

Álvaro Pámpano Llarena

2022 Fall Central Sectional Meeting AMS-University of Texas, El Paso Texas Tech University

September 18, 2022

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• **1691**: Jacob (James) Bernoulli proposed the problem of determining the shape of elastic rods.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- **1691**: Jacob (James) Bernoulli proposed the problem of determining the shape of elastic rods.
- **1697**: Johan Bernoulli (as a public challenge to Jacob Bernoulli) formulated the problem of finding the curve of minimum length (geodesics)

$$\mathcal{L}(\gamma):=\int_{\gamma}\,ds\,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- **1691**: Jacob (James) Bernoulli proposed the problem of determining the shape of elastic rods.
- **1697**: Johan Bernoulli (as a public challenge to Jacob Bernoulli) formulated the problem of finding the curve of minimum length (geodesics)

$$\mathcal{L}(\gamma):=\int_{\gamma}\,ds\,ds$$
 .

• **1742**: D. Bernoulli, in a letter to L. Euler, suggested to study elastic curves as minimizers of the bending energy

$$\mathcal{E}(\gamma) := \int_{\gamma} \kappa^2 \, ds$$
 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- **1691**: Jacob (James) Bernoulli proposed the problem of determining the shape of elastic rods.
- **1697**: Johan Bernoulli (as a public challenge to Jacob Bernoulli) formulated the problem of finding the curve of minimum length (geodesics)

$$\mathcal{L}(\gamma):=\int_{\gamma}\,ds\,ds$$
 .

• **1742**: D. Bernoulli, in a letter to L. Euler, suggested to study elastic curves as minimizers of the bending energy

$$\mathcal{E}(\gamma) := \int_{\gamma} \kappa^2 \, ds \, .$$

• 1744: L. Euler described the shape of planar elasticae (partially solved by Jacob Bernoulli, 1692-1694).

More generally, D. Bernoulli proposed the *p*-elastic functionals

$$oldsymbol{\Theta}_{oldsymbol{
ho}}(\gamma) := \int_{\gamma} \kappa^{oldsymbol{
ho}} \, ds$$
 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

More generally, D. Bernoulli proposed the *p*-elastic functionals

$${oldsymbol \Theta}_{oldsymbol
ho}(\gamma) := \int_{\gamma} \kappa^{oldsymbol
ho} \, ds$$
 .

• **Case** *p* = 0: Length functional, whose critical curves are geodesics.

More generally, D. Bernoulli proposed the *p*-elastic functionals

$$oldsymbol{\Theta}_p(\gamma) := \int_\gamma \kappa^p \, ds$$
 .

- **Case** p = 0: Length functional, whose critical curves are geodesics.
- **Case** p = 1: Total curvature, whose Euler-Lagrange equation is an identity.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Applications: relativistic particles,...)

More generally, D. Bernoulli proposed the *p*-elastic functionals

$$oldsymbol{\Theta}_{p}(\gamma) := \int_{\gamma} \kappa^{p} \, ds$$
 .

- **Case** p = 0: Length functional, whose critical curves are geodesics.
- Case p = 1: Total curvature, whose Euler-Lagrange equation is an identity.
 (Applications) relativistic particles

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(Applications: relativistic particles,...)

• **Case** *p* = 2: Classical bending energy and elastic curves. (Applications: lintearia, Willmore tori, biomembranes, computer vision,...)

More generally, D. Bernoulli proposed the *p*-elastic functionals

$$oldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma}\kappa^{p}\,ds$$
 .

- **Case** *p* = 0: Length functional, whose critical curves are geodesics.
- Case p = 1: Total curvature, whose Euler-Lagrange equation is an identity. (Applications: relativistic particles,...)
- **Case** *p* = 2: Classical bending energy and elastic curves. (Applications: lintearia, Willmore tori, biomembranes, computer vision,...)
- **Case** p > 2: (Applications: Willmore-Chen submanifolds, string theories,...)

More generally, D. Bernoulli proposed the *p*-elastic functionals

$$\mathbf{\Theta}_p(\gamma) := \int_{\gamma} \kappa^p \, ds$$
 .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

More generally, D. Bernoulli proposed the *p*-elastic functionals

$$\mathbf{\Theta}_p(\gamma) := \int_{\gamma} \kappa^p \, ds$$
 .

