A New Variational
 Characterization of Invariant CMC Surfaces

Álvaro Pámpano Llarena

Geometry Seminar
California State University, Fullerton
Texas Tech University

October 29, 2021

Historical Background

Historical Background

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.

Historical Background

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.

Historical Background

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.
- Variational Problem. CMC surfaces are critical points of the area functional for volume preserving variations, i.e.,

$$
H:=\frac{\kappa_{1}+\kappa_{2}}{2}=H_{o} .
$$

Historical Background

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.
- Variational Problem. CMC surfaces are critical points of the area functional for volume preserving variations, i.e.,

$$
H:=\frac{\kappa_{1}+\kappa_{2}}{2}=H_{0} .
$$

- Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.

Historical Background

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.
- Variational Problem. CMC surfaces are critical points of the area functional for volume preserving variations, i.e.,

$$
H:=\frac{\kappa_{1}+\kappa_{2}}{2}=H_{0} .
$$

- Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.
- Alexandrov (1958): Compact and embedded in \mathbb{R}^{3} must be a round sphere.

Historical Background

- Lagrange (1762): Raised the question of how to find the surface with least area for a given fixed boundary.
- Meusnier (1776): Characterized them as zero mean curvature surfaces.
- Variational Problem. CMC surfaces are critical points of the area functional for volume preserving variations, i.e.,

$$
H:=\frac{\kappa_{1}+\kappa_{2}}{2}=H_{0} .
$$

- Delaunay (1841): CMC surfaces of revolution are those generated by rotating the roulettes of conic foci.
- Alexandrov (1958): Compact and embedded in \mathbb{R}^{3} must be a round sphere.
- Wente (1984): Found an immersed torus with CMC.

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$.

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

- $\rho=0$, is the Euclidean 3-space, \mathbb{R}^{3}.

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

- $\rho=0$, is the Euclidean 3-space, \mathbb{R}^{3}.
- $\rho>0$, is the round 3 -sphere, $\mathbb{S}^{3}(\rho)$.

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

- $\rho=0$, is the Euclidean 3-space, \mathbb{R}^{3}.
- $\rho>0$, is the round 3 -sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho<0$, is the hyperbolic space, $\mathbb{H}^{3}(\rho)$.

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

- $\rho=0$, is the Euclidean 3-space, \mathbb{R}^{3}.
- $\rho>0$, is the round 3 -sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho<0$, is the hyperbolic space, $\mathbb{H}^{3}(\rho)$.

Case $r=1$.

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

- $\rho=0$, is the Euclidean 3-space, \mathbb{R}^{3}.
- $\rho>0$, is the round 3 -sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho<0$, is the hyperbolic space, $\mathbb{H}^{3}(\rho)$.

Case $r=1$. Then, $M_{r}^{3}(\rho)$ is Lorentzian and:

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

- $\rho=0$, is the Euclidean 3-space, \mathbb{R}^{3}.
- $\rho>0$, is the round 3 -sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho<0$, is the hyperbolic space, $\mathbb{H}^{3}(\rho)$.

Case $r=1$. Then, $M_{r}^{3}(\rho)$ is Lorentzian and:

- $\rho=0$, is the Lorentz-Minkowski 3-space, \mathbb{L}^{3}.

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

- $\rho=0$, is the Euclidean 3-space, \mathbb{R}^{3}.
- $\rho>0$, is the round 3 -sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho<0$, is the hyperbolic space, $\mathbb{H}^{3}(\rho)$.

Case $r=1$. Then, $M_{r}^{3}(\rho)$ is Lorentzian and:

- $\rho=0$, is the Lorentz-Minkowski 3-space, \mathbb{L}^{3}.
- $\rho>0$, is the de Sitter 3 -space, $\mathbb{S}_{1}^{3}(\rho)$.

Ambient Spaces

Let $M_{r}^{3}(\rho)$ be a semi-Riemannian space form of dimension 3 .
Depending on the index r we have:
Case $r=0$. Then, $M_{r}^{3}(\rho)$ is Riemannian and:

- $\rho=0$, is the Euclidean 3-space, \mathbb{R}^{3}.
- $\rho>0$, is the round 3 -sphere, $\mathbb{S}^{3}(\rho)$.
- $\rho<0$, is the hyperbolic space, $\mathbb{H}^{3}(\rho)$.

