

September 18, 2022

Historical Background I

Historical Background I

- 1691: Jacob (James) Bernoulli proposed the problem of determining the shape of elastic rods.

Historical Background I

- 1691: Jacob (James) Bernoulli proposed the problem of determining the shape of elastic rods.
- 1697: Johan Bernoulli (as a public challenge to Jacob Bernoulli) formulated the problem of finding the curve of minimum length (geodesics)

$$
\mathcal{L}(\gamma):=\int_{\gamma} d s
$$

Historical Background I

- 1691: Jacob (James) Bernoulli proposed the problem of determining the shape of elastic rods.
- 1697: Johan Bernoulli (as a public challenge to Jacob Bernoulli) formulated the problem of finding the curve of minimum length (geodesics)

$$
\mathcal{L}(\gamma):=\int_{\gamma} d s
$$

- 1742: D. Bernoulli, in a letter to L. Euler, suggested to study elastic curves as minimizers of the bending energy

$$
\mathcal{E}(\gamma):=\int_{\gamma} \kappa^{2} d s
$$

Historical Background I

- 1691: Jacob (James) Bernoulli proposed the problem of determining the shape of elastic rods.
- 1697: Johan Bernoulli (as a public challenge to Jacob Bernoulli) formulated the problem of finding the curve of minimum length (geodesics)

$$
\mathcal{L}(\gamma):=\int_{\gamma} d s
$$

- 1742: D. Bernoulli, in a letter to L. Euler, suggested to study elastic curves as minimizers of the bending energy

$$
\mathcal{E}(\gamma):=\int_{\gamma} \kappa^{2} d s
$$

- 1744: L. Euler described the shape of planar elasticae (partially solved by Jacob Bernoulli, 1692-1694).

Natural Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s .
$$

Natural Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=0$: Length functional, whose critical curves are geodesics.

Natural Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=0$: Length functional, whose critical curves are geodesics.
- Case $p=1$: Total curvature, whose Euler-Lagrange equation is an identity.
(Applications: relativistic particles,...)

Natural Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=0$: Length functional, whose critical curves are geodesics.
- Case $p=1$: Total curvature, whose Euler-Lagrange equation is an identity.
(Applications: relativistic particles,...)
- Case $p=2$: Classical bending energy and elastic curves. (Applications: lintearia, Willmore tori, biomembranes, computer vision,...)

Natural Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=0$: Length functional, whose critical curves are geodesics.
- Case $p=1$: Total curvature, whose Euler-Lagrange equation is an identity.
(Applications: relativistic particles,...)
- Case $p=2$: Classical bending energy and elastic curves. (Applications: lintearia, Willmore tori, biomembranes, computer vision,...)
- Case $p>2$: (Applications: Willmore-Chen submanifolds, string theories,...)

Other Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

Other Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=1 / 2$: Planar critical curves are catenaries (Blaschke, 1921).

Other Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=1 / 2$: Planar critical curves are catenaries (Blaschke, 1921).
- Case $p=1 / 3$: Equi-affine length for convex curves. Planar critical curves are parabolas (Blaschke, 1923).
(Applications: human drawing movements, recognition of planar shapes,...)

Other Values of p

More generally, D. Bernoulli proposed the p-elastic functionals

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

- Case $p=1 / 2$: Planar critical curves are catenaries (Blaschke, 1921).
- Case $p=1 / 3$: Equi-affine length for convex curves. Planar critical curves are parabolas (Blaschke, 1923).
(Applications: human drawing movements, recognition of planar shapes,...)
- Cases $p=(n-2) /(n+1)$: Arise in the theory of biconservative hypersurfaces. (Montaldo \& P., 2020, Montaldo, Oniciuc \& P., 2022)

Special Cases $p=2$ and $p=1 / 2$

Consider the p-elastic functional, possibly with a length constraint,

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

Special Cases $p=2$ and $p=1 / 2$

Consider the p-elastic functional, possibly with a length constraint,

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

1. If $p=n$ is a natural number, (after a suitable contact transformation) phase portraits are real cycles of smooth hyperelliptic curves of genus $p-1$. In particular, $p=2$ makes these curves elliptic.

