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Objectives

Objective 1

Introduce the unit tangent bundle R2 × S1 model for the primary
visual cortex ([1], [4] and [5]).

Objective 2

Compare extremals of different curvature energies that are used in
visual curve completion [1].

• Length (equivalently, total curvature type energy [2])

• Elastic Energy

• Total Squared Torsion
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Primary Visual Cortex V1

Unit Tangent Bundle ([1] and [4])

The unit tangent bundle of the plane, R2 × S1, can be used as an
abstraction to study the organization and mechanisms of V1.

• Each point (x , y , θ) represents a column of cells associated
with a point of retinal data (x , y) ∈ R2, all of which are
adjusted to the orientation given by the angle θ ∈ S1.

• The vector (cos θ, sin θ) is the direction of maximal rate of
change of brightness at point (x , y) of the picture seen by the
eye [5].

• When the cortex cells are stimulated by an image, the border
of the image gives a curve inside the space R2 × S1, but
restricted to be tangent to a specific distribution.
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Sub-Riemannian Structure of R2 × S1

We consider the space R2 × S1.

• Take the distribution D = Ker(sin θdx − cos θdy).

• The distribution D is spanned by

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ

• The distribution D is bracket-generating.

• Finally, with the inner product 〈, 〉 defined by making X1 and
X2 everywhere orthonormal, we obtain

Sub-Riemannian Structure of V1

The unit tangent bundle R2 × S1 is a 3-dimensional
sub-Riemannian manifold (R2 × S1,D, 〈, 〉).



Sub-Riemannian Structure of R2 × S1

We consider the space R2 × S1.

• Take the distribution D = Ker(sin θdx − cos θdy).

• The distribution D is spanned by

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ

• The distribution D is bracket-generating.

• Finally, with the inner product 〈, 〉 defined by making X1 and
X2 everywhere orthonormal, we obtain

Sub-Riemannian Structure of V1

The unit tangent bundle R2 × S1 is a 3-dimensional
sub-Riemannian manifold (R2 × S1,D, 〈, 〉).



Sub-Riemannian Structure of R2 × S1

We consider the space R2 × S1.

• Take the distribution D = Ker(sin θdx − cos θdy).

• The distribution D is spanned by

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ

• The distribution D is bracket-generating.

• Finally, with the inner product 〈, 〉 defined by making X1 and
X2 everywhere orthonormal, we obtain

Sub-Riemannian Structure of V1

The unit tangent bundle R2 × S1 is a 3-dimensional
sub-Riemannian manifold (R2 × S1,D, 〈, 〉).



Sub-Riemannian Structure of R2 × S1

We consider the space R2 × S1.

• Take the distribution D = Ker(sin θdx − cos θdy).

• The distribution D is spanned by

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ

• The distribution D is bracket-generating.

• Finally, with the inner product 〈, 〉 defined by making X1 and
X2 everywhere orthonormal, we obtain

Sub-Riemannian Structure of V1

The unit tangent bundle R2 × S1 is a 3-dimensional
sub-Riemannian manifold (R2 × S1,D, 〈, 〉).



Sub-Riemannian Structure of R2 × S1

We consider the space R2 × S1.

• Take the distribution D = Ker(sin θdx − cos θdy).

• The distribution D is spanned by

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ

• The distribution D is bracket-generating.

• Finally, with the inner product 〈, 〉 defined by making X1 and
X2 everywhere orthonormal, we obtain

Sub-Riemannian Structure of V1

The unit tangent bundle R2 × S1 is a 3-dimensional
sub-Riemannian manifold (R2 × S1,D, 〈, 〉).



Sub-Riemannian Structure of R2 × S1

We consider the space R2 × S1.

• Take the distribution D = Ker(sin θdx − cos θdy).

• The distribution D is spanned by

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ

• The distribution D is bracket-generating.

• Finally, with the inner product 〈, 〉 defined by making X1 and
X2 everywhere orthonormal, we obtain

Sub-Riemannian Structure of V1

The unit tangent bundle R2 × S1 is a 3-dimensional
sub-Riemannian manifold (R2 × S1,D, 〈, 〉).



Gradient-Descent Method

If a piece of the contour of a picture is missing to the eye vision (or
maybe it is covered by an object),

then the brain tends to complete
the curve by minimizing some kind of energy (length, elastic
energy, total squared torsion,...).

Problem

In general, the boundary value problem is very hard to solve
analytically.

To overcome this difficulty, our group has developed a numerical
approach,

XEL-platform [3] (www.ikergeometry.org)

A gradient descent method useful for an ample family of
functionals defined on certain spaces of curves satisfying both
affine and isoperimetric constraints.
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Sub-Riemannian Geodesics

• A D-curve on M3 is a curve which is always tangent to D.

• Every D-curve γ(t) = (x(t), y(t), θ(t)) is the lift of a regular
curve α(t) in R2 if γ∗(cos θdx + sin θdy) 6= 0.

• Conversely, every regular curve α(t) in the plane may be lifted
to a D-curve γ(t) by setting θ(t) equal to the angle between
α′(t) and the x-axis.

Relation with Total Curvature Type Energies
([1], [2] and [4])

Geodesics in V1 are obtained by lifting to M3 = R2 × S1
minimizers in R2 of

F(α) =

∫
α

√
1 + κ2(s) ds .
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F(α) =
∫
α

√
κ2(s) + a2 ds in R2

By the hypercolumnar organization of the visual cortex,

we may
consider the functional

F(α) =

∫
α

√
κ2(s) + a2 ds

acting on planar curves.

Euler-Lagrange Equation ([1] and [2])

d2

ds2
(

κ√
κ2 + a2

)− a2κ√
κ2 + a2

= 0

• If a = 0 we get the Total Curvature Functional, and therefore
we know that any α is critical for it.
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Solution of Euler-Lagrange Equation

If a 6= 0, we get the first integral of the Euler-Lagrange Equation,

κ2s = (
κ2 + a2

a2
)2(dκ2 + a2(d − a2)).

Thus, we have that the curvature is given by,

κ(s) =
a
√
d − a2 tanh as√
a2 − d tanh2 as

.

And, therefore the critical curve α can be parametrized as,

α(s) = (

∫
cos

∫
κ,

∫
sin

∫
κ).
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Other Curvature Energy Functionals

1. Elastic Energy

2. Total Squared Torsion



Elasticae in R2 × S1

Model of D. Munford (1992)

In order to reconstruct hidden contours, elasticae are the most
probable curves.

Therefore, we will consider the elastic or bending energy

F(γ) =

∫
γ
κ2(s) ds.
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Total Squared Torsion

Another possibility in image reconstruction is to choose projections
of minimizers of the total squared torsion in the unit tangent
bundle R2 × S1.

This energy is defined by

F(γ) =

∫
γ
τ2(s) ds.
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Comparison between Length, Bending Energy
and Total Square Torsion

Length (Geodesic): Blue
Elastic Energy: Green
Total Squared Torsion: Red (global minimun) and Orange (local
minima)
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