Case $r=1$. Then, $M_{r}^{3}(\rho)$ is Lorentzian and:

- $\rho=0$, is the Lorentz-Minkowski 3 -space, \mathbb{L}^{3}.
- $\rho>0$, is the de Sitter 3 -space, $\mathbb{S}_{1}^{3}(\rho)$.
- $\rho<0$, is the anti-de Sitter 3 -space, $\mathbb{H}_{1}^{3}(\rho)$.

Invariant Surfaces of $M_{r}^{3}(\rho)$

Let $S \subset M_{r}^{3}(\rho)$ be an immersed surface which inherits a semi-Riemannian structure,

Invariant Surfaces of $M_{r}^{3}(\rho)$

Let $S \subset M_{r}^{3}(\rho)$ be an immersed surface which inherits a semi-Riemannian structure, and denote by ξ a non-null Killing field.

Invariant Surfaces of $M_{r}^{3}(\rho)$

Let $S \subset M_{r}^{3}(\rho)$ be an immersed surface which inherits a semi-Riemannian structure, and denote by ξ a non-null Killing field.

Definition

We say that S is ξ-invariant if it stays invariant under the action of the one-parameter group of isometries associated to ξ.

Invariant Surfaces of $M_{r}^{3}(\rho)$

Let $S \subset M_{r}^{3}(\rho)$ be an immersed surface which inherits a semi-Riemannian structure, and denote by ξ a non-null Killing field.

Definition

We say that S is ξ-invariant if it stays invariant under the action of the one-parameter group of isometries associated to ξ.

- All the information is locally encoded on a profile curve of S, which we denote by γ.

Invariant Surfaces of $M_{r}^{3}(\rho)$

Let $S \subset M_{r}^{3}(\rho)$ be an immersed surface which inherits a semi-Riemannian structure, and denote by ξ a non-null Killing field.

Definition

We say that S is ξ-invariant if it stays invariant under the action of the one-parameter group of isometries associated to ξ.

- All the information is locally encoded on a profile curve of S, which we denote by γ.
- Note that γ is the curve everywhere orthogonal to ξ. (It is not necessarily planar, i.e., it may not be contained in a totally geodesic surface of $M_{r}^{3}(\rho)$.)

Curves in $M_{r}^{3}(\rho)$

Let $\gamma \subset M_{r}^{3}(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

Curves in $M_{r}^{3}(\rho)$

Let $\gamma \subset M_{r}^{3}(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by $\{T, N, B\}$ the Frenet frame along $\gamma(s)$,

Curves in $M_{r}^{3}(\rho)$

Let $\gamma \subset M_{r}^{3}(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by $\{T, N, B\}$ the Frenet frame along $\gamma(s)$,
- And, by ε_{i} their corresponding causal characters.

Curves in $M_{r}^{3}(\rho)$

Let $\gamma \subset M_{r}^{3}(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by $\{T, N, B\}$ the Frenet frame along $\gamma(s)$,
- And, by ε_{i} their corresponding causal characters.
- Then, the Frenet equations,

$$
\begin{aligned}
T^{\prime}(s) & =\varepsilon_{2} \kappa(s) N(s) \\
N^{\prime}(s) & =-\varepsilon_{1} \kappa(s) T(s)+\varepsilon_{3} \tau(s) B(s) \\
B^{\prime}(s) & =-\varepsilon_{2} \tau(s) N(s)
\end{aligned}
$$

Curves in $M_{r}^{3}(\rho)$

Let $\gamma \subset M_{r}^{3}(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by $\{T, N, B\}$ the Frenet frame along $\gamma(s)$,
- And, by ε_{i} their corresponding causal characters.
- Then, the Frenet equations,

$$
\begin{aligned}
T^{\prime}(s) & =\varepsilon_{2} \kappa(s) N(s) \\
N^{\prime}(s) & =-\varepsilon_{1} \kappa(s) T(s)+\varepsilon_{3} \tau(s) B(s) \\
B^{\prime}(s) & =-\varepsilon_{2} \tau(s) N(s)
\end{aligned}
$$

define the curvature $\kappa(s)$ and torsion $\tau(s)$ of $\gamma(s)$.