• **Case** p = 1/2: Planar critical curves are catenaries (Blaschke, 1921).

More generally, D. Bernoulli proposed the *p*-elastic functionals

$$\mathbf{\Theta}_p(\gamma) := \int_{\gamma} \kappa^p \, ds \, .$$

- **Case** p = 1/2: Planar critical curves are catenaries (Blaschke, 1921).
- Case p = 1/3: Equi-affine length for convex curves. Planar critical curves are parabolas (Blaschke, 1923). (Applications: human drawing movements, recognition of planar shapes,...)

More generally, D. Bernoulli proposed the *p*-elastic functionals

$${oldsymbol \Theta}_p(\gamma) := \int_\gamma \kappa^p \, ds \, .$$

- **Case** p = 1/2: Planar critical curves are catenaries (Blaschke, 1921).
- Case p = 1/3: Equi-affine length for convex curves. Planar critical curves are parabolas (Blaschke, 1923). (Applications: human drawing movements, recognition of planar shapes,...)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Cases p = (n-2)/(n+1): Arise in the theory of biconservative hypersurfaces. (Montaldo & P., 2020, Montaldo, Oniciuc & P., 2022)

Special Cases p = 2 and p = 1/2

Consider the p-elastic functional, possibly with a length constraint,

$$oldsymbol{\Theta}_p(\gamma) := \int_\gamma \kappa^p \, ds$$
 .

Consider the p-elastic functional, possibly with a length constraint,

$$oldsymbol{\Theta}_p(\gamma) := \int_\gamma \kappa^p \, ds$$
 .

1. If p = n is a natural number, (after a suitable contact transformation) phase portraits are real cycles of smooth hyperelliptic curves of genus p - 1. In particular, p = 2 makes these curves elliptic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the p-elastic functional, possibly with a length constraint,

$${oldsymbol \Theta}_p(\gamma) := \int_\gamma \kappa^p \, ds$$
 .

- 1. If p = n is a natural number, (after a suitable contact transformation) phase portraits are real cycles of smooth hyperelliptic curves of genus p 1. In particular, p = 2 makes these curves elliptic.
- 2. If p = 1/n is the reciprocal of a natural number, phase portraits are real cycles of singular hyperelliptic curves of genus n-1. In particular, in the case p = 1/2 they are elliptic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the p-elastic functional, possibly with a length constraint,

$$oldsymbol{\Theta}_{p}(\gamma) := \int_{\gamma} \kappa^{p} \, ds$$
 .

- 1. If p = n is a natural number, (after a suitable contact transformation) phase portraits are real cycles of smooth hyperelliptic curves of genus p 1. In particular, p = 2 makes these curves elliptic.
- 2. If p = 1/n is the reciprocal of a natural number, phase portraits are real cycles of singular hyperelliptic curves of genus n-1. In particular, in the case p = 1/2 they are elliptic.

The case p = 1/2 plays the role of the classical bending energy (when $p \in (0, 1)$) and its study can be faced resorting to elliptic functions and integrals (as the case p = 2).

Consider the 1/2-elastic functional

$$oldsymbol{\Theta}(\gamma) \mathrel{\mathop:}= \int_\gamma \sqrt{\kappa} \ ds \, ,$$

acting on the space of smooth convex curves immersed in $M^2(\rho)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the 1/2-elastic functional

$$oldsymbol{\Theta}(\gamma) := \int_{\gamma} \sqrt{\kappa} \ ds \, ,$$

acting on the space of smooth convex curves immersed in $M^2(\rho)$.

EULER-LAGRANGE EQUATION

$$\sqrt{\kappa} \; rac{d^2}{ds^2} \left(rac{1}{\sqrt{\kappa}}
ight) - \kappa^2 +
ho = 0 \; .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Consider the 1/2-elastic functional

$$oldsymbol{\Theta}(\gamma) := \int_{\gamma} \sqrt{\kappa} \ ds \, ,$$

acting on the space of smooth convex curves immersed in $M^2(\rho)$.

