
LECTURE NOTES

Math 2450, Calculus III with Applications

Álvaro Pámpano Llarena

1 Vectors in Plane and Space (Chapter 9)

Definition 1.1 The plane can be described as the set,

R2 = {(x, y) |x, y ∈ R} ,

while the space is the set,

R3 = {(x, y, z) |x, y, z ∈ R} .
Both, R2 and R3 are examples of vector and affine spaces.

Definition 1.2 A vector v⃗ is an element of a vector space V . Roughly speaking, a vector is a

mathematical object which has both:

(i) Magnitude (norm), and

(ii) Direction.

(It can be represented by an arrow).

Remark 1.3 A vector has an initial and final point. For instance, if the initial point is P =

(p1, p2, p3) and the final point is Q = (q1, q2, q3), the vector v⃗ = P⃗Q is given by

P⃗Q = ⟨q1 − p1, q2 − p2, q3 − p3⟩ ,

i.e., “the components of P⃗Q are the coordinates of Q minus the coordinates of P”.

Vectors can be translated, so we can always think about them as fixed in the origin, that is, we

may assume P = (0, 0, 0).

Definition 1.4 The norm of a vector v⃗ = ⟨v1, v2, v3⟩ is given by

∥v⃗∥ =
√

v21 + v22 + v23 .

(This quantity is always non-negative and, it is zero if and only if the vector v⃗ is identically

zero).
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Remark 1.5 The norm of a vector comes from the Pythagorean Theorem.

Proposition 1.6 (General Formula) Let v⃗ be a vector with initial point P = (p1, p2, p3) and

final point Q = (q1, q2, q3). Then, v⃗ can be expressed in terms of its components as

v⃗ = P⃗Q = ⟨q1 − p1, q2 − p2, q3 − p3⟩ .

Moreover, the norm (magnitude) of v⃗ can be computed using

∥v⃗∥ =

√
(q1 − p1)

2 + (q2 − p2)
2 + (q3 − p3)

2 .

Definition 1.7 The distance between two points P and Q is defined as d (P,Q) = ∥P⃗Q∥ =

∥Q⃗P∥.

Definition 1.8 A unit vector is a vector of norm one. The standard (or, canonical) unit

vectors are:

i⃗ = ⟨1, 0, 0⟩ , j⃗ = ⟨0, 1, 0⟩ , k⃗ = ⟨0, 0, 1⟩ .

Remark 1.9 Given a vector v⃗, there exists a unit vector with the same direction,

v⃗

∥v⃗∥
.

Proposition 1.10 Operations:

1. Scalar Multiplication. Let c > 0 be a real number and v⃗ = ⟨v1, v2, v3⟩ a vector, then cv⃗ is

a vector with the same direction as v⃗ and with norm c∥v⃗∥. If c < 0, the direction is the

opposite and the norm is |c|∥v⃗∥. In terms of its components, for any c ∈ R,

cv⃗ = ⟨cv1, cv2, cv3⟩ .

2. Sum of Vectors. Let v⃗ = ⟨v1, v2, v3⟩ and u⃗ = ⟨u1, u2, u3⟩. The sum v⃗ + u⃗ is the diagonal

of the parallelogram with sides v⃗ and u⃗. In terms of its components,

v⃗ + u⃗ = ⟨v1 + u1, v2 + u2, v3 + u3⟩ .

Remark 1.11 The difference between two vectors v⃗ and u⃗ can be understood in terms of above

two operations. Indeed,

v⃗ − u⃗ = v⃗ + (−u⃗) ,

where −u⃗ is, precisely, the scalar multiplication of u⃗ by −1.

Notation 1.12 Using above operations and the canonical vectors, a vector v⃗ can be denoted in

the following two equivalent ways:

v⃗ = ⟨v1, v2, v3⟩ = v1⃗i+ v2j⃗ + v3k⃗ .
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1.1 The Dot Product

Definition 1.13 The dot product (or, also inner or scalar product) of two vectors u⃗ = ⟨u1, u2, u3⟩
and v⃗ = ⟨v1, v2, v3⟩ is the scalar (real number) given by

u⃗ · v⃗ = u1v1 + u2v2 + u3v3 .