Special Cases $p=2$ and $p=1 / 2$

Consider the p-elastic functional, possibly with a length constraint,

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

1. If $p=n$ is a natural number, (after a suitable contact transformation) phase portraits are real cycles of smooth hyperelliptic curves of genus $p-1$. In particular, $p=2$ makes these curves elliptic.
2. If $p=1 / n$ is the reciprocal of a natural number, phase portraits are real cycles of singular hyperelliptic curves of genus $n-1$. In particular, in the case $p=1 / 2$ they are elliptic.

Special Cases $p=2$ and $p=1 / 2$

Consider the p-elastic functional, possibly with a length constraint,

$$
\boldsymbol{\Theta}_{p}(\gamma):=\int_{\gamma} \kappa^{p} d s
$$

1. If $p=n$ is a natural number, (after a suitable contact transformation) phase portraits are real cycles of smooth hyperelliptic curves of genus $p-1$. In particular, $p=2$ makes these curves elliptic.
2. If $p=1 / n$ is the reciprocal of a natural number, phase portraits are real cycles of singular hyperelliptic curves of genus $n-1$. In particular, in the case $p=1 / 2$ they are elliptic.
The case $p=1 / 2$ plays the role of the classical bending energy (when $p \in(0,1)$) and its study can be faced resorting to elliptic functions and integrals (as the case $p=2$).

(Blaschke's) Variational Problem

Consider the $1 / 2$-elastic functional

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa} d s
$$

acting on the space of smooth convex curves immersed in $M^{2}(\rho)$.

(Blaschke's) Variational Problem

Consider the 1/2-elastic functional

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa} d s
$$

acting on the space of smooth convex curves immersed in $M^{2}(\rho)$.
Euler-Lagrange Equation

$$
\sqrt{\kappa} \frac{d^{2}}{d s^{2}}\left(\frac{1}{\sqrt{\kappa}}\right)-\kappa^{2}+\rho=0
$$

(Blaschke's) Variational Problem

Consider the 1/2-elastic functional

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa} d s
$$

acting on the space of smooth convex curves immersed in $M^{2}(\rho)$.
Euler-Lagrange Equation

$$
\sqrt{\kappa} \frac{d^{2}}{d s^{2}}\left(\frac{1}{\sqrt{\kappa}}\right)-\kappa^{2}+\rho=0 .
$$

- If $\kappa=\kappa_{0}$ is constant, then critical curves are circles with $\kappa_{o}=\sqrt{\rho}$ (necessarily $\rho \geq 0$).

(Blaschke's) Variational Problem

Consider the $1 / 2$-elastic functional

$$
\boldsymbol{\Theta}(\gamma):=\int_{\gamma} \sqrt{\kappa} d s
$$

acting on the space of smooth convex curves immersed in $M^{2}(\rho)$.
Euler-Lagrange Equation

$$
\sqrt{\kappa} \frac{d^{2}}{d s^{2}}\left(\frac{1}{\sqrt{\kappa}}\right)-\kappa^{2}+\rho=0
$$

- If $\kappa=\kappa_{0}$ is constant, then critical curves are circles with $\kappa_{o}=\sqrt{\rho}$ (necessarily $\rho \geq 0$).
- If κ is nonconstant, we can obtain a first integral (a conservation law).

Curvatures of Critical Curves

Conservation Law

$$
\left(\kappa^{\prime}\right)^{2}=-4 \kappa^{2}\left(\kappa^{2}-4 d \kappa+\rho\right)
$$

Curvatures of Critical Curves

Conservation Law

$$
\left(\kappa^{\prime}\right)^{2}=-4 \kappa^{2}\left(\kappa^{2}-4 d \kappa+\rho\right)
$$

1. In the Euclidean plane \mathbb{R}^{2} :

$$
\kappa_{d}(s)=\frac{4 d}{16 d s^{2}+1}
$$

for any constant $d>0$ (Catenaries).

