III) A domain whose mean curvature satisfies

$$
H+c_{o}=-\frac{\nu_{3}}{z} .
$$

Axially Symmetric Discs

Axially Symmetric Discs (Palmer \& A. P., submitted)

An axially symmetric disc critical for \mathcal{H} must be:
(I) A planar disc $\left(H \equiv-c_{0}=0\right)$.
(iI) A spherical cap $\left(H \equiv-c_{0} \neq 0\right)$.
(III) A domain whose mean curvature satisfies

$$
H+c_{o}=-\frac{\nu_{3}}{z} .
$$

- The surface must be a topological disc. Annular domains in circular biconcave discoids are critical for \mathcal{H}.

Boundary Problems

Boundary Problems

Different problems depending on the nature of $\partial \Sigma$:

Boundary Problems

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.

Boundary Problems

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable. (Plateau's problem).

Boundary Problems

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable. (Plateau's problem).

- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.

Boundary Problems

Different problems depending on the nature of $\partial \Sigma$:

- The Free Boundary Problem. The boundary $\partial \Sigma$ lies in a fixed supporting surface.
- The Fixed Boundary Problem. The boundary $\partial \Sigma$ is prescribed and immovable. (Plateau's problem).

- The Thread Problem. Only the length of the boundary $\partial \Sigma$ is prescribed.

The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

$$
E[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma+\oint_{\partial \Sigma}\left(\alpha \kappa^{2}+\beta\right) d s
$$

where $\alpha>0$ and $\beta>0$.

The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

$$
E[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma+\oint_{\partial \Sigma}\left(\alpha \kappa^{2}+\beta\right) d s
$$

where $\alpha>0$ and $\beta>0$.
Boundary Conditions
The Euler-Lagrange equations on the boundary $\partial \Sigma$ are:

The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

$$
E[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma+\oint_{\partial \Sigma}\left(\alpha \kappa^{2}+\beta\right) d s
$$

where $\alpha>0$ and $\beta>0$.

Boundary Conditions

The Euler-Lagrange equations on the boundary $\partial \Sigma$ are:

$$
\begin{aligned}
a\left(H+c_{o}\right)+b \kappa_{n} & =0, \\
J^{\prime} \cdot \nu-a \partial_{n} H+b \tau_{g}^{\prime} & =0, \\
J^{\prime} \cdot n+a\left(H+c_{o}\right)^{2}+b K & =0,
\end{aligned}
$$

The Euler-Helfrich Problem

The Euler-Helfrich energy is given by:

$$
E[\Sigma]:=\int_{\Sigma}\left(a\left[H+c_{o}\right]^{2}+b K\right) d \Sigma+\oint_{\partial \Sigma}\left(\alpha \kappa^{2}+\beta\right) d s
$$

where $\alpha>0$ and $\beta>0$.

Boundary Conditions

The Euler-Lagrange equations on the boundary $\partial \Sigma$ are:

$$
\begin{array}{r}
a\left(H+c_{o}\right)+b \kappa_{n}=0, \\
J^{\prime} \cdot \nu-a \partial_{n} H+b \tau_{g}^{\prime}=0, \\
J^{\prime} \cdot n+a\left(H+c_{o}\right)^{2}+b K=0
\end{array}
$$

where J is a vector field along $\partial \Sigma$ defined by

$$
J:=2 \alpha T^{\prime \prime}+\left(3 \alpha \kappa^{2}-\beta\right) T
$$

Ground State Equilibria

Assume $H+c_{o} \equiv 0$ holds on Σ.

Ground State Equilibria

Assume $H+c_{o} \equiv 0$ holds on Σ. Then, the Euler-Lagrange equations reduce to

$$
\begin{aligned}
b \kappa_{n} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot \nu+b \tau_{g}^{\prime} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot n-b \tau_{g}^{2} & =0, & & \text { on } \partial \Sigma .
\end{aligned}
$$

Ground State Equilibria

Assume $H+c_{o} \equiv 0$ holds on Σ. Then, the Euler-Lagrange equations reduce to

$$
\begin{aligned}
b \kappa_{n} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot \nu+b \tau_{g}^{\prime} & =0, & & \text { on } \partial \Sigma, \\
J^{\prime} \cdot n-b \tau_{g}^{2} & =0, & & \text { on } \partial \Sigma .
\end{aligned}
$$

Boundary Curves (Palmer \& A. P., 2021)
Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be an equilibrium with $H+c_{o} \equiv 0$. Then, each boundary component C is a simple and closed critical curve for

$$
F[C] \equiv F_{\mu, \lambda}[C]:=\int_{C}\left([\kappa+\mu]^{2}+\lambda\right) d s
$$

where $\mu:= \pm b /(2 \alpha)$ and $\lambda:=\beta / \alpha-\mu^{2}$.

Results of Topological Discs

Results of Topological Discs

Equilibria (Palmer \& A. P., 2021)
Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{o}$ disc type surface critical for E.

Results of Topological Discs

Equilibria (Palmer \& A. P., 2021)
Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{0}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.

Results of Topological Discs

Equilibria (Palmer \& A. P., 2021)

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{o}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.
2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha / \beta}$ and $c_{0}=0$.

Results of Topological Discs

Equilibria (Palmer \& A. P., 2021)

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{o}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.
2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha / \beta}$ and $c_{o}=0$.

Idea of the proof:

Results of Topological Discs

Equilibria (Palmer \& A. P., 2021)

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{0}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.
2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha / \beta}$ and $c_{0}=0$.

Idea of the proof:

- Elastic curves are torus knots $G(q, p)$ with $2 p<q$ and the surface is a Seifert surface.

Results of Topological Discs

Equilibria (Palmer \& A. P., 2021)

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{0}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.
2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha / \beta}$ and $c_{0}=0$.

Idea of the proof:

- Elastic curves are torus knots $G(q, p)$ with $2 p<q$ and the surface is a Seifert surface.
- Nitsche's argument involving the Hopf differential.

Results of Topological Discs

Equilibria (Palmer \& A. P., 2021)

Let $X: \Sigma \rightarrow \mathbb{R}^{3}$ be a CMC $H=-c_{0}$ disc type surface critical for E. Then:

1. Case $b=0$. The boundary is either a circle of radius $\sqrt{\alpha / \beta}$ or a simple closed elastic curve representing a torus knot of type $G(q, 1)$ for $q>2$.
2. Case $b \neq 0$. The surface is a planar disc bounded by a circle of radius $\sqrt{\alpha / \beta}$ and $c_{0}=0$.

Idea of the proof:

- Elastic curves are torus knots $G(q, p)$ with $2 p<q$ and the surface is a Seifert surface.
- Nitsche's argument involving the Hopf differential.

Minimal Discs Spanned by Elastic Curves

(Palmer \& A. P., 2021)

Minimal Discs Spanned by Elastic Curves

(Palmer \& A. P., 2021)

Minimal Discs Spanned by Elastic Curves

(Palmer \& A. P., 2021)

THE END

- B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, Journal of Nonlinear Science, 31-23 (2021).

THE END

- B. Palmer and A. Pámpano, Minimizing Configurations for Elastic Surface Energies with Elastic Boundaries, Journal of Nonlinear Science, 31-23 (2021).
- B. Palmer and A. Pámpano, The Euler-Helfrich Functional, submitted.

Thank You!

