

A New Variational Characterization of Invariant CMC Surfaces

Álvaro Pámpano Llarena

Geometry Seminar California State University, Fullerton Texas Tech University

October 29, 2021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.

・ロト・日本・モート モー うへぐ

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.
- Variational Problem. CMC surfaces are critical points of the area functional for volume preserving variations, i.e.,

$$H:=\frac{\kappa_1+\kappa_2}{2}=H_o.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.
- Variational Problem. CMC surfaces are critical points of the area functional for volume preserving variations, i.e.,

$$H:=\frac{\kappa_1+\kappa_2}{2}=H_o.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.
- Variational Problem. CMC surfaces are critical points of the area functional for volume preserving variations, i.e.,

$$H:=\frac{\kappa_1+\kappa_2}{2}=H_o.$$

- Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.
- Alexandrov (1958): Compact and embedded in \mathbb{R}^3 must be a round sphere.

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.
- Variational Problem. CMC surfaces are critical points of the area functional for volume preserving variations, i.e.,

$$H:=\frac{\kappa_1+\kappa_2}{2}=H_o.$$

- Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.
- Alexandrov (1958): Compact and embedded in \mathbb{R}^3 must be a round sphere.
- Wente (1984): Found an immersed torus with CMC.

・ロト・日本・モト・モート ヨー うへで

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3.

・ロト・日本・モト・モート ヨー うへで

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0.

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

• $\rho = 0$, is the Euclidean 3-space, \mathbb{R}^3 .

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

• $\rho = 0$, is the Euclidean 3-space, \mathbb{R}^3 .

•
$$\rho > 0$$
, is the round 3-sphere, $\mathbb{S}^{3}(\rho)$.

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

- $\rho = 0$, is the Euclidean 3-space, \mathbb{R}^3 .
- $\rho > 0$, is the round 3-sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho < 0$, is the hyperbolic space, $\mathbb{H}^3(\rho)$.

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

- $\rho = 0$, is the Euclidean 3-space, \mathbb{R}^3 .
- $\rho > 0$, is the round 3-sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho < 0$, is the hyperbolic space, $\mathbb{H}^{3}(\rho)$.

Case r = 1.

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

- $\rho = 0$, is the Euclidean 3-space, \mathbb{R}^3 .
- $\rho > 0$, is the round 3-sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho < 0$, is the hyperbolic space, $\mathbb{H}^3(\rho)$.

Case r = 1. Then, $M_r^3(\rho)$ is Lorentzian and:

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

- $\rho = 0$, is the Euclidean 3-space, \mathbb{R}^3 .
- $\rho > 0$, is the round 3-sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho < 0$, is the hyperbolic space, $\mathbb{H}^3(\rho)$.

Case r = 1. Then, $M_r^3(\rho)$ is Lorentzian and:

• $\rho = 0$, is the Lorentz-Minkowski 3-space, \mathbb{L}^3 .

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

- $\rho = 0$, is the Euclidean 3-space, \mathbb{R}^3 .
- $\rho > 0$, is the round 3-sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho < 0$, is the hyperbolic space, $\mathbb{H}^3(\rho)$.

Case r = 1. Then, $M_r^3(\rho)$ is Lorentzian and:

- $\rho = 0$, is the Lorentz-Minkowski 3-space, \mathbb{L}^3 .
- $\rho > 0$, is the de Sitter 3-space, $\mathbb{S}_1^3(\rho)$.

Let $M_r^3(\rho)$ be a semi-Riemannian space form of dimension 3. Depending on the index r we have: Case r = 0. Then, $M_r^3(\rho)$ is Riemannian and:

- $\rho = 0$, is the Euclidean 3-space, \mathbb{R}^3 .
- $\rho > 0$, is the round 3-sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho < 0$, is the hyperbolic space, $\mathbb{H}^3(\rho)$.

Case r = 1. Then, $M_r^3(\rho)$ is Lorentzian and:

- $\rho = 0$, is the Lorentz-Minkowski 3-space, \mathbb{L}^3 .
- $\rho > 0$, is the de Sitter 3-space, $\mathbb{S}_1^3(\rho)$.
- $\rho < 0$, is the anti-de Sitter 3-space, $\mathbb{H}_1^3(\rho)$.