Curvatures of Critical Curves

Conservation Law

$$
\left(\kappa^{\prime}\right)^{2}=-4 \kappa^{2}\left(\kappa^{2}-4 d \kappa+\rho\right)
$$

1. In the Euclidean plane \mathbb{R}^{2} :

$$
\kappa_{d}(s)=\frac{4 d}{16 d s^{2}+1}
$$

for any constant $d>0$ (Catenaries).
2. In the round 2 -sphere $\mathbb{S}^{2}(\rho)$:

$$
\kappa_{d}(s)=\frac{\rho}{2 d-\sqrt{4 d^{2}-\rho} \sin (2 \sqrt{\rho} s)}
$$

for any constant $d>\sqrt{\rho} / 2$. (Periodic).

Curvatures of Critical Curves

Conservation Law

$$
\left(\kappa^{\prime}\right)^{2}=-4 \kappa^{2}\left(\kappa^{2}-4 d \kappa+\rho\right)
$$

1. In the Euclidean plane \mathbb{R}^{2} :

$$
\kappa_{d}(s)=\frac{4 d}{16 d s^{2}+1}
$$

for any constant $d>0$ (Catenaries).
2. In the round 2-sphere $\mathbb{S}^{2}(\rho)$:

$$
\kappa_{d}(s)=\frac{\rho}{2 d-\sqrt{4 d^{2}-\rho} \sin (2 \sqrt{\rho} s)}
$$

for any constant $d>\sqrt{\rho} / 2$. (Periodic).
3. In the hyperbolic plane $\mathbb{H}^{2}(\rho)$: (the same with cosh).

Parameterization of (Spherical) Critical Curves

Let γ_{d} be a spherical critical curve for $\boldsymbol{\Theta}$ immersed in $\mathbb{S}^{2}(\rho)$ having curvature $\kappa=\kappa_{d}$, then,

$$
\gamma_{d}(s)=\frac{1}{2 \sqrt{\rho d \kappa}}(\sqrt{\rho}, \sqrt{4 d \kappa-\rho} \sin \psi, \sqrt{4 d \kappa-\rho} \cos \psi)
$$

where (angular progression)

$$
\Psi(s)=2 \sqrt{\rho d} \int \frac{\kappa^{3 / 2}}{4 d \kappa-\rho} d s
$$

Recall that $d>\sqrt{\rho} / 2$.

Geometric Properties

1. The trajectory of γ_{d} is contained in a domain bounded by two parallels in the half-sphere $x>0$. It never meets the equator $x=0$ nor the pole $(1,0,0)$.

Geometric Properties

1. The trajectory of γ_{d} is contained in a domain bounded by two parallels in the half-sphere $x>0$. It never meets the equator $x=0$ nor the pole $(1,0,0)$.
2. It meets the "bounding" parallels tangentially at the maximum and minimum curvatures, respectively.

Geometric Properties

1. The trajectory of γ_{d} is contained in a domain bounded by two parallels in the half-sphere $x>0$. It never meets the equator $x=0$ nor the pole $(1,0,0)$.
2. It meets the "bounding" parallels tangentially at the maximum and minimum curvatures, respectively.
3 . The trajectory of γ_{d} winds around the pole $(1,0,0)$ without going backwards.

Geometric Properties

1. The trajectory of γ_{d} is contained in a domain bounded by two parallels in the half-sphere $x>0$. It never meets the equator $x=0$ nor the pole $(1,0,0)$.
2. It meets the "bounding" parallels tangentially at the maximum and minimum curvatures, respectively.
3 . The trajectory of γ_{d} winds around the pole $(1,0,0)$ without going backwards.
3. The curve γ_{d} is closed if and only if

$$
\Lambda(d)=2 \sqrt{\rho d} \int_{0}^{\varrho} \frac{\kappa^{3 / 2}}{4 d \kappa-\rho} d s=2 q \pi
$$

for a rational number $q \in \mathbb{Q}$.

