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Historical Background

In 1691, J. Bernoulli formulated the problem of quantifying the bending deformation of rods. According to a general principle originally due to D. Bernoulli, an elastic rod should bend along the curve which minimizes the potential energy of the strain under suitable
constraints. Following this idea, L. Euler classified in 1744 all the possible qualitative types for rods in untwisted planar configurations. This problem was, in fact, posed more generally by D. Bernoulli, who proposed in a letter of 1738 to L. Euler to investigate extrema of
what is now referred to as the p-Bernoulli’s bending functionals. Since then, several particular cases other than the classical p = 2 have received widespread attention. For instance, in 1921-1923, W. Blaschke considered the cases p = 1/2 and p = 1/3 in R3.

Variational Problem
For every p ∈ R, consider the Bernoulli’s bending functionals defined by

Θp(γ) :=

∫
γ
κp ds ,

where κ is the curvature of the spherical curve γ : I ⊆ R −→ S2 parameterized by
the arc length s ∈ I. Its associated Euler-Lagrange equation is

p
d2

ds2

(
κp−1

)
+ (p− 1)κp+1 + p κp−1 = 0 . (1)

Definition. Those curves whose curvature κ is identically zero or a solution of (1)
are called generalized elastic curves.

One of the main interests of the theory is to find (non-circular) closed generalized
elastic curves. The case p = 2 was studied by J. Langer and D. A. Singer in 1984.
They proved that there exists a bi-parametric family of closed non-circular elastic
curves, including simple ones. With contributions from several papers, the following
result was obtained for other values of p ∈ R:

Theorem ([2, 3, 4])

Let γ be a (non-circular) closed generalized elastic curve. Then, either p = 2 or
p ∈ (0, 1). Furthermore, for every p ∈ (0, 1) and any pair of relatively prime natural
numbers satisfying m < 2n <

√
2m, there exists a non-circular closed generalized

elastic curve.

Figure. Three closed spherical generalized elastic curves for p = 1/2.

The number n represents the number of times the curve winds around the pole, i.e.,
it is the winding number, while m is the number of periods of the curvature needed
to close the curve, i.e., the number of lobes.

Rotational Hypersurfaces

Minimal Surfaces in S3
Definition. A surface immersed in S3 is a minimal surface if its mean curvature H
is identically zero.

Minimal surfaces in S3 have played a major role in Mathematics in the last decades.
In 1966, F. J. Almgren proved that any immersed minimal topological sphere must

be congruent to the equator. A few years later, in 1970, H. B. Lawson conjectured
that all embedded minimal tori are congruent to the Clifford torus. This was proven
in 2013 by S. Brendle. Focusing on rotational surfaces:

Theorem ([1, 2])

A rotational surface immersed in S3 is minimal if and only if its profile curve is a
generalized elastic curve for p = 1/2.

From the results of closed generalized elastic curves for p = 1/2 it can be shown, in
a way different from the classical result, that apart from the Clifford torus:

Corollary ([2])

For any pair of relatively prime natural numbers satisfying m < 2n <
√
2m, there

exists a unique (up to congruence) rotational minimal torus immersed in S3.

Figure. Stereographic projection of three rotational minimal tori in S3.

Biconservative Hypersurfaces in Sr

Definition. A hypersurface immersed in Sr (r ≥ 3) is biconservative if

2Sη (gradH) + (r − 1)HgradH = 0 , (2)

where Sη is the shape operator and H is the mean curvature function.

Following the description of D. Hilbert in 1924, biconservative hypersurfaces can be
interpreted as those hypersurfaces whose stress-energy tensor associated with the
bienergy is conservative. Constant mean curvature (CMC) hypersurfaces satisfy (2).
Thus, the main interest is to study non-CMC biconservative hypersurfaces for which:

Theorem ([4])

A non-CMC rotational hypersurface immersed in Sr is biconservative if and only if
its profile curve is a non-circular generalized elastic curve for p = (r − 2)/(r + 1).

An open problem of the theory was to determine if closed non-CMC biconserva-
tive hypersurfaces could exist. The question was answered affirmatively for every
dimension:

Corollary ([4])

For every r ≥ 3 and any pair of relatively prime natural numbers satisfying
m < 2n <

√
2m, there exists a closed non-CMC biconservative hypersurface

immersed in Sr.

Hopf Tori

Definition. A closed surface immersed in S3 is a generalized Willmore surface if it
is a critical point of the functional

Wp(X) :=

∫
Σ
Hp dA ,

where H is the mean curvature function.

Employing the Symmetric Criticality Principle of R. Palais and the Hopf tori con-
structed by U. Pinkall, non-trivial generalized Willmore surfaces were obtained:

Theorem ([3, 5])

For every p ∈ (0, 1) and any pair of relatively prime natural numbers satisfying
m < 2n <

√
2m, there exists a (non-trivial) generalized Willmore Hopf tori

immersed in S3.

The case p = 2, studied by U. Pinkall in 1985, gave rise to a family of non-conformally
minimal Willmore tori.

Figure. Stereographic projection of three (non-trivial) generalized Willmore Hopf
tori in S3 for p = 1/2.
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