・ロト・日本・モト・モート ヨー うへで

Let $S \subset M_r^3(\rho)$ be an immersed surface which inherits a semi-Riemannian structure,

Let $S \subset M_r^3(\rho)$ be an immersed surface which inherits a semi-Riemannian structure, and denote by ξ a non-null Killing field.

Let $S \subset M_r^3(\rho)$ be an immersed surface which inherits a semi-Riemannian structure, and denote by ξ a non-null Killing field.

Definition

We say that S is ξ -invariant if it stays invariant under the action of the one-parameter group of isometries associated to ξ .

Let $S \subset M_r^3(\rho)$ be an immersed surface which inherits a semi-Riemannian structure, and denote by ξ a non-null Killing field.

Definition

We say that S is ξ -invariant if it stays invariant under the action of the one-parameter group of isometries associated to ξ .

• All the information is locally encoded on a profile curve of S, which we denote by γ .

Let $S \subset M_r^3(\rho)$ be an immersed surface which inherits a semi-Riemannian structure, and denote by ξ a non-null Killing field.

Definition

We say that S is ξ -invariant if it stays invariant under the action of the one-parameter group of isometries associated to ξ .

- All the information is locally encoded on a profile curve of S, which we denote by γ .
- Note that γ is the curve everywhere orthogonal to ξ. (It is not necessarily planar, i.e., it may not be contained in a totally geodesic surface of M³_r(ρ).)

・ロト・日本・モト・モート ヨー うへで

Let $\gamma \subset M_r^3(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

Let $\gamma \subset M_r^3(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

• Denote by $\{T, N, B\}$ the Frenet frame along $\gamma(s)$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\gamma \subset M_r^3(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by $\{T, N, B\}$ the Frenet frame along $\gamma(s)$,
- And, by ε_i their corresponding causal characters.

Let $\gamma \subset M_r^3(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by {T, N, B} the Frenet frame along γ(s),
- And, by ε_i their corresponding causal characters.
- Then, the Frenet equations,

$$\begin{array}{lll} T'(s) &=& \varepsilon_2 \kappa(s) N(s) \,, \\ N'(s) &=& -\varepsilon_1 \kappa(s) T(s) + \varepsilon_3 \tau(s) B(s) \,, \\ B'(s) &=& -\varepsilon_2 \tau(s) N(s) \,, \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\gamma \subset M_r^3(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by {T, N, B} the Frenet frame along γ(s),
- And, by ε_i their corresponding causal characters.
- Then, the Frenet equations,

$$\begin{array}{lll} T'(s) &=& \varepsilon_2 \kappa(s) N(s) \,, \\ N'(s) &=& -\varepsilon_1 \kappa(s) T(s) + \varepsilon_3 \tau(s) B(s) \,, \\ B'(s) &=& -\varepsilon_2 \tau(s) N(s) \,, \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

define the curvature $\kappa(s)$ and torsion $\tau(s)$ of $\gamma(s)$.

Let $\gamma \subset M_r^3(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by {T, N, B} the Frenet frame along γ(s),
- And, by ε_i their corresponding causal characters.
- Then, the Frenet equations,

$$\begin{array}{lll} T'(s) &=& \varepsilon_2 \kappa(s) N(s) \,, \\ N'(s) &=& -\varepsilon_1 \kappa(s) T(s) + \varepsilon_3 \tau(s) B(s) \,, \\ B'(s) &=& -\varepsilon_2 \tau(s) N(s) \,, \end{array}$$

define the curvature $\kappa(s)$ and torsion $\tau(s)$ of $\gamma(s)$.

• From the Fundamental Theorem for Curves, this is all what we need.

Variational Characterization of Profile Curves

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Variational Characterization of Profile Curves

Theorem (Arroyo, Garay & A. P., 2018)

A ξ -invariant surface $S \subset M_r^3(\rho)$ with CMC H

Theorem (Arroyo, Garay & A. P., 2018)

A ξ -invariant surface $S \subset M_r^3(\rho)$ with CMC H is, locally, either a ruled surface or it is spanned by a critical curve for

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

where $|\mu| = |H|$.