EULER-LAGRANGE EQUATION

$$\sqrt{\kappa} \; rac{d^2}{ds^2} \left(rac{1}{\sqrt{\kappa}}
ight) - \kappa^2 +
ho = 0 \, .$$

• If $\kappa = \kappa_o$ is constant, then critical curves are circles with $\kappa_o = \sqrt{\rho}$ (necessarily $\rho \ge 0$).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider the 1/2-elastic functional

$$oldsymbol{\Theta}(\gamma) := \int_{\gamma} \sqrt{\kappa} \ ds \, ,$$

acting on the space of smooth convex curves immersed in $M^2(\rho)$.

EULER-LAGRANGE EQUATION

$$\sqrt{\kappa} \; rac{d^2}{ds^2} \left(rac{1}{\sqrt{\kappa}}
ight) - \kappa^2 +
ho = 0 \, .$$

- If $\kappa = \kappa_o$ is constant, then critical curves are circles with $\kappa_o = \sqrt{\rho}$ (necessarily $\rho \ge 0$).
- If κ is nonconstant, we can obtain a first integral (a conservation law).

CONSERVATION LAW

$$\left(\kappa'\right)^2 = -4\kappa^2\left(\kappa^2 - 4d\kappa + \rho\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

CONSERVATION LAW

$$\left(\kappa'
ight)^2 = -4\kappa^2\left(\kappa^2 - 4d\kappa +
ho
ight).$$

1. In the Euclidean plane \mathbb{R}^2 :

$$\kappa_d(s)=\frac{4d}{16d\,s^2+1}\,,$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for any constant d > 0 (Catenaries).

CONSERVATION LAW

$$\left(\kappa'
ight)^2=-4\kappa^2\left(\kappa^2-4d\kappa+
ho
ight)$$
 .

1. In the Euclidean plane \mathbb{R}^2 :

$$\kappa_d(s)=\frac{4d}{16d\,s^2+1}\,,$$

for any constant d > 0 (Catenaries).

2. In the round 2-sphere $\mathbb{S}^2(\rho)$:

$$\kappa_d(s) = rac{
ho}{2d - \sqrt{4d^2 -
ho} \sin\left(2\sqrt{
ho}s
ight)},$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

for any constant $d > \sqrt{\rho}/2$. (Periodic).

CONSERVATION LAW

$$\left(\kappa'
ight)^2=-4\kappa^2\left(\kappa^2-4d\kappa+
ho
ight)$$
 .

1. In the Euclidean plane \mathbb{R}^2 :

$$\kappa_d(s)=\frac{4d}{16d\,s^2+1}\,,$$

for any constant d > 0 (Catenaries).

2. In the round 2-sphere $\mathbb{S}^2(\rho)$:

$$\kappa_d(s) = rac{
ho}{2d - \sqrt{4d^2 -
ho} \sin\left(2\sqrt{
ho}s
ight)} \, ,$$

э

for any constant $d > \sqrt{\rho}/2$. (Periodic).

3. In the hyperbolic plane $\mathbb{H}^2(\rho)$: (the same with cosh).

Let γ_d be a spherical critical curve for Θ immersed in $\mathbb{S}^2(\rho)$ having curvature $\kappa = \kappa_d$, then,

$$\gamma_d(s) = \frac{1}{2\sqrt{\rho d\kappa}} \left(\sqrt{\rho}, \sqrt{4d\kappa - \rho} \sin \Psi, \sqrt{4d\kappa - \rho} \cos \Psi\right),$$

where (angular progression)

$$\Psi(s) = 2\sqrt{
ho d}\int rac{\kappa^{3/2}}{4d\kappa-
ho}\,ds\,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall that $d > \sqrt{\rho}/2$.