Closure Condition

Using the first integral to make a change of variable, we have

$$
\Lambda(d)=2 \sqrt{\rho d} \int_{\beta}^{\alpha} \frac{\kappa}{(4 d \kappa-\rho) \sqrt{\kappa(\alpha-\kappa)(\kappa-\beta)}} d \kappa=2 q \pi
$$

where $\alpha>\beta$ are the (only) positive roots of $Q_{d}(\kappa)=\kappa^{2}-4 d \kappa+\rho$ (the maximum and minimum curvatures, respectively).

Closure Condition

Using the first integral to make a change of variable, we have

$$
\Lambda(d)=2 \sqrt{\rho d} \int_{\beta}^{\alpha} \frac{\kappa}{(4 d \kappa-\rho) \sqrt{\kappa(\alpha-\kappa)(\kappa-\beta)}} d \kappa=2 q \pi
$$

where $\alpha>\beta$ are the (only) positive roots of $Q_{d}(\kappa)=\kappa^{2}-4 d \kappa+\rho$ (the maximum and minimum curvatures, respectively).

Geometric Meaning

Write $q=n / m$ with relatively prime natural numbers n and m. Then:

Closure Condition

Using the first integral to make a change of variable, we have

$$
\Lambda(d)=2 \sqrt{\rho d} \int_{\beta}^{\alpha} \frac{\kappa}{(4 d \kappa-\rho) \sqrt{\kappa(\alpha-\kappa)(\kappa-\beta)}} d \kappa=2 q \pi
$$

where $\alpha>\beta$ are the (only) positive roots of $Q_{d}(\kappa)=\kappa^{2}-4 d \kappa+\rho$ (the maximum and minimum curvatures, respectively).

Geometric Meaning

Write $q=n / m$ with relatively prime natural numbers n and m. Then:

- The number n represents the winds around the pole $(1,0,0)$ the curve γ_{d} needs to close. (Winding number).

Closure Condition

Using the first integral to make a change of variable, we have

$$
\Lambda(d)=2 \sqrt{\rho d} \int_{\beta}^{\alpha} \frac{\kappa}{(4 d \kappa-\rho) \sqrt{\kappa(\alpha-\kappa)(\kappa-\beta)}} d \kappa=2 q \pi
$$

where $\alpha>\beta$ are the (only) positive roots of $Q_{d}(\kappa)=\kappa^{2}-4 d \kappa+\rho$ (the maximum and minimum curvatures, respectively).

Geometric Meaning

Write $q=n / m$ with relatively prime natural numbers n and m. Then:

- The number n represents the winds around the pole $(1,0,0)$ the curve γ_{d} needs to close. (Winding number).
- The number m is the number of periods of the curvature contained in one period of γ_{d}. (Number of lobes).

Closed (Spherical) Critical Curves

Closed (Spherical) Critical Curves

Theorem (Arroyo, Garay \& P., 2019)
Let n and m be two relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$. Then, there exists a unique closed critical curve for $\boldsymbol{\Theta}$.

Closed (Spherical) Critical Curves

Theorem (Arroyo, Garay \& P., 2019)

Let n and m be two relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$. Then, there exists a unique closed critical curve for $\boldsymbol{\Theta}$.
Conversely, any closed critical curve is one of the above.

Closed (Spherical) Critical Curves

Theorem (Arroyo, Garay \& P., 2019)

Let n and m be two relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$. Then, there exists a unique closed critical curve for $\boldsymbol{\Theta}$.
Conversely, any closed critical curve is one of the above.

- Closed critical curves are in one-to-one correspondence with pairs of relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$.

Closed (Spherical) Critical Curves

Theorem (Arroyo, Garay \& P., 2019)

Let n and m be two relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$. Then, there exists a unique closed critical curve for $\boldsymbol{\Theta}$.
Conversely, any closed critical curve is one of the above.

- Closed critical curves are in one-to-one correspondence with pairs of relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$.
- In particular, there are no closed and simple critical curves.

Closed (Spherical) Critical Curves

Theorem (Arroyo, Garay \& P., 2019)

Let n and m be two relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$. Then, there exists a unique closed critical curve for $\boldsymbol{\Theta}$.
Conversely, any closed critical curve is one of the above.