Theorem (Arroyo, Garay & A. P., 2018)

A ξ -invariant surface $S \subset M_r^3(\rho)$ with CMC H is, locally, either a ruled surface or it is spanned by a critical curve for

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

where $|\mu| = |H|$.

 We call this energy the extended Blaschke's energy, since in 1930 Blaschke studied the case μ = 0 in ℝ³.

Sketch of the Proof

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1. We consider Fermi geodesic coordinates, such that $x(s, t) = \phi_t(\gamma(s))$, locally.

Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that $x(s,t) = \phi_t(\gamma(s))$, locally. The metric in this case is a warped product metric

$$g = \varepsilon_1 \, ds^2 + \varepsilon_3 \, G^2(s) \, dt^2 \, ,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $G^2(s) = \widetilde{\varepsilon} \langle \xi, \xi \rangle$.
1. We consider Fermi geodesic coordinates, such that $x(s,t) = \phi_t(\gamma(s))$, locally. The metric in this case is a warped product metric

$$g = \varepsilon_1 \, ds^2 + \varepsilon_3 \, G^2(s) \, dt^2 \, ,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $G^2(s) = \widetilde{\varepsilon} \langle \xi, \xi \rangle$.

2. Gauss-Codazzi equations must be satisfied.

1. We consider Fermi geodesic coordinates, such that $x(s,t) = \phi_t(\gamma(s))$, locally. The metric in this case is a warped product metric

$$g = \varepsilon_1 \, ds^2 + \varepsilon_3 \, G^2(s) \, dt^2 \, ,$$

where $G^2(s) = \widetilde{\varepsilon} \langle \xi, \xi \rangle$.

2. Gauss-Codazzi equations must be satisfied. We check that this implies, precisely, that γ is critical for an energy depending arbitrarily on κ , i.e.

$$\int_{\gamma} P(\kappa) \, ds$$

where $\dot{P} = G$

1. We consider Fermi geodesic coordinates, such that $x(s,t) = \phi_t(\gamma(s))$, locally. The metric in this case is a warped product metric

$$g = \varepsilon_1 \, ds^2 + \varepsilon_3 \, G^2(s) \, dt^2 \, ,$$

where $G^2(s) = \widetilde{\varepsilon} \langle \xi, \xi \rangle$.

2. Gauss-Codazzi equations must be satisfied. We check that this implies, precisely, that γ is critical for an energy depending arbitrarily on κ , i.e.

$$\int_{\gamma} P(\kappa) \, ds \, ,$$

where $\dot{P} = G$ (after applying the Inverse Function Theorem).

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

1. We consider Fermi geodesic coordinates, such that $x(s,t) = \phi_t(\gamma(s))$, locally. The metric in this case is a warped product metric

$$g = \varepsilon_1 \, ds^2 + \varepsilon_3 \, G^2(s) \, dt^2 \, ,$$

where $G^2(s) = \widetilde{\varepsilon} \langle \xi, \xi \rangle$.

2. Gauss-Codazzi equations must be satisfied. We check that this implies, precisely, that γ is critical for an energy depending arbitrarily on κ , i.e.

$$\int_{\gamma} P(\kappa) \, ds \, ,$$

where $\dot{P} = G$ (after applying the Inverse Function Theorem). 3. Finally, we combine this with H constant

1. We consider Fermi geodesic coordinates, such that $x(s,t) = \phi_t(\gamma(s))$, locally. The metric in this case is a warped product metric

$$g = \varepsilon_1 \, ds^2 + \varepsilon_3 \, G^2(s) \, dt^2 \, ,$$

where $G^2(s) = \widetilde{\varepsilon} \langle \xi, \xi \rangle$.

