Álvaro Pámpano Llarena

AMS Central Fall Meeting
Geometry of Submanifolds and Integrable Systems

El Paso-Virtual, September 12 (2020)

Constant Skew Curvature Surfaces

Let S be a surface immersed in a Riemannian 3-space form $M^{3}(\rho)$.

Constant Skew Curvature Surfaces

Let S be a surface immersed in a Riemannian 3-space form $M^{3}(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

$$
H^{2}-K+\rho(\geq 0)
$$

is constant.

Constant Skew Curvature Surfaces

Let S be a surface immersed in a Riemannian 3-space form $M^{3}(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

$$
H^{2}-K+\rho(\geq 0)
$$

is constant. Equivalently, if $\kappa_{1}(p)=\kappa_{2}(p)+c$ holds for all $p \in S$.

Constant Skew Curvature Surfaces

Let S be a surface immersed in a Riemannian 3-space form $M^{3}(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

$$
H^{2}-K+\rho(\geq 0)
$$

is constant. Equivalently, if $\kappa_{1}(p)=\kappa_{2}(p)+c$ holds for all $p \in S$.
First examples:

- Totally Umbilical Surfaces $(c=0)$.

Constant Skew Curvature Surfaces

Let S be a surface immersed in a Riemannian 3-space form $M^{3}(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

$$
H^{2}-K+\rho(\geq 0)
$$

is constant. Equivalently, if $\kappa_{1}(p)=\kappa_{2}(p)+c$ holds for all $p \in S$.
First examples:

- Totally Umbilical Surfaces $(c=0)$.
- Isoparametric Surfaces ($\kappa_{1} \& \kappa_{2}$ constant).

Constant Skew Curvature Surfaces

Let S be a surface immersed in a Riemannian 3-space form $M^{3}(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

$$
H^{2}-K+\rho(\geq 0)
$$

is constant. Equivalently, if $\kappa_{1}(p)=\kappa_{2}(p)+c$ holds for all $p \in S$.
First examples:

- Totally Umbilical Surfaces $(c=0)$.
- Isoparametric Surfaces ($\kappa_{1} \& \kappa_{2}$ constant).

From now on we will discard these cases.

Applications and Previous Studies

The quantity $H^{2}-K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

Applications and Previous Studies

The quantity $H^{2}-K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)

Applications and Previous Studies

The quantity $H^{2}-K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa \& Etemadi, 1998), (Da Silva, Bastos \& Ribeiro, 2017)

Applications and Previous Studies

The quantity $H^{2}-K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa \& Etemadi, 1998), (Da Silva, Bastos \& Ribeiro, 2017)
- In Geometry as difference curvature: (Chen, 1969/1970)

Applications and Previous Studies

The quantity $H^{2}-K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa \& Etemadi, 1998), (Da Silva, Bastos \& Ribeiro, 2017)
- In Geometry as difference curvature: (Chen, 1969/1970)
- In the theory of Bonnet surfaces: (Toda \& Pigazzini, 2017)

Applications and Previous Studies

The quantity $H^{2}-K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials:
(Encinosa \& Etemadi, 1998), (Da Silva, Bastos \& Ribeiro, 2017)
- In Geometry as difference curvature: (Chen, 1969/1970)
- In the theory of Bonnet surfaces: (Toda \& Pigazzini, 2017)
- In the theory of linear Weingarten surfaces: (López \& -, 2020)

Applications and Previous Studies

The quantity $H^{2}-K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa \& Etemadi, 1998), (Da Silva, Bastos \& Ribeiro, 2017)
- In Geometry as difference curvature: (Chen, 1969/1970)
- In the theory of Bonnet surfaces: (Toda \& Pigazzini, 2017)
- In the theory of linear Weingarten surfaces: (López \& -, 2020)

This presentation is based on:

- R. López and -, Classification of rotational surfaces with constant skew curvature in 3-space forms, J. Math. Anal. Appl. 489 (2020), 124195.