- Closed critical curves are in one-to-one correspondence with pairs of relatively prime natural numbers satisfying $m<2 n<\sqrt{2} m$.
- In particular, there are no closed and simple critical curves.
- The "simplest" possible choice is $\gamma_{2,3}$.

Illustrations

Illustrations

$\gamma_{3,5}$

Illustrations

$\gamma_{4,7}$

Illustrations

$\gamma_{5,8}$

Illustrations

$\gamma_{5,9}$

Illustrations

$\gamma_{6,11}$

Illustrations

$\gamma_{7,10}$

Illustrations

$\gamma_{7,10}$

Killing Vector Fields

A vector field W along γ is said to be a Killing vector field along the curve if the following equations hold

$$
W(v)=W(\kappa)=0
$$

along γ.

Killing Vector Fields

A vector field W along γ is said to be a Killing vector field along the curve if the following equations hold

$$
W(v)=W(\kappa)=0
$$

along γ.

Proposition (Langer \& Singer, 1984)

Consider $M^{2}(\rho)$ embedded as a totally geodesic surface of $M^{3}(\rho)$. Then, the vector field

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa}} B
$$

is a Killing vector field along critical curves.

Binormal Evolution Surfaces

Let $\gamma \subset M^{2}(\rho) \subset M^{3}(\rho)$ be a critical curve for

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \sqrt{\kappa} d s
$$

Binormal Evolution Surfaces

Let $\gamma \subset M^{2}(\rho) \subset M^{3}(\rho)$ be a critical curve for

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \sqrt{\kappa} d s
$$

1. The Killing vector field along γ,

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa}} B
$$

can uniquely be extended to a Killing vector field on $M^{3}(\rho)$.

Binormal Evolution Surfaces

Let $\gamma \subset M^{2}(\rho) \subset M^{3}(\rho)$ be a critical curve for

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \sqrt{\kappa} d s
$$

1. The Killing vector field along γ,

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa}} B
$$

can uniquely be extended to a Killing vector field on $M^{3}(\rho)$.
2. Since $M^{3}(\rho)$ is complete, the one-parameter group of isometries determined by \mathcal{I} is given by $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.

Binormal Evolution Surfaces

Let $\gamma \subset M^{2}(\rho) \subset M^{3}(\rho)$ be a critical curve for

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \sqrt{\kappa} d s
$$

1. The Killing vector field along γ,

$$
\mathcal{I}=\frac{1}{2 \sqrt{\kappa}} B
$$

can uniquely be extended to a Killing vector field on $M^{3}(\rho)$.
2. Since $M^{3}(\rho)$ is complete, the one-parameter group of isometries determined by \mathcal{I} is given by $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.
3. We construct the binormal evolution surface (Garay \& P., 2016)

$$
S_{\gamma}=\left\{\phi_{t}(\gamma(s))\right\}
$$

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover:

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover:

1. Since $\gamma \subset M^{2}(\rho)$ is planar,

Theorem (Arroyo, Garay \& P., 2017)

S_{γ} is either a flat isoparametric surface (when κ is constant), or it is a rotational surface (when κ is nonconstant). In particular, if
$d>0$ it is a spherical rotational surface.

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover:

1. Since $\gamma \subset M^{2}(\rho)$ is planar,

Theorem (Arroyo, Garay \& P., 2017)

S_{γ} is either a flat isoparametric surface (when κ is constant), or it is a rotational surface (when κ is nonconstant). In particular, if $d>0$ it is a spherical rotational surface.
2. Since γ is critical for $\boldsymbol{\Theta}$,

Theorem (Arroyo, Garay \& P., 2018)
S_{γ} is a minimal surface.