1. The trajectory of γ_d is contained in a domain bounded by two parallels in the half-sphere x > 0. It never meets the equator x = 0 nor the pole (1, 0, 0).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

1. The trajectory of γ_d is contained in a domain bounded by two parallels in the half-sphere x > 0. It never meets the equator x = 0 nor the pole (1, 0, 0).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

2. It meets the "bounding" parallels tangentially at the maximum and minimum curvatures, respectively.

- 1. The trajectory of γ_d is contained in a domain bounded by two parallels in the half-sphere x > 0. It never meets the equator x = 0 nor the pole (1, 0, 0).
- 2. It meets the "bounding" parallels tangentially at the maximum and minimum curvatures, respectively.
- 3. The trajectory of γ_d winds around the pole (1,0,0) without going backwards.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. The trajectory of γ_d is contained in a domain bounded by two parallels in the half-sphere x > 0. It never meets the equator x = 0 nor the pole (1, 0, 0).
- 2. It meets the "bounding" parallels tangentially at the maximum and minimum curvatures, respectively.
- 3. The trajectory of γ_d winds around the pole (1,0,0) without going backwards.
- 4. The curve γ_d is closed if and only if

$$\Lambda(d) = 2\sqrt{
ho d} \int_0^arrho rac{\kappa^{3/2}}{4d\kappa -
ho} \, ds = 2q\pi \, ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for a rational number $q \in \mathbb{Q}$.

Using the first integral to make a change of variable, we have

$$\Lambda(d) = 2\sqrt{
ho d} \int_{eta}^{lpha} rac{\kappa}{(4d\kappa -
ho)\sqrt{\kappa(lpha - \kappa)(\kappa - eta)}} \, d\kappa = 2q\pi$$

where $\alpha > \beta$ are the (only) positive roots of $Q_d(\kappa) = \kappa^2 - 4d\kappa + \rho$ (the maximum and minimum curvatures, respectively).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Using the first integral to make a change of variable, we have

$$\Lambda(d) = 2\sqrt{\rho d} \int_{\beta}^{\alpha} \frac{\kappa}{(4d\kappa - \rho)\sqrt{\kappa(\alpha - \kappa)(\kappa - \beta)}} d\kappa = 2q\pi$$

where $\alpha > \beta$ are the (only) positive roots of $Q_d(\kappa) = \kappa^2 - 4d\kappa + \rho$ (the maximum and minimum curvatures, respectively).

Geometric Meaning

Write q = n/m with relatively prime natural numbers n and m. Then:

Using the first integral to make a change of variable, we have

$$\Lambda(d) = 2\sqrt{\rho d} \int_{\beta}^{\alpha} \frac{\kappa}{(4d\kappa - \rho)\sqrt{\kappa(\alpha - \kappa)(\kappa - \beta)}} d\kappa = 2q\pi$$

where $\alpha > \beta$ are the (only) positive roots of $Q_d(\kappa) = \kappa^2 - 4d\kappa + \rho$ (the maximum and minimum curvatures, respectively).

GEOMETRIC MEANING

Write q = n/m with relatively prime natural numbers n and m. Then:

• The number *n* represents the winds around the pole (1, 0, 0) the curve γ_d needs to close. (Winding number).

Using the first integral to make a change of variable, we have

$$\Lambda(d) = 2\sqrt{\rho d} \int_{\beta}^{\alpha} \frac{\kappa}{(4d\kappa - \rho)\sqrt{\kappa(\alpha - \kappa)(\kappa - \beta)}} d\kappa = 2q\pi$$

where $\alpha > \beta$ are the (only) positive roots of $Q_d(\kappa) = \kappa^2 - 4d\kappa + \rho$ (the maximum and minimum curvatures, respectively).

GEOMETRIC MEANING

Write q = n/m with relatively prime natural numbers n and m. Then:

- The number *n* represents the winds around the pole (1,0,0) the curve γ_d needs to close. (Winding number).
- The number *m* is the number of periods of the curvature contained in one period of γ_d . (Number of lobes).
THEOREM (ARROYO, GARAY & P., 2019)

Let *n* and *m* be two relatively prime natural numbers satisfying $m < 2n < \sqrt{2} m$. Then, there exists a unique closed critical curve for Θ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

THEOREM (ARROYO, GARAY & P., 2019)

Let *n* and *m* be two relatively prime natural numbers satisfying $m < 2n < \sqrt{2}m$. Then, there exists a unique closed critical curve for Θ .

Conversely, any closed critical curve is one of the above.

THEOREM (ARROYO, GARAY & P., 2019)

Let *n* and *m* be two relatively prime natural numbers satisfying $m < 2n < \sqrt{2} m$. Then, there exists a unique closed critical curve for Θ .