Exponential Type Curvature Energy

Exponential Type Curvature Energy

For any non-zero real constant μ, we consider the exponential type curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} e^{\mu \kappa}=\int_{0}^{L} e^{\mu \kappa(s)} d s
$$

acting on the space of smooth immersed curves in Riemannian 2 -space forms $M^{2}(\rho)$, i.e. $\gamma:[0, L] \rightarrow M^{2}(\rho)$.

Exponential Type Curvature Energy

For any non-zero real constant μ, we consider the exponential type curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma} e^{\mu \kappa}=\int_{0}^{L} e^{\mu \kappa(s)} d s
$$

acting on the space of smooth immersed curves in Riemannian 2 -space forms $M^{2}(\rho)$, i.e. $\gamma:[0, L] \rightarrow M^{2}(\rho)$.

Euler-Lagrange equation

Regardless of the boundary conditions, any critical curve for $\boldsymbol{\Theta}_{\mu}$ must satisfy

$$
\frac{d^{2}}{d s^{2}}\left(e^{\mu \kappa}\right)+\left(\kappa^{2}-\frac{\kappa}{\mu}+\rho\right) e^{\mu \kappa}=0
$$

We will call them, simply, critical curves.

Properties of Critical Curves

Properties of Critical Curves

1. If γ is critical for $\boldsymbol{\Theta}_{\mu}$, then $\widetilde{\gamma}$ (obtained by reversing the orientation) is critical for $\boldsymbol{\Theta}_{\widetilde{\mu}}$ with $\widetilde{\mu}=-\mu$.

Properties of Critical Curves

1. If γ is critical for $\boldsymbol{\Theta}_{\mu}$, then $\widetilde{\gamma}$ (obtained by reversing the orientation) is critical for $\boldsymbol{\Theta}_{\widetilde{\mu}}$ with $\widetilde{\mu}=-\mu$. So, we assume $\mu>0$ holds.

Properties of Critical Curves

1. If γ is critical for $\boldsymbol{\Theta}_{\mu}$, then $\widetilde{\gamma}$ (obtained by reversing the orientation) is critical for $\boldsymbol{\Theta}_{\widetilde{\mu}}$ with $\widetilde{\mu}=-\mu$. So, we assume $\mu>0$ holds.
2. If the critical curve has constant curvature, then it is:

Properties of Critical Curves

1. If γ is critical for $\boldsymbol{\Theta}_{\mu}$, then $\widetilde{\gamma}$ (obtained by reversing the orientation) is critical for $\boldsymbol{\Theta}_{\widetilde{\mu}}$ with $\widetilde{\mu}=-\mu$. So, we assume $\mu>0$ holds.
2. If the critical curve has constant curvature, then it is:

- Case \mathbb{R}^{2}. Either a straight line or a circle of radius μ.

Properties of Critical Curves

1. If γ is critical for $\boldsymbol{\Theta}_{\mu}$, then $\widetilde{\gamma}$ (obtained by reversing the orientation) is critical for $\boldsymbol{\Theta}_{\widetilde{\mu}}$ with $\widetilde{\mu}=-\mu$. So, we assume $\mu>0$ holds.
2. If the critical curve has constant curvature, then it is:

- Case \mathbb{R}^{2}. Either a straight line or a circle of radius μ.
- Case $\mathbb{S}^{2}(\rho)$. Parallel circles.

Properties of Critical Curves

1. If γ is critical for $\boldsymbol{\Theta}_{\mu}$, then $\widetilde{\gamma}$ (obtained by reversing the orientation) is critical for $\boldsymbol{\Theta}_{\widetilde{\mu}}$ with $\widetilde{\mu}=-\mu$. So, we assume $\mu>0$ holds.
2. If the critical curve has constant curvature, then it is:

- Case \mathbb{R}^{2}. Either a straight line or a circle of radius μ.
- Case $\mathbb{S}^{2}(\rho)$. Parallel circles.
- Case $\mathbb{H}^{2}(\rho)$. Either a circle or a hypercycle.

