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Historical Background I

• 1691: Jacob (James) Bernoulli proposed the problem of
determining the shape of elastic rods.

• 1697: Johan Bernoulli (as a public challenge to Jacob
Bernoulli) formulated the problem of finding the curve of
minimum length (geodesics)

L(γ) :=
∫
γ
ds .

• 1742: D. Bernoulli, in a letter to L. Euler, suggested to study
elastic curves as minimizers of the bending energy

E(γ) :=
∫
γ
κ2 ds .

• 1744: L. Euler described the shape of planar elasticae
(partially solved by Jacob Bernoulli, 1692-1694).



Historical Background I

• 1691: Jacob (James) Bernoulli proposed the problem of
determining the shape of elastic rods.

• 1697: Johan Bernoulli (as a public challenge to Jacob
Bernoulli) formulated the problem of finding the curve of
minimum length (geodesics)

L(γ) :=
∫
γ
ds .

• 1742: D. Bernoulli, in a letter to L. Euler, suggested to study
elastic curves as minimizers of the bending energy

E(γ) :=
∫
γ
κ2 ds .

• 1744: L. Euler described the shape of planar elasticae
(partially solved by Jacob Bernoulli, 1692-1694).



Historical Background I

• 1691: Jacob (James) Bernoulli proposed the problem of
determining the shape of elastic rods.

• 1697: Johan Bernoulli (as a public challenge to Jacob
Bernoulli) formulated the problem of finding the curve of
minimum length (geodesics)

L(γ) :=
∫
γ
ds .

• 1742: D. Bernoulli, in a letter to L. Euler, suggested to study
elastic curves as minimizers of the bending energy

E(γ) :=
∫
γ
κ2 ds .

• 1744: L. Euler described the shape of planar elasticae
(partially solved by Jacob Bernoulli, 1692-1694).



Historical Background I

• 1691: Jacob (James) Bernoulli proposed the problem of
determining the shape of elastic rods.

• 1697: Johan Bernoulli (as a public challenge to Jacob
Bernoulli) formulated the problem of finding the curve of
minimum length (geodesics)

L(γ) :=
∫
γ
ds .

• 1742: D. Bernoulli, in a letter to L. Euler, suggested to study
elastic curves as minimizers of the bending energy

E(γ) :=
∫
γ
κ2 ds .

• 1744: L. Euler described the shape of planar elasticae
(partially solved by Jacob Bernoulli, 1692-1694).



Historical Background I

• 1691: Jacob (James) Bernoulli proposed the problem of
determining the shape of elastic rods.

• 1697: Johan Bernoulli (as a public challenge to Jacob
Bernoulli) formulated the problem of finding the curve of
minimum length (geodesics)

L(γ) :=
∫
γ
ds .

• 1742: D. Bernoulli, in a letter to L. Euler, suggested to study
elastic curves as minimizers of the bending energy

E(γ) :=
∫
γ
κ2 ds .

• 1744: L. Euler described the shape of planar elasticae
(partially solved by Jacob Bernoulli, 1692-1694).



Natural Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

Θp(γ) :=

∫
γ
κp ds .

• Case p = 0: Length functional, whose critical curves are
geodesics.

• Case p = 1: Total curvature, whose Euler-Lagrange equation
is an identity.
(Applications: relativistic particles,...)

• Case p = 2: Classical bending energy and elastic curves.
(Applications: lintearia, Willmore tori, biomembranes,
computer vision,...)

• Case p > 2: (Applications: Willmore-Chen submanifolds,
string theories,...)
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• Case p = 1/2: Planar critical curves are catenaries (Blaschke,
1921).

• Case p = 1/3: Equi-affine length for convex curves. Planar
critical curves are parabolas (Blaschke, 1923).
(Applications: human drawing movements, recognition of
planar shapes,...)

• Cases p = (n − 2)/(n + 1): Arise in the theory of
biconservative hypersurfaces. (Montaldo & P., 2020,
Montaldo, Oniciuc & P., 2022)
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Special Cases p = 2 and p = 1/2

Consider the p-elastic functional, possibly with a length constraint,

Θp(γ) :=

∫
γ
κp ds .

1. If p = n is a natural number, (after a suitable contact
transformation) phase portraits are real cycles of smooth
hyperelliptic curves of genus p − 1. In particular, p = 2 makes
these curves elliptic.

2. If p = 1/n is the reciprocal of a natural number, phase
portraits are real cycles of singular hyperelliptic curves of
genus n−1. In particular, in the case p = 1/2 they are elliptic.

The case p = 1/2 plays the role of the classical bending energy
(when p ∈ (0, 1)) and its study can be faced resorting to elliptic
functions and integrals (as the case p = 2).
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(Blaschke’s) Variational Problem

Consider the 1/2-elastic functional

Θ(γ) :=

∫
γ

√
κ ds ,

acting on the space of smooth convex curves immersed in M2(ρ).

Euler-Lagrange Equation

√
κ

d2

ds2

(
1√
κ

)
− κ2 + ρ = 0 .

• If κ = κo is constant, then critical curves are circles with
κo =

√
ρ (necessarily ρ ≥ 0).

• If κ is nonconstant, we can obtain a first integral (a
conservation law).
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Curvatures of Critical Curves

Conservation Law

(
κ′
)2

= −4κ2
(
κ2 − 4dκ+ ρ

)
.

