

Construction of Rotational Constant Skew Curvature Surfaces in Space Forms

Álvaro Pámpano Llarena

AMS Central Fall Meeting Geometry of Submanifolds and Integrable Systems

El Paso-Virtual, September 12 (2020)

(日) (同) (三) (三) (三) (○) (○)

Let S be a surface immersed in a Riemannian 3-space form $M^3(\rho)$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Let S be a surface immersed in a Riemannian 3-space form $M^3(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

 $H^2 - K + \rho \, (\geq 0)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is constant.

Let S be a surface immersed in a Riemannian 3-space form $M^3(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

$$H^2 - K + \rho \,(\geq 0)$$

is constant. Equivalently, if $\kappa_1(p) = \kappa_2(p) + c$ holds for all $p \in S$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let S be a surface immersed in a Riemannian 3-space form $M^3(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

 $H^2 - K + \rho \, (\geq 0)$

is constant. Equivalently, if $\kappa_1(p) = \kappa_2(p) + c$ holds for all $p \in S$.

(日) (同) (三) (三) (三) (○) (○)

First examples:

• Totally Umbilical Surfaces (c = 0).

Let S be a surface immersed in a Riemannian 3-space form $M^3(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

 $H^2 - K + \rho (\geq 0)$

is constant. Equivalently, if $\kappa_1(p) = \kappa_2(p) + c$ holds for all $p \in S$.

First examples:

- Totally Umbilical Surfaces (c = 0).
- Isoparametric Surfaces ($\kappa_1 \& \kappa_2 \text{ constant}$).

Let S be a surface immersed in a Riemannian 3-space form $M^3(\rho)$.

Definition

We say that S has constant skew curvature if the quantity

 $H^2 - K + \rho \, (\geq 0)$

is constant. Equivalently, if $\kappa_1(p) = \kappa_2(p) + c$ holds for all $p \in S$.

First examples:

- Totally Umbilical Surfaces (c = 0).
- Isoparametric Surfaces ($\kappa_1 \& \kappa_2 \text{ constant}$).

From now on we will discard these cases.

The quantity $H^2 - K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

The quantity $H^2 - K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

• In elasticity of membranes: (Helfrich, 1973)

The quantity $H^2 - K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa & Etemadi, 1998), (Da Silva, Bastos & Ribeiro, 2017)

The quantity $H^2 - K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa & Etemadi, 1998), (Da Silva, Bastos & Ribeiro, 2017)

• In Geometry as difference curvature: (Chen, 1969/1970)

The quantity $H^2 - K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa & Etemadi, 1998), (Da Silva, Bastos & Ribeiro, 2017)
- In Geometry as difference curvature: (Chen, 1969/1970)
- In the theory of Bonnet surfaces: (Toda & Pigazzini, 2017)

The quantity $H^2 - K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa & Etemadi, 1998), (Da Silva, Bastos & Ribeiro, 2017)
- In Geometry as difference curvature: (Chen, 1969/1970)
- In the theory of Bonnet surfaces: (Toda & Pigazzini, 2017)
- In the theory of linear Weingarten surfaces: (López & --, 2020)

The quantity $H^2 - K(+\rho)$ has been used in different works different areas such as Physics, Biology and Mathematics:

- In elasticity of membranes: (Helfrich, 1973)
- In quantum mechanics as geometry-induced potentials: (Encinosa & Etemadi, 1998), (Da Silva, Bastos & Ribeiro, 2017)
- In Geometry as difference curvature: (Chen, 1969/1970)
- In the theory of Bonnet surfaces: (Toda & Pigazzini, 2017)
- In the theory of linear Weingarten surfaces: (López & --, 2020)

This presentation is based on:

 R. López and —, Classification of rotational surfaces with constant skew curvature in 3-space forms, *J. Math. Anal. Appl.* 489 (2020), 124195.

Exponential Type Curvature Energy

(ロ)、(型)、(E)、(E)、 E) の(の)

Exponential Type Curvature Energy

For any non-zero real constant μ , we consider the exponential type curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma) := \int_{\gamma} e^{\,\mu\kappa} = \int_{0}^{L} e^{\,\mu\kappa(s)} ds$$

acting on the space of smooth immersed curves in Riemannian 2-space forms $M^2(\rho)$, i.e. $\gamma : [0, L] \to M^2(\rho)$.