Properties of Critical Curves

1. If γ is critical for $\boldsymbol{\Theta}_{\mu}$, then $\widetilde{\gamma}$ (obtained by reversing the orientation) is critical for $\boldsymbol{\Theta}_{\widetilde{\mu}}$ with $\widetilde{\mu}=-\mu$. So, we assume $\mu>0$ holds.
2. If the critical curve has constant curvature, then it is:

- Case \mathbb{R}^{2}. Either a straight line or a circle of radius μ.
- Case $\mathbb{S}^{2}(\rho)$. Parallel circles.
- Case $\mathbb{H}^{2}(\rho)$. Either a circle or a hypercycle.

3. If the critical curve has non constant curvature, then

$$
\mu^{4} \kappa_{s}^{2}=d e^{-2 \mu \kappa}-(\mu \kappa-1)^{2}-\rho \mu^{2}
$$

for $d \in \mathbb{R}$ represents a first integral of the Euler-Lagrange equation.

Killing Vector Fields Along Curves

Killing Vector Fields Along Curves

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$
W(v)=W(\kappa)=0
$$

along γ. (Langer \& Singer, 1984)

Killing Vector Fields Along Curves

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$
W(v)=W(\kappa)=0
$$

along γ. (Langer \& Singer, 1984)
Proposition (Langer \& Singer, 1984)
Consider $M^{2}(\rho)$ embedded as a totally geodesic surface of $M^{3}(\rho)$. Then, the vector field

$$
\mathcal{I}=\mu e^{\mu \kappa} B
$$

is a Killing vector field along critical curves.

Killing Vector Fields Along Curves

A vector field W along γ, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$
W(v)=W(\kappa)=0
$$

along γ. (Langer \& Singer, 1984)
Proposition (Langer \& Singer, 1984)
Consider $M^{2}(\rho)$ embedded as a totally geodesic surface of $M^{3}(\rho)$. Then, the vector field

$$
\mathcal{I}=\mu e^{\mu \kappa} B
$$

is a Killing vector field along critical curves.

- Killing vector fields along γ can be extended to Killing vector fields on the whole $M^{3}(\rho)$. The extension is unique.

Binormal Evolution Surfaces

Binormal Evolution Surfaces

Let $\gamma(s) \subset M^{2}(\rho)$ be any critical curve for $\boldsymbol{\Theta}_{\mu}$. (We consider $M^{2}(\rho) \subset M^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

Binormal Evolution Surfaces

Let $\gamma(s) \subset M^{2}(\rho)$ be any critical curve for $\boldsymbol{\Theta}_{\mu}$. (We consider $M^{2}(\rho) \subset M^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$
\mathcal{I}=\mu e^{\mu \kappa} B
$$

Binormal Evolution Surfaces

Let $\gamma(s) \subset M^{2}(\rho)$ be any critical curve for $\boldsymbol{\Theta}_{\mu}$. (We consider $M^{2}(\rho) \subset M^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$
\mathcal{I}=\mu e^{\mu \kappa} B
$$

2. Let's denote by ξ the (unique) extension to a Killing vector field of $M^{3}(\rho)$. (It can be assumed to be: $\xi=\lambda_{1} X_{1}+\lambda_{2} X_{2}$.)

Binormal Evolution Surfaces

Let $\gamma(s) \subset M^{2}(\rho)$ be any critical curve for $\boldsymbol{\Theta}_{\mu}$. (We consider $M^{2}(\rho) \subset M^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$
\mathcal{I}=\mu e^{\mu \kappa} B
$$

2. Let's denote by ξ the (unique) extension to a Killing vector field of $M^{3}(\rho)$. (It can be assumed to be: $\xi=\lambda_{1} X_{1}+\lambda_{2} X_{2}$.)
3. Since $M^{3}(\rho)$ is complete, the one-parameter group of isometries determined by ξ is $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.