Conversely, any closed critical curve is one of the above.

• Closed critical curves are in one-to-one correspondence with pairs of relatively prime natural numbers satisfying $m < 2n < \sqrt{2} m$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

THEOREM (ARROYO, GARAY & P., 2019)

Let *n* and *m* be two relatively prime natural numbers satisfying $m < 2n < \sqrt{2} m$. Then, there exists a unique closed critical curve for Θ .

Conversely, any closed critical curve is one of the above.

- Closed critical curves are in one-to-one correspondence with pairs of relatively prime natural numbers satisfying $m < 2n < \sqrt{2} m$.
- In particular, there are no closed and simple critical curves.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

THEOREM (ARROYO, GARAY & P., 2019)

Let *n* and *m* be two relatively prime natural numbers satisfying $m < 2n < \sqrt{2} m$. Then, there exists a unique closed critical curve for Θ .

Conversely, any closed critical curve is one of the above.

- Closed critical curves are in one-to-one correspondence with pairs of relatively prime natural numbers satisfying $m < 2n < \sqrt{2} m$.
- In particular, there are no closed and simple critical curves.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The "simplest" possible choice is $\gamma_{2,3}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Killing Vector Fields

A vector field W along γ is said to be a Killing vector field along the curve if the following equations hold

$$W(v) = W(\kappa) = 0$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

along γ .

Killing Vector Fields

A vector field W along γ is said to be a Killing vector field along the curve if the following equations hold

$$W(v) = W(\kappa) = 0$$

along γ .

PROPOSITION (LANGER & SINGER, 1984)

Consider $M^2(\rho)$ embedded as a totally geodesic surface of $M^3(\rho)$. Then, the vector field

$$\mathcal{I} = rac{1}{2\sqrt{\kappa}} B$$

is a Killing vector field along critical curves.

Let $\gamma \subset M^2(\rho) \subset M^3(\rho)$ be a critical curve for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa} \, ds$$
 .

Let $\gamma \subset M^2(
ho) \subset M^3(
ho)$ be a critical curve for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa} \, ds$$
 .

1. The Killing vector field along γ ,

$${\cal I} = {1\over 2\sqrt{\kappa}}\,B\,,$$

can uniquely be extended to a Killing vector field on $M^3(\rho)$.

Let $\gamma \subset M^2(\rho) \subset M^3(\rho)$ be a critical curve for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa} \, ds$$
 .

1. The Killing vector field along γ ,

$${\cal I} = {1\over 2\sqrt{\kappa}}\,B\,,$$

can uniquely be extended to a Killing vector field on $M^3(\rho)$.

2. Since $M^3(\rho)$ is complete, the one-parameter group of isometries determined by \mathcal{I} is given by $\{\phi_t, t \in \mathbb{R}\}$.

Let $\gamma \subset M^2(\rho) \subset M^3(\rho)$ be a critical curve for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa} \, ds$$
 .

1. The Killing vector field along γ ,

$$\mathcal{I}=\frac{1}{2\sqrt{\kappa}}\,B\,,$$

can uniquely be extended to a Killing vector field on $M^3(\rho)$.

- 2. Since $M^3(\rho)$ is complete, the one-parameter group of isometries determined by \mathcal{I} is given by $\{\phi_t, t \in \mathbb{R}\}$.
- We construct the binormal evolution surface (Garay & P., 2016)

$$S_{\gamma} = \left\{ \phi_t(\gamma(s)) \right\}.$$

Geometric Properties

By construction S_{γ} is a ξ -invariant surface. Moreover:

Geometric Properties

By construction S_{γ} is a ξ -invariant surface. Moreover:

1. Since $\gamma \subset M^2(\rho)$ is planar,

THEOREM (ARROYO, GARAY & P., 2017)

 S_{γ} is either a flat isoparametric surface (when κ is constant), or it is a rotational surface (when κ is nonconstant). In particular, if d > 0 it is a spherical rotational surface.