Characterization of (Rotational) Minimal Surfaces

Theorem (Arroyo, Garay \& P., 2018)
Any rotational minimal surface $S \subset M^{3}(\rho)$ is, locally, either a ruled surface or it is spanned by a planar critical curve for

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \sqrt{\kappa} d s
$$

Characterization of (Rotational) Minimal Surfaces

Theorem (Arroyo, Garay \& P., 2018)
Any rotational minimal surface $S \subset M^{3}(\rho)$ is, locally, either a ruled surface or it is spanned by a planar critical curve for

$$
\boldsymbol{\Theta}(\gamma)=\int_{\gamma} \sqrt{\kappa} d s .
$$

- We proved something more general, namely, any CMC ξ-invariant surface is, locally, spanned by a critical curve of an extension of $\boldsymbol{\Theta}$.

Other Applications of the Theory

Consider the 2-dimensional analogue of the Blaschke's variational problem, namely,

$$
\mathcal{W}(\Sigma):=\int_{\Sigma} \sqrt{H} d A
$$

acting on the space of smooth weakly convex ($H>0$ and $K \geq 0$) immersions.

Other Applications of the Theory

Consider the 2-dimensional analogue of the Blaschke's variational problem, namely,

$$
\mathcal{W}(\Sigma):=\int_{\Sigma} \sqrt{H} d A
$$

acting on the space of smooth weakly convex ($H>0$ and $K \geq 0$) immersions.

Euler-Lagrange Equation

$$
2 \sqrt{H} \Delta\left(\frac{1}{\sqrt{H}}\right)-4 H^{2}+2(2 \rho-K)=0 .
$$

Existence of Critical Tori

Theorem (P., 2020)

The preimage of a closed curve γ through the standard Hopf mapping $\mathbb{S}^{2} \rightarrow \mathbb{S}^{3}$ is a critical torus for \mathcal{W} if and only if γ is critical for $\boldsymbol{\Theta}$.

- The result is an extension of previous results of Hopf, Palais and Pinkall.

Existence of Critical Tori

Theorem (P., 2020)

The preimage of a closed curve γ through the standard Hopf mapping $\mathbb{S}^{2} \rightarrow \mathbb{S}^{3}$ is a critical torus for \mathcal{W} if and only if γ is critical for $\boldsymbol{\Theta}$.

- The result is an extension of previous results of Hopf, Palais and Pinkall.
- For every pair of relatively prime natural numbers (n, m) satisfying $m<2 n<\sqrt{2} m$, there exists a unique Hopf tori critical for \mathcal{W}.

Existence of Critical Tori

Theorem (P., 2020)

The preimage of a closed curve γ through the standard Hopf mapping $\mathbb{S}^{2} \rightarrow \mathbb{S}^{3}$ is a critical torus for \mathcal{W} if and only if γ is critical for $\boldsymbol{\Theta}$.

- The result is an extension of previous results of Hopf, Palais and Pinkall.
- For every pair of relatively prime natural numbers (n, m) satisfying $m<2 n<\sqrt{2} m$, there exists a unique Hopf tori critical for \mathcal{W}.
- None of them is embedded.

Existence of Critical Tori

Theorem (P., 2020)

The preimage of a closed curve γ through the standard Hopf mapping $\mathbb{S}^{2} \rightarrow \mathbb{S}^{3}$ is a critical torus for \mathcal{W} if and only if γ is critical for $\boldsymbol{\Theta}$.

- The result is an extension of previous results of Hopf, Palais and Pinkall.
- For every pair of relatively prime natural numbers (n, m) satisfying $m<2 n<\sqrt{2} m$, there exists a unique Hopf tori critical for \mathcal{W}.
- None of them is embedded.
- All are unstable (Gruber, Toda \& P., Preprint).

Illustrations

Illustrations

Illustrations

Illustrations

Illustrations

Illustrations

Illustrations

THE END

- J. Arroyo, O. J. Garay and A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, J. Math. Anal. Appl. 462-2 (2018), 1644-1668.
- J. Arroyo, O. J. Garay and A. Pámpano, Delaunay Surfaces in $\mathbb{S}^{3}(\rho)$, Filomat 33-4 (2019), 1191-1200.
- A. Pámpano, Critical Tori for Mean Curvature Energies in Killing Submersions, Nonlinear Anal. 200 (2020), 112092.

Thank You!