Curves in $M_{r}^{3}(\rho)$

Let $\gamma \subset M_{r}^{3}(\rho)$ be a non-null smooth immersed curve, with non-null acceleration.

- Denote by $\{T, N, B\}$ the Frenet frame along $\gamma(s)$,
- And, by ε_{i} their corresponding causal characters.
- Then, the Frenet equations,

$$
\begin{aligned}
T^{\prime}(s) & =\varepsilon_{2} \kappa(s) N(s) \\
N^{\prime}(s) & =-\varepsilon_{1} \kappa(s) T(s)+\varepsilon_{3} \tau(s) B(s) \\
B^{\prime}(s) & =-\varepsilon_{2} \tau(s) N(s)
\end{aligned}
$$

define the curvature $\kappa(s)$ and torsion $\tau(s)$ of $\gamma(s)$.

- From the Fundamental Theorem for Curves, this is all what we need.

Variational Characterization of Profile Curves

Variational Characterization of Profile Curves

Theorem (Arroyo, Garay \& A. P., 2018)
A ξ-invariant surface $S \subset M_{r}^{3}(\rho)$ with CMC H

Variational Characterization of Profile Curves

Theorem (Arroyo, Garay \& A. P., 2018)
A ξ-invariant surface $S \subset M_{r}^{3}(\rho)$ with CMC H is, locally, either a ruled surface or it is spanned by a critical curve for

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

where $|\mu|=|H|$.

Variational Characterization of Profile Curves

Theorem (Arroyo, Garay \& A. P., 2018)
A ξ-invariant surface $S \subset M_{r}^{3}(\rho)$ with CMC H is, locally, either a ruled surface or it is spanned by a critical curve for

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

where $|\mu|=|H|$.

- We call this energy the extended Blaschke's energy, since in 1930 Blaschke studied the case $\mu=0$ in \mathbb{R}^{3}.

Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that $x(s, t)=\phi_{t}(\gamma(s))$, locally.

Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that $x(s, t)=\phi_{t}(\gamma(s))$, locally. The metric in this case is a warped product metric

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} G^{2}(s) d t^{2}
$$

where $G^{2}(s)=\widetilde{\varepsilon}\langle\xi, \xi\rangle$.

Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that $x(s, t)=\phi_{t}(\gamma(s))$, locally. The metric in this case is a warped product metric

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} G^{2}(s) d t^{2}
$$

where $G^{2}(s)=\widetilde{\varepsilon}\langle\xi, \xi\rangle$.
2. Gauss-Codazzi equations must be satisfied.

Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that $x(s, t)=\phi_{t}(\gamma(s))$, locally. The metric in this case is a warped product metric

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} G^{2}(s) d t^{2}
$$

where $G^{2}(s)=\widetilde{\varepsilon}\langle\xi, \xi\rangle$.
2. Gauss-Codazzi equations must be satisfied. We check that this implies, precisely, that γ is critical for an energy depending arbitrarily on κ, i.e.

$$
\int_{\gamma} P(\kappa) d s
$$

where $\dot{P}=G$

Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that $x(s, t)=\phi_{t}(\gamma(s))$, locally. The metric in this case is a warped product metric

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} G^{2}(s) d t^{2}
$$

where $G^{2}(s)=\widetilde{\varepsilon}\langle\xi, \xi\rangle$.
2. Gauss-Codazzi equations must be satisfied. We check that this implies, precisely, that γ is critical for an energy depending arbitrarily on κ, i.e.

$$
\int_{\gamma} P(\kappa) d s
$$

where $\dot{P}=G$ (after applying the Inverse Function Theorem).

Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that $x(s, t)=\phi_{t}(\gamma(s))$, locally. The metric in this case is a warped product metric

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} G^{2}(s) d t^{2}
$$

where $G^{2}(s)=\widetilde{\varepsilon}\langle\xi, \xi\rangle$.
2. Gauss-Codazzi equations must be satisfied. We check that this implies, precisely, that γ is critical for an energy depending arbitrarily on κ, i.e.

$$
\int_{\gamma} P(\kappa) d s
$$

where $\dot{P}=G$ (after applying the Inverse Function Theorem).
3. Finally, we combine this with H constant

Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that $x(s, t)=\phi_{t}(\gamma(s))$, locally. The metric in this case is a warped product metric

$$
g=\varepsilon_{1} d s^{2}+\varepsilon_{3} G^{2}(s) d t^{2}
$$

where $G^{2}(s)=\widetilde{\varepsilon}\langle\xi, \xi\rangle$.
2. Gauss-Codazzi equations must be satisfied. We check that this implies, precisely, that γ is critical for an energy depending arbitrarily on κ, i.e.

$$
\int_{\gamma} P(\kappa) d s
$$

where $\dot{P}=G$ (after applying the Inverse Function Theorem).
3. Finally, we combine this with H constant to obtain an ODE in $P(\kappa)$ which can be explicitly solved.

Other Applications of This Theory

Other Applications of This Theory

- Linear Weingarten Surfaces $(a H+b K=c)$ (A. P., 2020)

Other Applications of This Theory

- Linear Weingarten Surfaces $(a H+b K=c)$ (A. P., 2020)
- Linear Weingarten Surfaces $\left(a \kappa_{1}+b \kappa_{2}=c\right)$ (López \& A. P., 2020)

Other Applications of This Theory

- Linear Weingarten Surfaces $(a H+b K=c)$ (A. P., 2020)
- Linear Weingarten Surfaces $\left(a \kappa_{1}+b \kappa_{2}=c\right)$ (López \& A. P., 2020)
- Constant Skew Curvature Surfaces
(López \& A. P., 2020)

Other Applications of This Theory

- Linear Weingarten Surfaces $(a H+b K=c)$ (A. P., 2020)
- Linear Weingarten Surfaces $\left(a \kappa_{1}+b \kappa_{2}=c\right)$ (López \& A. P., 2020)
- Constant Skew Curvature Surfaces (López \& A. P., 2020)
- Constant Astigmatism Surfaces (López \& A. P., 2020)

Other Applications of This Theory

- Linear Weingarten Surfaces $(a H+b K=c)$ (A. P., 2020)
- Linear Weingarten Surfaces $\left(a \kappa_{1}+b \kappa_{2}=c\right)$ (López \& A. P., 2020)
- Constant Skew Curvature Surfaces (López \& A. P., 2020)
- Constant Astigmatism Surfaces (López \& A. P., 2020)
- Biconservative Surfaces (Montaldo \& A. P., to appear)

Extended Blaschke's Energy

Consider the extended Blaschke's curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_{r}^{3}(\rho)$.

Extended Blaschke's Energy

Consider the extended Blaschke's curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_{r}^{3}(\rho)$.

- The associated Euler-Lagrange equations can be integrated explicitly.

Extended Blaschke's Energy

Consider the extended Blaschke's curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_{r}^{3}(\rho)$.

- The associated Euler-Lagrange equations can be integrated explicitly.
- From one of them we obtain that $\tau=e(\kappa-\mu)$.

Extended Blaschke's Energy

Consider the extended Blaschke's curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_{r}^{3}(\rho)$.

- The associated Euler-Lagrange equations can be integrated explicitly.
- From one of them we obtain that $\tau=e(\kappa-\mu)$.
- The other one reduces to a second order ODE in κ.

Extended Blaschke's Energy

Consider the extended Blaschke's curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_{r}^{3}(\rho)$.

- The associated Euler-Lagrange equations can be integrated explicitly.
- From one of them we obtain that $\tau=e(\kappa-\mu)$.
- The other one reduces to a second order ODE in κ.
- For the case $\mu=0$ in \mathbb{R}^{3} we obtain Lancret curves and recover "catenaries", as obtained by Blaschke.

Extended Blaschke's Energy

Consider the extended Blaschke's curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

acting on the space of non-null curves, with non-null acceleration, immersed in $M_{r}^{3}(\rho)$.