Geometric Properties

By construction S_{γ} is a ξ -invariant surface. Moreover:

1. Since $\gamma \subset M^2(\rho)$ is planar,

THEOREM (ARROYO, GARAY & P., 2017)

 S_{γ} is either a flat isoparametric surface (when κ is constant), or it is a rotational surface (when κ is nonconstant). In particular, if d > 0 it is a spherical rotational surface.

2. Since γ is critical for Θ ,

THEOREM (ARROYO, GARAY & P., 2018)

 S_{γ} is a minimal surface.

Characterization of (Rotational) Minimal Surfaces

THEOREM (ARROYO, GARAY & P., 2018)

Any rotational minimal surface $S \subset M^3(\rho)$ is, locally, either a ruled surface or it is spanned by a planar critical curve for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa} \; ds$$
 .

Characterization of (Rotational) Minimal Surfaces

THEOREM (ARROYO, GARAY & P., 2018)

Any rotational minimal surface $S \subset M^3(\rho)$ is, locally, either a ruled surface or it is spanned by a planar critical curve for

$$oldsymbol{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa} \; ds$$
 .

 We proved something more general, namely, any CMC ξ-invariant surface is, locally, spanned by a critical curve of an extension of Θ.

Other Applications of the Theory

Consider the 2-dimensional analogue of the Blaschke's variational problem, namely,

$$\mathcal{W}(\Sigma) := \int_{\Sigma} \sqrt{H} \, dA,$$

acting on the space of smooth weakly convex $(H > 0 \text{ and } K \ge 0)$ immersions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Other Applications of the Theory

Consider the 2-dimensional analogue of the Blaschke's variational problem, namely,

$$\mathcal{W}(\Sigma) := \int_{\Sigma} \sqrt{H} \, dA \, ,$$

acting on the space of smooth weakly convex $(H > 0 \text{ and } K \ge 0)$ immersions.

EULER-LAGRANGE EQUATION

$$2\sqrt{H}\Delta\left(rac{1}{\sqrt{H}}
ight)-4H^2+2(2
ho-K)=0\,.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

THEOREM (P., 2020)

The preimage of a closed curve γ through the standard Hopf mapping $\mathbb{S}^2 \to \mathbb{S}^3$ is a critical torus for \mathcal{W} if and only if γ is critical for Θ .

• The result is an extension of previous results of Hopf, Palais and Pinkall.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THEOREM (P., 2020)

The preimage of a closed curve γ through the standard Hopf mapping $\mathbb{S}^2 \to \mathbb{S}^3$ is a critical torus for \mathcal{W} if and only if γ is critical for Θ .

- The result is an extension of previous results of Hopf, Palais and Pinkall.
- For every pair of relatively prime natural numbers (n, m) satisfying $m < 2n < \sqrt{2} m$, there exists a unique Hopf tori critical for W.

THEOREM (P., 2020)

The preimage of a closed curve γ through the standard Hopf mapping $\mathbb{S}^2 \to \mathbb{S}^3$ is a critical torus for \mathcal{W} if and only if γ is critical for Θ .

- The result is an extension of previous results of Hopf, Palais and Pinkall.
- For every pair of relatively prime natural numbers (n, m) satisfying $m < 2n < \sqrt{2} m$, there exists a unique Hopf tori critical for W.

• None of them is embedded.

THEOREM (P., 2020)

The preimage of a closed curve γ through the standard Hopf mapping $\mathbb{S}^2 \to \mathbb{S}^3$ is a critical torus for \mathcal{W} if and only if γ is critical for Θ .

- The result is an extension of previous results of Hopf, Palais and Pinkall.
- For every pair of relatively prime natural numbers (n, m) satisfying $m < 2n < \sqrt{2} m$, there exists a unique Hopf tori critical for W.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- None of them is embedded.
- All are unstable (Gruber, Toda & P., Preprint).

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Illustrations

Illustrations

THE END

- J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Anal. Appl. 462-2 (2018), 1644-1668.
- J. Arroyo, O. J. Garay and A. Pámpano, Delaunay Surfaces in S³(ρ), *Filomat* **33-4** (2019), 1191-1200.
- A. Pámpano, Critical Tori for Mean Curvature Energies in Killing Submersions, *Nonlinear Anal.* **200** (2020), 112092.

Thank You!