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Constant Skew Curvature Surfaces

Let S be a surface immersed in a Riemannian 3-space form M3(ρ).

Definition

We say that S has constant skew curvature if the quantity

H2 − K + ρ (≥ 0)

is constant. Equivalently, if κ1(p) = κ2(p) + c holds for all p ∈ S .

First examples:

• Totally Umbilical Surfaces (c = 0).

• Isoparametric Surfaces (κ1 & κ2 constant).

From now on we will discard these cases.
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Applications and Previous Studies

The quantity H2 − K (+ρ) has been used in different works
different areas such as Physics, Biology and Mathematics:

• In elasticity of membranes: (Helfrich, 1973)

• In quantum mechanics as geometry-induced potentials:
(Encinosa & Etemadi, 1998), (Da Silva, Bastos & Ribeiro, 2017)

• In Geometry as difference curvature: (Chen, 1969/1970)

• In the theory of Bonnet surfaces: (Toda & Pigazzini, 2017)

• In the theory of linear Weingarten surfaces: (López & —, 2020)

This presentation is based on:

• R. López and —, Classification of rotational surfaces with
constant skew curvature in 3-space forms, J. Math. Anal.
Appl. 489 (2020), 124195.
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Exponential Type Curvature Energy

For any non-zero real constant µ, we consider the exponential type
curvature energy

Θµ(γ) :=

∫
γ
e µκ =

∫ L

0
e µκ(s)ds

acting on the space of smooth immersed curves in Riemannian
2-space forms M2(ρ), i.e. γ : [0, L]→ M2(ρ).

Euler-Lagrange equation

Regardless of the boundary conditions, any critical curve for Θµ

must satisfy

d2

ds2
(e µκ) +

(
κ2 − κ

µ
+ ρ

)
e µκ = 0 .

We will call them, simply, critical curves.
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Properties of Critical Curves

1. If γ is critical for Θµ, then γ̃ (obtained by reversing the
orientation) is critical for Θµ̃ with µ̃ = −µ. So, we assume
µ > 0 holds.

2. If the critical curve has constant curvature, then it is:
• Case R2. Either a straight line or a circle of radius µ.
• Case S2(ρ). Parallel circles.
• Case H2(ρ). Either a circle or a hypercycle.

3. If the critical curve has non constant curvature, then

µ4κ2s = de−2µκ − (µκ− 1)2 − ρµ2

for d ∈ R represents a first integral of the Euler-Lagrange
equation.
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Killing Vector Fields Along Curves

A vector field W along γ, which infinitesimally preserves unit speed
parametrization is said to be a Killing vector field along γ if it
evolves in the direction of W without changing shape, only
position. That is, the following equations hold

W (v) = W (κ) = 0

along γ. (Langer & Singer, 1984)

Proposition (Langer & Singer, 1984)

Consider M2(ρ) embedded as a totally geodesic surface of M3(ρ).
Then, the vector field

I = µe µκB

is a Killing vector field along critical curves.

• Killing vector fields along γ can be extended to Killing vector
fields on the whole M3(ρ). The extension is unique.
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Binormal Evolution Surfaces

Let γ(s)⊂ M2(ρ) be any critical curve for Θµ. (We consider
M2(ρ) ⊂ M3(ρ) and γ being planar, i.e. τ = 0.)

1. Consider the Killing vector field along γ in the direction of the
(constant) binormal vector field:

I = µe µκB .

2. Let’s denote by ξ the (unique) extension to a Killing vector
field of M3(ρ). (It can be assumed to be: ξ = λ1X1 + λ2X2.)

3. Since M3(ρ) is complete, the one-parameter group of
isometries determined by ξ is {φt , t ∈ R}.

4. We construct the binormal evolution surface (Garay & —, 2016)

Sγ := {x(s, t) := φt (γ(s))} .
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Geometric Properties

By construction Sγ is a ξ-invariant surface. Moreover, it verifies:
• Since γ(s) ⊂ M2(ρ) (γ is planar),

Theorem (Arroyo, Garay & —, 2017)

The binormal evolution surface Sγ is either a flat isoparametric
surface (when κ(s) = κo is constant); or, it is a rotational surface
(when κ(s) is not constant). In particular, spherical rotational
surface if d > 0 holds.

• Since γ(s) is a critical curve for Θµ,

Theorem (López & —, 2020)

The binormal evolution surface Sγ is a constant skew curvature
surface. It verifies:

κ1 = κ2 + c , (κi principal curvatures)

for c = 1/µ.
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Characterization of Profile Curves

Theorem (López & —, 2020)

Let S ⊂ M3(ρ) be a (non-isoparametric) rotational surface with
constant skew curvature. If γ is a profile curve of S , then the
curvature κ of γ satisfies the Euler-Lagrange equation associated
to the exponential type curvature energy

Θµ(γ) =

∫
γ
e µκ

where µ = 1/c .
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Profile Curves in R2

Figure: Oval Type Critical Curve



Profile Curves in R2

Figure: Oval Type Critical Curve



Profile Curves in R2

Figure: Simple Biconcave Type Critical Curve



Profile Curves in R2

Figure: Figure-Eight Type Critical Curve



Profile Curves in R2

Figure: Non-Simple Biconcave Type Critical Curve



Profile Curves in R2

Figure: Borderline Type Critical Curve



Profile Curves in R2

Figure: Orbit-Like Type Critical Curve



Profile Curves in S2(ρ)



Profile Curves in S2(ρ)



Profile Curves in H2(ρ)



Profile Curves in H2(ρ)



THE END

Thank You!