- The associated Euler-Lagrange equations can be integrated explicitly.
- From one of them we obtain that $\tau=e(\kappa-\mu)$.
- The other one reduces to a second order ODE in κ.
- For the case $\mu=0$ in \mathbb{R}^{3} we obtain Lancret curves and recover "catenaries", as obtained by Blaschke.
- In $\mathbb{R}^{2}, e=0$ and critical curves are roulettes of conic foci.

Binormal Evolution Surfaces

Let $\gamma \subset M_{r}^{3}(\rho)$ be a critical curve for $\boldsymbol{\Theta}_{\mu}$.

Binormal Evolution Surfaces

Let $\gamma \subset M_{r}^{3}(\rho)$ be a critical curve for $\boldsymbol{\Theta}_{\mu}$.

1. There exists a Killing vector field along γ in the direction of the binormal: (Langer \& Singer, 1984)

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

Binormal Evolution Surfaces

Let $\gamma \subset M_{r}^{3}(\rho)$ be a critical curve for $\boldsymbol{\Theta}_{\mu}$.

1. There exists a Killing vector field along γ in the direction of the binormal: (Langer \& Singer, 1984)

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

2. This vector field can uniquely be extended to a Killing vector field on $M_{r}^{3}(\rho)$.

Binormal Evolution Surfaces

Let $\gamma \subset M_{r}^{3}(\rho)$ be a critical curve for $\boldsymbol{\Theta}_{\mu}$.

1. There exists a Killing vector field along γ in the direction of the binormal: (Langer \& Singer, 1984)

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

2. This vector field can uniquely be extended to a Killing vector field on $M_{r}^{3}(\rho)$.
3. Since $M_{r}^{3}(\rho)$ is complete, the one-parameter group of isometries determined by \mathcal{I} is given by $\left\{\psi_{t}, t \in \mathbb{R}\right\}$.

Binormal Evolution Surfaces

Let $\gamma \subset M_{r}^{3}(\rho)$ be a critical curve for $\boldsymbol{\Theta}_{\mu}$.

1. There exists a Killing vector field along γ in the direction of the binormal: (Langer \& Singer, 1984)

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa-\mu}} B
$$

2. This vector field can uniquely be extended to a Killing vector field on $M_{r}^{3}(\rho)$.
3. Since $M_{r}^{3}(\rho)$ is complete, the one-parameter group of isometries determined by \mathcal{I} is given by $\left\{\psi_{t}, t \in \mathbb{R}\right\}$.
4. We construct the binormal evolution surface (Garay \& A. P., 2016)

$$
S_{\gamma}:=\left\{x(s, t):=\psi_{t}(\gamma(s))\right\}
$$

Geometric Property

Geometric Property

By construction S_{γ} is \mathcal{I}-invariant.

Geometric Property

By construction S_{γ} is \mathcal{I}-invariant. Moreover, since γ is critical for

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

Theorem (Arroyo, Garay \& A. P., 2018)
The binormal evolution surface S_{γ} has constant mean curvature $H=-\varepsilon_{1} \varepsilon_{2} \mu$.

Geometric Property

By construction S_{γ} is \mathcal{I}-invariant. Moreover, since γ is critical for

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

Theorem (Arroyo, Garay \& A. P., 2018)
The binormal evolution surface S_{γ} has constant mean curvature $H=-\varepsilon_{1} \varepsilon_{2} \mu$.

- In conclusion, invariant CMC surfaces of $M_{r}^{3}(\rho)$

Geometric Property

By construction S_{γ} is \mathcal{I}-invariant. Moreover, since γ is critical for

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

Theorem (Arroyo, Garay \& A. P., 2018)
The binormal evolution surface S_{γ} has constant mean curvature $H=-\varepsilon_{1} \varepsilon_{2} \mu$.

- In conclusion, invariant CMC surfaces of $M_{r}^{3}(\rho)$ can be understood as the binormal evolution surfaces

Geometric Property

By construction S_{γ} is \mathcal{I}-invariant. Moreover, since γ is critical for

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

Theorem (Arroyo, Garay \& A. P., 2018)
The binormal evolution surface S_{γ} has constant mean curvature $H=-\varepsilon_{1} \varepsilon_{2} \mu$.