2. Gauss-Codazzi equations must be satisfied. We check that this implies, precisely, that γ is critical for an energy depending arbitrarily on κ , i.e.

$$\int_{\gamma} P(\kappa) \, ds \, ,$$

where P = G (after applying the Inverse Function Theorem).
3. Finally, we combine this with H constant to obtain an ODE in P(κ) which can be explicitly solved.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 Linear Weingarten Surfaces (aH + bK = c) (A. P., 2020)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Linear Weingarten Surfaces (aH + bK = c) (A. P., 2020)
- Linear Weingarten Surfaces (aκ₁ + bκ₂ = c) (López & A. P., 2020)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Linear Weingarten Surfaces (aH + bK = c) (A. P., 2020)
- Linear Weingarten Surfaces $(a\kappa_1 + b\kappa_2 = c)$ (López & A. P., 2020)
- Constant Skew Curvature Surfaces (López & A. P., 2020)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Linear Weingarten Surfaces (aH + bK = c) (A. P., 2020)
- Linear Weingarten Surfaces $(a\kappa_1 + b\kappa_2 = c)$ (López & A. P., 2020)
- Constant Skew Curvature Surfaces (López & A. P., 2020)
- Constant Astigmatism Surfaces (López & A. P., 2020)

- Linear Weingarten Surfaces (aH + bK = c) (A. P., 2020)
- Linear Weingarten Surfaces $(a\kappa_1 + b\kappa_2 = c)$ (López & A. P., 2020)
- Constant Skew Curvature Surfaces (López & A. P., 2020)
- Constant Astigmatism Surfaces (López & A. P., 2020)
- Biconservative Surfaces

(Montaldo & A. P., to appear)

Consider the extended Blaschke's curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_r^3(\rho)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consider the extended Blaschke's curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_r^3(\rho)$.

• The associated Euler-Lagrange equations can be integrated explicitly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consider the extended Blaschke's curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_r^3(\rho)$.

• The associated Euler-Lagrange equations can be integrated explicitly.

• From one of them we obtain that $\tau = e(\kappa - \mu)$.

Consider the extended Blaschke's curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_r^3(\rho)$.

• The associated Euler-Lagrange equations can be integrated explicitly.

- From one of them we obtain that $\tau = e(\kappa \mu)$.
- The other one reduces to a second order ODE in κ .

Consider the extended Blaschke's curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_r^3(\rho)$.

- The associated Euler-Lagrange equations can be integrated explicitly.
- From one of them we obtain that $\tau = e(\kappa \mu)$.
- The other one reduces to a second order ODE in κ .
- For the case $\mu = 0$ in \mathbb{R}^3 we obtain Lancret curves and recover "catenaries", as obtained by Blaschke.

Consider the extended Blaschke's curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_r^3(\rho)$.

- The associated Euler-Lagrange equations can be integrated explicitly.
- From one of them we obtain that $\tau = e(\kappa \mu)$.
- The other one reduces to a second order ODE in κ .
- For the case $\mu = 0$ in \mathbb{R}^3 we obtain Lancret curves and recover "catenaries", as obtained by Blaschke.
- In \mathbb{R}^2 , e = 0 and critical curves are roulettes of conic foci.

(ロ)、(型)、(E)、(E)、 E) の(の)

Let $\gamma \subset M_r^3(\rho)$ be a critical curve for Θ_{μ} .

Let $\gamma \subset M_r^3(\rho)$ be a critical curve for $\mathbf{\Theta}_{\mu}$.

1. There exists a Killing vector field along γ in the direction of the binormal: (Langer & Singer, 1984)

$$\mathcal{I} = rac{1}{2\sqrt{\kappa-\mu}}\,B\,.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\gamma \subset M_r^3(\rho)$ be a critical curve for Θ_{μ} .

1. There exists a Killing vector field along γ in the direction of the binormal: (Langer & Singer, 1984)

$$\mathcal{I} = rac{1}{2\sqrt{\kappa-\mu}}\,B\,.$$

2. This vector field can uniquely be extended to a Killing vector field on $M_r^3(\rho)$.

Let $\gamma \subset M_r^3(\rho)$ be a critical curve for Θ_{μ} .

1. There exists a Killing vector field along γ in the direction of the binormal: (Langer & Singer, 1984)

$$\mathcal{I} = rac{1}{2\sqrt{\kappa-\mu}}\,B\,.$$

- 2. This vector field can uniquely be extended to a Killing vector field on $M_r^3(\rho)$.
- Since M³_r(ρ) is complete, the one-parameter group of isometries determined by *I* is given by {ψ_t, t ∈ ℝ}.

Let $\gamma \subset M_r^3(\rho)$ be a critical curve for Θ_{μ} .