Exponential Type Curvature Energy

For any non-zero real constant μ , we consider the exponential type curvature energy

$$oldsymbol{\Theta}_{\mu}(\gamma):=\int_{\gamma}e^{\,\mu\kappa}=\int_{0}^{L}e^{\,\mu\kappa(s)}ds$$

acting on the space of smooth immersed curves in Riemannian 2-space forms $M^2(\rho)$, i.e. $\gamma : [0, L] \to M^2(\rho)$.

Euler-Lagrange equation

Regardless of the boundary conditions, any critical curve for Θ_{μ} must satisfy

$$rac{d^2}{ds^2}\left(e^{\,\mu\kappa}
ight)+\left(\kappa^2-rac{\kappa}{\mu}+
ho
ight)e^{\,\mu\kappa}=0\,.$$

We will call them, simply, critical curves.

<ロ> <回> <回> < 三> < 三> < 三> < 三</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. If γ is critical for Θ_{μ} , then $\tilde{\gamma}$ (obtained by reversing the orientation) is critical for $\Theta_{\tilde{\mu}}$ with $\tilde{\mu} = -\mu$.

If γ is critical for Θ_μ, then γ̃ (obtained by reversing the orientation) is critical for Θ_{μ̃} with μ̃ = −μ. So, we assume μ > 0 holds.

If γ is critical for Θ_μ, then γ̃ (obtained by reversing the orientation) is critical for Θ_{μ̃} with μ̃ = −μ. So, we assume μ > 0 holds.

2. If the critical curve has constant curvature, then it is:

- If γ is critical for Θ_μ, then γ̃ (obtained by reversing the orientation) is critical for Θ_{μ̃} with μ̃ = −μ. So, we assume μ > 0 holds.
- 2. If the critical curve has constant curvature, then it is:
 - Case \mathbb{R}^2 . Either a straight line or a circle of radius μ .

- If γ is critical for Θ_μ, then γ̃ (obtained by reversing the orientation) is critical for Θ_{μ̃} with μ̃ = −μ. So, we assume μ > 0 holds.
- $2. \ \mbox{If the critical curve has constant curvature, then it is:}$
 - Case \mathbb{R}^2 . Either a straight line or a circle of radius μ .

• Case $S^2(\rho)$. Parallel circles.

- If γ is critical for Θ_μ, then γ̃ (obtained by reversing the orientation) is critical for Θ_{μ̃} with μ̃ = −μ. So, we assume μ > 0 holds.
- 2. If the critical curve has constant curvature, then it is:
 - Case \mathbb{R}^2 . Either a straight line or a circle of radius μ .

- Case $\mathbb{S}^2(\rho)$. Parallel circles.
- Case $\mathbb{H}^2(\rho)$. Either a circle or a hypercycle.

- If γ is critical for Θ_μ, then γ̃ (obtained by reversing the orientation) is critical for Θ_{μ̃} with μ̃ = −μ. So, we assume μ > 0 holds.
- 2. If the critical curve has constant curvature, then it is:
 - Case \mathbb{R}^2 . Either a straight line or a circle of radius μ .
 - Case $\mathbb{S}^2(\rho)$. Parallel circles.
 - Case $\mathbb{H}^2(\rho)$. Either a circle or a hypercycle.
- 3. If the critical curve has non constant curvature, then

$$\mu^{4}\kappa_{s}^{2} = de^{-2\mu\kappa} - (\mu\kappa - 1)^{2} - \rho\mu^{2}$$

for $d \in \mathbb{R}$ represents a first integral of the Euler-Lagrange equation.

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

$$W(v) = W(\kappa) = 0$$

along γ . (Langer & Singer, 1984)

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

 $W(v) = W(\kappa) = 0$

along γ . (Langer & Singer, 1984)

Proposition (Langer & Singer, 1984)

Consider $M^2(\rho)$ embedded as a totally geodesic surface of $M^3(\rho)$. Then, the vector field

$$\mathcal{I} = \mu e^{\mu \kappa} B$$

is a Killing vector field along critical curves.

A vector field W along γ , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along γ if it evolves in the direction of W without changing shape, only position. That is, the following equations hold

 $W(v) = W(\kappa) = 0$

along γ . (Langer & Singer, 1984)

Proposition (Langer & Singer, 1984)

Consider $M^2(\rho)$ embedded as a totally geodesic surface of $M^3(\rho)$. Then, the vector field

$$\mathcal{I} = \mu e^{\mu \kappa} B$$

is a Killing vector field along critical curves.

