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Historical Background

• Lagrange (1762): Raised the question of how to find the
surface with least area for a given fixed boundary.

• Meusnier (1776): Characterized them as zero mean curvature
surfaces.

• Variational Problem. CMC surfaces are critical points of the
area functional for volume preserving variations, i.e.,

H :=
κ1 + κ2

2
= Ho .

• Delaunay (1841): CMC surfaces of revolution are those
generated by rotating the roulettes of conic foci.

• Alexandrov (1958): Compact and embedded in R3 must be a
round sphere.

• Wente (1984): Found an immersed torus with CMC.
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Ambient Spaces

Let M3
r (ρ) be a semi-Riemannian space form of dimension 3.

Depending on the index r we have:
Case r = 0. Then, M3

r (ρ) is Riemannian and:

• ρ = 0, is the Euclidean 3-space, R3.

• ρ > 0, is the round 3-sphere, S3(ρ).

• ρ < 0, is the hyperbolic space, H3(ρ).

Case r = 1. Then, M3
r (ρ) is Lorentzian and:

• ρ = 0, is the Lorentz-Minkowski 3-space, L3.

• ρ > 0, is the de Sitter 3-space, S31(ρ).

• ρ < 0, is the anti-de Sitter 3-space, H3
1(ρ).
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Invariant Surfaces of M3
r (ρ)

Let S ⊂ M3
r (ρ) be an immersed surface which inherits a

semi-Riemannian structure,

and denote by ξ a non-null Killing field.

Definition

We say that S is ξ-invariant if it stays invariant under the action of
the one-parameter group of isometries associated to ξ.

• All the information is locally encoded on a profile curve of S ,
which we denote by γ.

• Note that γ is the curve everywhere orthogonal to ξ. (It is not
necessarily planar, i.e., it may not be contained in a totally
geodesic surface of M3

r (ρ).)
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Curves in M3
r (ρ)

Let γ ⊂ M3
r (ρ) be a non-null smooth immersed curve, with

non-null acceleration.

• Denote by {T ,N,B} the Frenet frame along γ(s),

• And, by εi their corresponding causal characters.

• Then, the Frenet equations,

T ′(s) = ε2κ(s)N(s) ,

N ′(s) = −ε1κ(s)T (s) + ε3τ(s)B(s) ,

B ′(s) = −ε2τ(s)N(s) ,

define the curvature κ(s) and torsion τ(s) of γ(s).

• From the Fundamental Theorem for Curves, this is all what
we need.
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Variational Characterization of Profile Curves

Theorem (Arroyo, Garay & A. P., 2018)

A ξ-invariant surface S ⊂ M3
r (ρ) with CMC H is, locally, either a

ruled surface or it is spanned by a critical curve for

Θµ(γ) :=

∫
γ

√
κ− µ ds ,

where |µ| = |H|.

• We call this energy the extended Blaschke’s energy, since in
1930 Blaschke studied the case µ = 0 in R3.
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Sketch of the Proof

1. We consider Fermi geodesic coordinates, such that
x(s, t) = φt (γ(s)), locally.

The metric in this case is a
warped product metric

g = ε1 ds
2 + ε3 G

2(s) dt2 ,

where G 2(s) = ε̃〈ξ, ξ〉.
2. Gauss-Codazzi equations must be satisfied. We check that

this implies, precisely, that γ is critical for an energy
depending arbitrarily on κ, i.e.∫

γ
P(κ) ds ,

where Ṗ = G (after applying the Inverse Function Theorem).

3. Finally, we combine this with H constant to obtain an ODE in
P(κ) which can be explicitly solved.
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Other Applications of This Theory

• Linear Weingarten Surfaces (aH + bK = c)
(A. P., 2020)

• Linear Weingarten Surfaces (aκ1 + bκ2 = c)
(López & A. P., 2020)

• Constant Skew Curvature Surfaces
(López & A. P., 2020)

• Constant Astigmatism Surfaces
(López & A. P., 2020)

• Biconservative Surfaces
(Montaldo & A. P., to appear)
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(López & A. P., 2020)

• Constant Skew Curvature Surfaces
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(López & A. P., 2020)

• Constant Astigmatism Surfaces
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Extended Blaschke’s Energy

Consider the extended Blaschke’s curvature energy

Θµ(γ) :=

∫
γ

√
κ− µ ds ,

acting on the space of non-null curves, with non-null acceleration,
immersed in M3

r (ρ).

• The associated Euler-Lagrange equations can be integrated
explicitly.

• From one of them we obtain that τ = e (κ− µ).

• The other one reduces to a second order ODE in κ.

• For the case µ = 0 in R3 we obtain Lancret curves and
recover “catenaries”, as obtained by Blaschke.

• In R2, e = 0 and critical curves are roulettes of conic foci.
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Binormal Evolution Surfaces

Let γ ⊂ M3
r (ρ) be a critical curve for Θµ.