1. There exists a Killing vector field along γ in the direction of the binormal: (Langer & Singer, 1984)

$$\mathcal{I} = rac{1}{2\sqrt{\kappa-\mu}}\,B\,.$$

- 2. This vector field can uniquely be extended to a Killing vector field on $M_r^3(\rho)$.
- Since M³_r(ρ) is complete, the one-parameter group of isometries determined by *I* is given by {ψ_t, t ∈ ℝ}.
- 4. We construct the binormal evolution surface (Garay & A. P., 2016)

$$S_{\gamma} := \{x(s,t) := \psi_t(\gamma(s))\}.$$

By construction S_{γ} is \mathcal{I} -invariant.

By construction S_{γ} is \mathcal{I} -invariant. Moreover, since γ is critical for

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

Theorem (Arroyo, Garay & A. P., 2018)

The binormal evolution surface S_{γ} has constant mean curvature $H = -\varepsilon_1 \varepsilon_2 \mu$.

By construction S_{γ} is \mathcal{I} -invariant. Moreover, since γ is critical for

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

Theorem (Arroyo, Garay & A. P., 2018)

The binormal evolution surface S_{γ} has constant mean curvature $H = -\varepsilon_1 \varepsilon_2 \mu$.

• In conclusion, invariant CMC surfaces of $M_r^3(\rho)$

By construction S_{γ} is \mathcal{I} -invariant. Moreover, since γ is critical for

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

Theorem (Arroyo, Garay & A. P., 2018)

The binormal evolution surface S_{γ} has constant mean curvature $H = -\varepsilon_1 \varepsilon_2 \mu$.

• In conclusion, invariant CMC surfaces of $M_r^3(\rho)$ can be understood as the binormal evolution surfaces

By construction S_{γ} is \mathcal{I} -invariant. Moreover, since γ is critical for

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

Theorem (Arroyo, Garay & A. P., 2018)

The binormal evolution surface S_{γ} has constant mean curvature $H = -\varepsilon_1 \varepsilon_2 \mu$.

 In conclusion, invariant CMC surfaces of M³_r(ρ) can be understood as the binormal evolution surfaces with initial filament a critical curve for Θ_μ

By construction S_{γ} is \mathcal{I} -invariant. Moreover, since γ is critical for

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} \sqrt{\kappa - \mu} \, ds \, ,$$

Theorem (Arroyo, Garay & A. P., 2018) The binormal evolution surface S_{γ} has constant mean curvature $H = -\varepsilon_1 \varepsilon_2 \mu$.

 In conclusion, invariant CMC surfaces of M³_r(ρ) can be understood as the binormal evolution surfaces with initial filament a critical curve for Θ_μ and velocity

$$\frac{1}{2\sqrt{\kappa-\mu}}$$

Binormal Evolution Surfaces in $\mathbb{S}^{3}(\rho)$

(Arroyo, Garay & A. P., 2019)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

・ロト・日本・モト・モート ヨー うへで

We consider now $M_r^3(\rho) = \mathbb{S}^3(\rho)$.

We consider now $M_r^3(\rho) = \mathbb{S}^3(\rho)$.

Proposition (Arroyo, Garay & A. P., 2018)

A ξ -invariant CMC surface of $\mathbb{S}^3(\rho)$ is rotational if and only if the critical curve for Θ_{μ} is planar.

We consider now $M_r^3(\rho) = \mathbb{S}^3(\rho)$.

Proposition (Arroyo, Garay & A. P., 2018)

A ξ -invariant CMC surface of $\mathbb{S}^3(\rho)$ is rotational if and only if the critical curve for Θ_{μ} is planar.

• A planar curve has $\tau = 0$ and it lies in $\mathbb{S}^2(\rho)$.

We consider now $M_r^3(\rho) = \mathbb{S}^3(\rho)$.

Proposition (Arroyo, Garay & A. P., 2018)

A ξ -invariant CMC surface of $\mathbb{S}^3(\rho)$ is rotational if and only if the critical curve for Θ_{μ} is planar.