Binormal Evolution Surfaces

Let $\gamma(s) \subset M^{2}(\rho)$ be any critical curve for $\boldsymbol{\Theta}_{\mu}$. (We consider $M^{2}(\rho) \subset M^{3}(\rho)$ and γ being planar, i.e. $\tau=0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

$$
\mathcal{I}=\mu e^{\mu \kappa} B .
$$

2. Let's denote by ξ the (unique) extension to a Killing vector field of $M^{3}(\rho)$. (It can be assumed to be: $\xi=\lambda_{1} X_{1}+\lambda_{2} X_{2}$.)
3 . Since $M^{3}(\rho)$ is complete, the one-parameter group of isometries determined by ξ is $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.
3. We construct the binormal evolution surface (Garay \& -, 2016)

$$
S_{\gamma}:=\left\{x(s, t):=\phi_{t}(\gamma(s))\right\} .
$$

Geometric Properties

Geometric Properties

By construction S_{γ} is a ξ-invariant surface.

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover, it verifies:

- Since $\gamma(s) \subset M^{2}(\rho)$ (γ is planar),

Theorem (Arroyo, Garay \& -, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s)=\kappa_{o}$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover, it verifies:

- Since $\gamma(s) \subset M^{2}(\rho)$ (γ is planar),

Theorem (Arroyo, Garay \& -, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s)=\kappa_{0}$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant). In particular, spherical rotational surface if $d>0$ holds.

Geometric Properties

By construction S_{γ} is a ξ-invariant surface. Moreover, it verifies:

- Since $\gamma(s) \subset M^{2}(\rho)$ (γ is planar),

Theorem (Arroyo, Garay \& -, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s)=\kappa_{o}$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant). In particular, spherical rotational surface if $d>0$ holds.

- Since $\gamma(s)$ is a critical curve for $\boldsymbol{\Theta}_{\mu}$,

Theorem (López \& —, 2020)

The binormal evolution surface S_{γ} is a constant skew curvature surface. It verifies:

$$
\kappa_{1}=\kappa_{2}+c, \quad\left(\kappa_{i} \text { principal curvatures }\right)
$$

for $c=1 / \mu$.

Characterization of Profile Curves

Characterization of Profile Curves

Theorem (López \& —, 2020)
Let $S \subset M^{3}(\rho)$ be a (non-isoparametric) rotational surface with constant skew curvature.

Characterization of Profile Curves

Theorem (López \& —, 2020)

Let $S \subset M^{3}(\rho)$ be a (non-isoparametric) rotational surface with constant skew curvature. If γ is a profile curve of S, then the curvature κ of γ satisfies the Euler-Lagrange equation associated to the exponential type curvature energy

$$
\boldsymbol{\Theta}_{\mu}(\gamma)=\int_{\gamma} e^{\mu \kappa}
$$

where $\mu=1 / c$.

Profile Curves in \mathbb{R}^{2}

Profile Curves in \mathbb{R}^{2}

Profile Curves in \mathbb{R}^{2}

Profile Curves in \mathbb{R}^{2}

Figure: Figure-Eight Type Critical Curve

Profile Curves in \mathbb{R}^{2}

Figure: Non-Simple Biconcave Type Critical Curve

Profile Curves in \mathbb{R}^{2}

Figure: Borderline Type Critical Curve

Profile Curves in \mathbb{R}^{2}

Figure: Orbit-Like Type Critical Curve

Profile Curves in $\mathbb{S}^{2}(\rho)$

Profile Curves in $\mathbb{S}^{2}(\rho)$

$$
\begin{aligned}
& 1-\rho \\
& 2-e e s
\end{aligned}
$$

Profile Curves in $\mathbb{H}^{2}(\rho)$

Profile Curves in $\mathbb{H}^{2}(\rho)$

THE END

Thank You!