- In conclusion, invariant CMC surfaces of $M_{r}^{3}(\rho)$ can be understood as the binormal evolution surfaces with initial filament a critical curve for $\boldsymbol{\Theta}_{\mu}$

Geometric Property

By construction S_{γ} is \mathcal{I}-invariant. Moreover, since γ is critical for

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} \sqrt{\kappa-\mu} d s
$$

Theorem (Arroyo, Garay \& A. P., 2018)
The binormal evolution surface S_{γ} has constant mean curvature $H=-\varepsilon_{1} \varepsilon_{2} \mu$.

- In conclusion, invariant CMC surfaces of $M_{r}^{3}(\rho)$ can be understood as the binormal evolution surfaces with initial filament a critical curve for $\boldsymbol{\Theta}_{\mu}$ and velocity

$$
\frac{1}{2 \sqrt{\kappa-\mu}}
$$

Binormal Evolution Surfaces in $\mathbb{S}^{3}(\rho)$

(Arroyo, Garay \& A. P., 2019)

Rotational CMC Surfaces in $\mathbb{S}^{3}(\rho)$

We consider now $M_{r}^{3}(\rho)=\mathbb{S}^{3}(\rho)$.

Rotational CMC Surfaces in $\mathbb{S}^{3}(\rho)$

We consider now $M_{r}^{3}(\rho)=\mathbb{S}^{3}(\rho)$.
Proposition (Arroyo, Garay \& A. P., 2018)
A ξ-invariant CMC surface of $\mathbb{S}^{3}(\rho)$ is rotational if and only if the critical curve for $\boldsymbol{\Theta}_{\mu}$ is planar.

Rotational CMC Surfaces in $\mathbb{S}^{3}(\rho)$

We consider now $M_{r}^{3}(\rho)=\mathbb{S}^{3}(\rho)$.
Proposition (Arroyo, Garay \& A. P., 2018)
A ξ-invariant CMC surface of $\mathbb{S}^{3}(\rho)$ is rotational if and only if the critical curve for $\boldsymbol{\Theta}_{\mu}$ is planar.

- A planar curve has $\tau=0$ and it lies in $\mathbb{S}^{2}(\rho)$.

Rotational CMC Surfaces in $\mathbb{S}^{3}(\rho)$

We consider now $M_{r}^{3}(\rho)=\mathbb{S}^{3}(\rho)$.

Proposition (Arroyo, Garay \& A. P., 2018)

A ξ-invariant CMC surface of $\mathbb{S}^{3}(\rho)$ is rotational if and only if the critical curve for $\boldsymbol{\Theta}_{\mu}$ is planar.

- A planar curve has $\tau=0$ and it lies in $\mathbb{S}^{2}(\rho)$.
- The curvature of a planar critical curve for $\boldsymbol{\Theta}_{\mu}$ in $\mathbb{S}^{2}(\rho)$ is:

$$
\kappa_{d}(s)=\frac{\rho+\mu^{2}}{2 d+\mu-\sqrt{4 d^{2}+4 \mu d-\rho} \sin \left(2 \sqrt{\rho+\mu^{2}} s\right)}+\mu
$$

for $d \geq\left(-\mu+\sqrt{\mu^{2}+\rho}\right) / 2$.

Local Classification

Theorem (Arroyo, Garay \& A. P., 2019)
Locally, a rotational surface of $\mathrm{CMC} H$ in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

Local Classification

Theorem (Arroyo, Garay \& A. P., 2019)
Locally, a rotational surface of $\mathrm{CMC} H$ in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

1. The equator $(\kappa(s)=H=0)$.

Local Classification

Theorem (Arroyo, Garay \& A. P., 2019)
Locally, a rotational surface of $\mathrm{CMC} H$ in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

1. The equator $(\kappa(s)=H=0)$.
2. A totally umbilical sphere $(\kappa(s)=|H| \neq 0)$.

Local Classification

Theorem (Arroyo, Garay \& A. P., 2019)
Locally, a rotational surface of $\mathrm{CMC} H$ in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