1. There exists a Killing vector field along γ in the direction of
the binormal: (Langer & Singer, 1984)

I =
1

2
√
κ− µ

B .

2. This vector field can uniquely be extended to a Killing vector
field on M3

r (ρ).

3. Since M3
r (ρ) is complete, the one-parameter group of

isometries determined by I is given by {ψt , t ∈ R}.
4. We construct the binormal evolution surface (Garay & A. P.,

2016)

Sγ := {x(s, t) := ψt (γ(s))} .
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Geometric Property

By construction Sγ is I-invariant. Moreover, since γ is critical for

Θµ(γ) :=

∫
γ

√
κ− µ ds ,

Theorem (Arroyo, Garay & A. P., 2018)

The binormal evolution surface Sγ has constant mean curvature
H = −ε1ε2µ.

• In conclusion, invariant CMC surfaces of M3
r (ρ) can be

understood as the binormal evolution surfaces with initial
filament a critical curve for Θµ and velocity

1

2
√
κ− µ
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Binormal Evolution Surfaces in S3(ρ)

(Arroyo, Garay & A. P., 2019)



Rotational CMC Surfaces in S3(ρ)

We consider now M3
r (ρ) = S3(ρ).

Proposition (Arroyo, Garay & A. P., 2018)

A ξ-invariant CMC surface of S3(ρ) is rotational if and only if the
critical curve for Θµ is planar.

• A planar curve has τ = 0 and it lies in S2(ρ).

• The curvature of a planar critical curve for Θµ in S2(ρ) is:

κd(s) =
ρ+ µ2

2d + µ−
√

4d2 + 4µd − ρ sin(2
√
ρ+ µ2s)

+ µ ,

for d ≥ (−µ+
√
µ2 + ρ)/2.
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Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC H in S3(ρ) is congruent to a
piece of:

1. The equator (κ(s) = H = 0).

2. A totally umbilical sphere (κ(s) = |H| 6= 0).

3. A Hopf torus (κ(s) = −|H|+
√

H2 + ρ)

S1
(√

ρ+ κ2
)
× S1

(√
ρ

κ

√
ρ+ κ2

)
.

4. A binormal evolution surface (κ(s) = κd(s) and |µ| = |H|).



Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC H in S3(ρ) is congruent to a
piece of:

1. The equator (κ(s) = H = 0).

2. A totally umbilical sphere (κ(s) = |H| 6= 0).

3. A Hopf torus (κ(s) = −|H|+
√

H2 + ρ)

S1
(√

ρ+ κ2
)
× S1

(√
ρ

κ

√
ρ+ κ2

)
.

4. A binormal evolution surface (κ(s) = κd(s) and |µ| = |H|).



Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC H in S3(ρ) is congruent to a
piece of:

1. The equator (κ(s) = H = 0).

2. A totally umbilical sphere (κ(s) = |H| 6= 0).

3. A Hopf torus (κ(s) = −|H|+
√

H2 + ρ)

S1
(√

ρ+ κ2
)
× S1

(√
ρ

κ

√
ρ+ κ2

)
.

4. A binormal evolution surface (κ(s) = κd(s) and |µ| = |H|).



Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC H in S3(ρ) is congruent to a
piece of:

1. The equator (κ(s) = H = 0).

2. A totally umbilical sphere (κ(s) = |H| 6= 0).

3. A Hopf torus (κ(s) = −|H|+
√

H2 + ρ)

S1
(√

ρ+ κ2
)
× S1

(√
ρ

κ

√
ρ+ κ2

)
.

4. A binormal evolution surface (κ(s) = κd(s) and |µ| = |H|).



Local Classification

Theorem (Arroyo, Garay & A. P., 2019)

Locally, a rotational surface of CMC H in S3(ρ) is congruent to a
piece of:

1. The equator (κ(s) = H = 0).

2. A totally umbilical sphere (κ(s) = |H| 6= 0).

3. A Hopf torus (κ(s) = −|H|+
√

H2 + ρ)

S1
(√

ρ+ κ2
)
× S1

(√
ρ

κ

√
ρ+ κ2

)
.

4. A binormal evolution surface (κ(s) = κd(s) and |µ| = |H|).



Closed Critical Curves in S2(ρ)

Theorem (Arroyo, Garay & A. P., 2019)

There exist non-trivial closed critical curves in S2(ρ), for any value
of µ.

(Arroyo, Garay & A. P., 2019)
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Closed and Simple Critical Curves in S2(ρ)

Theorem (Arroyo, Garay & A. P., 2019)

If γ is a simple closed critical curve in S2(ρ), then µ 6= −
√
ρ/3 is

negative.
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CMC Tori in S3(ρ)

(Arroyo, Garay & A. P., 2019)

• Coincides with previous results of Perdomo and Ripoll.

• Verify the Lawson’s conjecture (proved by Brendle in 2013).

• After Pinkall-Sterling’s conjecture (proved by Andrews-Li in
2015), these are all embedded CMC tori.
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