- A planar curve has $\tau = 0$ and it lies in $\mathbb{S}^2(\rho)$.
- The curvature of a planar critical curve for ${f \Theta}_{\mu}$ in $\mathbb{S}^2(
 ho)$ is:

$$\kappa_d(s) = \frac{\rho + \mu^2}{2d + \mu - \sqrt{4d^2 + 4\mu d - \rho}\sin(2\sqrt{\rho + \mu^2}s)} + \mu,$$

for $d \ge (-\mu + \sqrt{\mu^2 + \rho})/2$.

Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC H in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC *H* in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1. The equator $(\kappa(s) = H = 0)$.
Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC *H* in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

- 1. The equator $(\kappa(s) = H = 0)$.
- 2. A totally umbilical sphere ($\kappa(s) = |H| \neq 0$).

Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC H in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

- 1. The equator $(\kappa(s) = H = 0)$.
- 2. A totally umbilical sphere ($\kappa(s) = |H| \neq 0$).
- 3. A Hopf torus $(\kappa(s) = -|H| + \sqrt{H^2 + \rho})$

$$\mathbb{S}^1\left(\sqrt{\rho+\kappa^2}\right)\times\mathbb{S}^1\left(\frac{\sqrt{\rho}}{\kappa}\sqrt{\rho+\kappa^2}\right)$$

Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC *H* in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

- 1. The equator $(\kappa(s) = H = 0)$.
- 2. A totally umbilical sphere ($\kappa(s) = |H| \neq 0$).
- 3. A Hopf torus $(\kappa(s) = -|H| + \sqrt{H^2 + \rho})$

$$\mathbb{S}^1\left(\sqrt{\rho+\kappa^2}\right)\times\mathbb{S}^1\left(\frac{\sqrt{\rho}}{\kappa}\sqrt{\rho+\kappa^2}\right)$$

4. A binormal evolution surface $(\kappa(s) = \kappa_d(s) \text{ and } |\mu| = |H|)$.

Closed Critical Curves in $\mathbb{S}^2(\rho)$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Closed Critical Curves in $\mathbb{S}^2(\rho)$

Theorem (Arroyo, Garay & A. P., 2019)

There exist non-trivial closed critical curves in $\mathbb{S}^2(\rho)$, for any value of μ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Closed Critical Curves in $\mathbb{S}^2(\rho)$

Theorem (Arroyo, Garay & A. P., 2019)

There exist non-trivial closed critical curves in $\mathbb{S}^2(\rho)$, for any value of μ .

(Arroyo, Garay & A. P., 2019)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Closed and Simple Critical Curves in $\mathbb{S}^2(\rho)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Closed and Simple Critical Curves in $\mathbb{S}^2(\rho)$

Theorem (Arroyo, Garay & A. P., 2019)

If γ is a simple closed critical curve in $\mathbb{S}^2(\rho)$, then $\mu \neq -\sqrt{\rho/3}$ is negative.

Closed and Simple Critical Curves in $\mathbb{S}^2(\rho)$

Theorem (Arroyo, Garay & A. P., 2019)

If γ is a simple closed critical curve in $\mathbb{S}^2(\rho)$, then $\mu \neq -\sqrt{\rho/3}$ is negative.

(Arroyo, Garay & A. P., 2019)

(Arroyo, Garay & A. P., 2019)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(Arroyo, Garay & A. P., 2019)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Coincides with previous results of Perdomo and Ripoll.

(Arroyo, Garay & A. P., 2019)

- Coincides with previous results of Perdomo and Ripoll.
- Verify the Lawson's conjecture (proved by Brendle in 2013).

(Arroyo, Garay & A. P., 2019)

- Coincides with previous results of Perdomo and Ripoll.
- Verify the Lawson's conjecture (proved by Brendle in 2013).
- After Pinkall-Sterling's conjecture (proved by Andrews-Li in 2015), these are all embedded CMC tori.

THE END

- J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Anal. Appl. 462-2 (2018), 1644-1668.
- J. Arroyo, O. J. Garay and A. Pámpano, Delaunay Surfaces in S³(ρ), Filomat **33-4** (2019), 1191-1200.

THE END

- J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Anal. Appl. 462-2 (2018), 1644-1668.
- J. Arroyo, O. J. Garay and A. Pámpano, Delaunay Surfaces in S³(ρ), *Filomat* **33-4** (2019), 1191-1200.

Thank You!