1. The equator $(\kappa(s)=H=0)$.
2. A totally umbilical sphere $(\kappa(s)=|H| \neq 0)$.
3. A Hopf torus $\left(\kappa(s)=-|H|+\sqrt{H^{2}+\rho}\right)$

$$
\mathbb{S}^{1}\left(\sqrt{\rho+\kappa^{2}}\right) \times \mathbb{S}^{1}\left(\frac{\sqrt{\rho}}{\kappa} \sqrt{\rho+\kappa^{2}}\right)
$$

Local Classification

Theorem (Arroyo, Garay \& A. P., 2019)
Locally, a rotational surface of $\mathrm{CMC} H$ in $\mathbb{S}^{3}(\rho)$ is congruent to a piece of:

1. The equator $(\kappa(s)=H=0)$.
2. A totally umbilical sphere $(\kappa(s)=|H| \neq 0)$.
3. A Hopf torus $\left(\kappa(s)=-|H|+\sqrt{H^{2}+\rho}\right)$

$$
\mathbb{S}^{1}\left(\sqrt{\rho+\kappa^{2}}\right) \times \mathbb{S}^{1}\left(\frac{\sqrt{\rho}}{\kappa} \sqrt{\rho+\kappa^{2}}\right) .
$$

4. A binormal evolution surface $\left(\kappa(s)=\kappa_{d}(s)\right.$ and $\left.|\mu|=|H|\right)$.

Closed Critical Curves in $\mathbb{S}^{2}(\rho)$

Closed Critical Curves in $\mathbb{S}^{2}(\rho)$

Theorem (Arroyo, Garay \& A. P., 2019)
There exist non-trivial closed critical curves in $\mathbb{S}^{2}(\rho)$, for any value of μ.

Closed Critical Curves in $\mathbb{S}^{2}(\rho)$

Theorem (Arroyo, Garay \& A. P., 2019)
There exist non-trivial closed critical curves in $\mathbb{S}^{2}(\rho)$, for any value of μ.

(Arroyo, Garay \& A. P., 2019)

Closed and Simple Critical Curves in $\mathbb{S}^{2}(\rho)$

Closed and Simple Critical Curves in $\mathbb{S}^{2}(\rho)$

Theorem (Arroyo, Garay \& A. P., 2019)
If γ is a simple closed critical curve in $\mathbb{S}^{2}(\rho)$, then $\mu \neq-\sqrt{\rho / 3}$ is negative.

Closed and Simple Critical Curves in $\mathbb{S}^{2}(\rho)$

Theorem (Arroyo, Garay \& A. P., 2019)
If γ is a simple closed critical curve in $\mathbb{S}^{2}(\rho)$, then $\mu \neq-\sqrt{\rho / 3}$ is negative.

(Arroyo, Garay \& A. P., 2019)

CMC Tori in $\mathbb{S}^{3}(\rho)$

CMC Tori in $\mathbb{S}^{3}(\rho)$

(Arroyo, Garay \& A. P., 2019)

- Coincides with previous results of Perdomo and Ripoll.

CMC Tori in $\mathbb{S}^{3}(\rho)$

(Arroyo, Garay \& A. P., 2019)

- Coincides with previous results of Perdomo and Ripoll.
- Verify the Lawson's conjecture (proved by Brendle in 2013).

CMC Tori in $\mathbb{S}^{3}(\rho)$

(Arroyo, Garay \& A. P., 2019)

- Coincides with previous results of Perdomo and Ripoll.
- Verify the Lawson's conjecture (proved by Brendle in 2013).
- After Pinkall-Sterling's conjecture (proved by Andrews-Li in 2015), these are all embedded CMC tori.

THE END

- J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Anal. Appl. 462-2 (2018), 1644-1668.
- J. Arroyo, O. J. Garay and A. Pámpano, Delaunay Surfaces in $\mathbb{S}^{3}(\rho)$, Filomat 33-4 (2019), 1191-1200.

THE END

- J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Anal. Appl. 462-2 (2018), 1644-1668.
- J. Arroyo, O. J. Garay and A. Pámpano, Delaunay Surfaces in $\mathbb{S}^{3}(\rho)$, Filomat 33-4 (2019), 1191-1200.

Thank You!