1. In the Euclidean plane R2:

κd(s) =
4d

16d s2 + 1
,

for any constant d > 0 (Catenaries).

2. In the round 2-sphere S2(ρ):

κd(s) =
ρ

2d −
√
4d2 − ρ sin

(
2
√
ρ s

) ,
for any constant d >

√
ρ /2. (Periodic).

3. In the hyperbolic plane H2(ρ): (the same with cosh).
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Parameterization of (Spherical) Critical Curves

Let γd be a spherical critical curve for Θ immersed in S2(ρ) having
curvature κ = κd , then,

γd(s) =
1

2
√
ρdκ

(√
ρ ,

√
4dκ− ρ sinΨ,

√
4dκ− ρ cosΨ

)
,

where (angular progression)

Ψ(s) = 2
√
ρd

∫
κ3/2

4dκ− ρ
ds .

Recall that d >
√
ρ /2.



Geometric Properties

1. The trajectory of γd is contained in a domain bounded by two
parallels in the half-sphere x > 0. It never meets the equator
x = 0 nor the pole (1, 0, 0).

2. It meets the “bounding” parallels tangentially at the
maximum and minimum curvatures, respectively.

3. The trajectory of γd winds around the pole (1, 0, 0) without
going backwards.

4. The curve γd is closed if and only if

Λ(d) = 2
√
ρ d

∫ ϱ

0

κ3/2

4dκ− ρ
ds = 2qπ ,

for a rational number q ∈ Q.
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Closure Condition

Using the first integral to make a change of variable, we have

Λ(d) = 2
√
ρ d

∫ α

β

κ

(4dκ− ρ)
√

κ(α− κ)(κ− β)
dκ = 2qπ

where α > β are the (only) positive roots of Qd(κ) = κ2 − 4dκ+ ρ
(the maximum and minimum curvatures, respectively).

Geometric Meaning

Write q = n/m with relatively prime natural numbers n and m.
Then:

• The number n represents the winds around the pole (1, 0, 0)
the curve γd needs to close. (Winding number).

• The number m is the number of periods of the curvature
contained in one period of γd . (Number of lobes).
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Closed (Spherical) Critical Curves

Theorem (Arroyo, Garay & P., 2019)

Let n and m be two relatively prime natural numbers satisfying
m < 2n <

√
2m. Then, there exists a unique closed critical curve

for Θ.
Conversely, any closed critical curve is one of the above.

• Closed critical curves are in one-to-one correspondence with
pairs of relatively prime natural numbers satisfying
m < 2n <

√
2m.

• In particular, there are no closed and simple critical curves.

• The “simplest” possible choice is γ2,3.
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Killing Vector Fields

A vector field W along γ is said to be a Killing vector field along
the curve if the following equations hold

W (v) = W (κ) = 0

along γ.

Proposition (Langer & Singer, 1984)

Consider M2(ρ) embedded as a totally geodesic surface of M3(ρ).
Then, the vector field

I =
1

2
√
κ

B

is a Killing vector field along critical curves.
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Binormal Evolution Surfaces

Let γ ⊂ M2(ρ) ⊂ M3(ρ) be a critical curve for

Θ(γ) =

∫
γ

√
κ ds .

1. The Killing vector field along γ,

I =
1

2
√
κ
B ,

can uniquely be extended to a Killing vector field on M3(ρ).

2. Since M3(ρ) is complete, the one-parameter group of
isometries determined by I is given by {ϕt , t ∈ R}.

3. We construct the binormal evolution surface (Garay & P.,
2016)

Sγ = {ϕt(γ(s))} .
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Geometric Properties

By construction Sγ is a ξ-invariant surface. Moreover:

1. Since γ ⊂ M2(ρ) is planar,

Theorem (Arroyo, Garay & P., 2017)

Sγ is either a flat isoparametric surface (when κ is constant), or it
is a rotational surface (when κ is nonconstant). In particular, if
d > 0 it is a spherical rotational surface.

2. Since γ is critical for Θ,

Theorem (Arroyo, Garay & P., 2018)

Sγ is a minimal surface.
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Characterization of (Rotational) Minimal
Surfaces

Theorem (Arroyo, Garay & P., 2018)

Any rotational minimal surface S ⊂ M3(ρ) is, locally, either a ruled
surface or it is spanned by a planar critical curve for

Θ(γ) =

∫
γ

√
κ ds .

• We proved something more general, namely, any CMC
ξ-invariant surface is, locally, spanned by a critical curve of an
extension of Θ.
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Other Applications of the Theory

Consider the 2-dimensional analogue of the Blaschke’s variational
problem, namely,

W(Σ) :=

∫
Σ

√
H dA ,

acting on the space of smooth weakly convex (H > 0 and K ≥ 0)
immersions.

Euler-Lagrange Equation

2
√
H∆

(
1√
H

)
− 4H2 + 2(2ρ− K ) = 0 .
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Existence of Critical Tori

Theorem (P., 2020)

The preimage of a closed curve γ through the standard Hopf
mapping S2 → S3 is a critical torus for W if and only if γ is critical
for Θ.

• The result is an extension of previous results of Hopf, Palais
and Pinkall.

• For every pair of relatively prime natural numbers (n,m)
satisfying m < 2n <

√
2m, there exists a unique Hopf tori

critical for W.

• None of them is embedded.

• All are unstable (Gruber, Toda & P., Preprint).
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