Killing vector fields along γ can be extended to Killing vector fields on the whole M³(ρ). The extension is unique.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

・ロト・日本・モート モー うへで

Let $\gamma(s) \subset M^2(\rho)$ be any critical curve for Θ_{μ} . (We consider $M^2(\rho) \subset M^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

Let $\gamma(s) \subset M^2(\rho)$ be any critical curve for Θ_{μ} . (We consider $M^2(\rho) \subset M^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

 $\mathcal{I} = \mu e^{\mu \kappa} B$.

Let $\gamma(s) \subset M^2(\rho)$ be any critical curve for Θ_{μ} . (We consider $M^2(\rho) \subset M^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

 $\mathcal{I}=\mu e^{\mu\kappa}B.$

2. Let's denote by ξ the (unique) extension to a Killing vector field of $M^3(\rho)$. (It can be assumed to be: $\xi = \lambda_1 X_1 + \lambda_2 X_2$.)

Let $\gamma(s) \subset M^2(\rho)$ be any critical curve for Θ_{μ} . (We consider $M^2(\rho) \subset M^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

 $\mathcal{I}=\mu e^{\mu\kappa}B.$

- 2. Let's denote by ξ the (unique) extension to a Killing vector field of $M^3(\rho)$. (It can be assumed to be: $\xi = \lambda_1 X_1 + \lambda_2 X_2$.)
- Since M³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t, t ∈ ℝ}.

Let $\gamma(s) \subset M^2(\rho)$ be any critical curve for Θ_{μ} . (We consider $M^2(\rho) \subset M^3(\rho)$ and γ being planar, i.e. $\tau = 0$.)

1. Consider the Killing vector field along γ in the direction of the (constant) binormal vector field:

 $\mathcal{I}=\mu e^{\mu\kappa}B.$

- 2. Let's denote by ξ the (unique) extension to a Killing vector field of $M^3(\rho)$. (It can be assumed to be: $\xi = \lambda_1 X_1 + \lambda_2 X_2$.)
- Since M³(ρ) is complete, the one-parameter group of isometries determined by ξ is {φ_t, t ∈ ℝ}.
- 4. We construct the binormal evolution surface (Garay & --, 2016)

$$S_{\gamma} := \{x(s,t) := \phi_t(\gamma(s))\}.$$

Geometric Properties

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

By construction S_{γ} is a ξ -invariant surface.

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset M^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant).

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset M^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant). In particular, spherical rotational surface if d > 0 holds.

By construction S_{γ} is a ξ -invariant surface. Moreover, it verifies:

• Since $\gamma(s) \subset M^2(\rho)$ (γ is planar),

Theorem (Arroyo, Garay & --, 2017)

The binormal evolution surface S_{γ} is either a flat isoparametric surface (when $\kappa(s) = \kappa_o$ is constant); or, it is a rotational surface (when $\kappa(s)$ is not constant). In particular, spherical rotational surface if d > 0 holds.

• Since $\gamma(s)$ is a critical curve for Θ_{μ} ,

Theorem (López & --, 2020)

The binormal evolution surface S_{γ} is a constant skew curvature surface. It verifies:

 $\kappa_1 = \kappa_2 + c$, (κ_i principal curvatures)

for $c = 1/\mu$.

Characterization of Profile Curves

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Characterization of Profile Curves

Theorem (López & --, 2020)

Let $S \subset M^3(\rho)$ be a (non-isoparametric) rotational surface with constant skew curvature.

Characterization of Profile Curves

Theorem (López & --, 2020)

Let $S \subset M^3(\rho)$ be a (non-isoparametric) rotational surface with constant skew curvature. If γ is a profile curve of S, then the curvature κ of γ satisfies the Euler-Lagrange equation associated to the exponential type curvature energy

$${oldsymbol \Theta}_\mu(\gamma) = \int_\gamma e^{\,\mu\kappa}$$

where $\mu = 1/c$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

FIGURE: Oval Type Critical Curve

FIGURE: Simple Biconcave Type Critical Curve

FIGURE: Figure-Eight Type Critical Curve

FIGURE: Non-Simple Biconcave Type Critical Curve

FIGURE: Borderline Type Critical Curve

FIGURE: Orbit-Like Type Critical Curve

Profile Curves in $\mathbb{S}^2(\rho)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Profile Curves in $\mathbb{S}^2(\rho)$

Profile Curves in $\mathbb{H}^2(\rho)$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Profile Curves in $\mathbb{H}^2(\rho)$

THE END

Thank You!