Proposition 1.14 (Properties of the Dot Product) Let u⃗, v⃗ and w⃗ be three vectors and

c ∈ R. Then, the following properties are satisfied:

(i) u⃗ · v⃗ = v⃗ · u⃗ ,

(ii) u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗ ,

(iii) c (u⃗ · v⃗) = (cu⃗) · v⃗ = u⃗ · (cv⃗) ,

(iv) u⃗ · u⃗ = ∥u⃗∥2 , and

(v) u⃗ · v⃗ = ∥u⃗∥∥v⃗∥ cos θ, where θ is the angle between u⃗ and v⃗.

Definition 1.15 Two vectors are said to be orthogonal (or, perpendicular) if the angle between

them is ±π/2.

Proposition 1.16 Two vectors u⃗ and v⃗ are orthogonal if and only if u⃗ · v⃗ = 0.

1.2 The Cross Product

Definition 1.17 The cross product (or, also outer or vector product) between two vectors u⃗ =

⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ is the vector given by

u⃗× v⃗ = ⟨u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1⟩ .

Remark 1.18 In order to remember about definition is useful to understand the cross product

as the following formal determinant:

u⃗× v⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ .
Proposition 1.19 (Properties of the Cross Product) Let u⃗ and v⃗ be two vectors. Then,

the following properties are satisfied:

(i) The cross product u⃗× v⃗ is orthogonal to both u⃗ and v⃗.

(ii) u⃗× v⃗ = −v⃗ × u⃗ , and
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(iii) ∥u⃗× v⃗∥ = ∥u⃗∥∥v⃗∥ sin θ, where θ ∈ [0, π) is the angle between u⃗ and v⃗.

Theorem 1.20 The norm of the cross product u⃗× v⃗ is the area of the parallelogram with sides

u⃗ and v⃗. Similarly, the area of a triangle with sides u⃗ and v⃗ is, precisely, ∥u⃗× v⃗∥/2.

Definition 1.21 The triple product of u⃗, v⃗ and w⃗ is the number u⃗ · (v⃗ × w⃗).

Theorem 1.22 The absolute value of the triple product (i.e., |u⃗·(v⃗ × w⃗)|) represents the volume

of the parallelepiped with sides u⃗, v⃗ and w⃗.

1.3 Lines in R3

Definition 1.23 A line is an affine subspace of dimension one.

Proposition 1.24 (The First Postulate of Euclide) For every two points in space there is

a line passing through them, and such a line is unique.

Proposition 1.25 Let P = (p1, p2, p3) and Q = (q1, q2, q3) be two points in space and denote by

v⃗ = P⃗Q the director vector. Then, the unique line passing through P and Q can be represented

as:

1. Vector Equation.

r⃗(t) = P + tv⃗ = ⟨p1 + tv1, p2 + tv2, p3 + tv3⟩ ,

where t is the parameter of the line.

2. Parametric Equations. 
x = p1 + tv1 ,

y = p2 + tv2 ,

z = p3 + tv3 .

3. Symmetric Equations. Assuming v1, v2, v3 ̸= 0,

x− p1
v1

=
y − p2
v2

=
z − p3
v3

.

(If any vi, i = 1, 2, 3 is zero, the line is contained in a plane.)

4. Implicit Equations. {
ax+ by + cz = d ,

ãx+ b̃y + c̃z = d̃ .

Example 1.26 Write the equations of the line passing through the points P = (1,−1, 0) and

Q = (2, 1,−1, ).

4



Proposition 1.27 Two lines in the space can be:

(i) The same.

(ii) Parallel.

(iii) Skew.

(iv) Intersecting (the intersection is a point).

Let v⃗1 and v⃗2 be the director vectors, respectively. If v⃗1 is a multiple of v⃗2 (i.e., there exists a

real number c ̸= 0 such that v⃗1 = cv⃗2, they are proportional), then the two lines are either the

same or parallel. In the other case, the lines are:

� Skew, if they do not share any points.

� Intersecting, if there exists a common point.

Example 1.28 Determine the relative position of the following pair of lines:

1. {
x−1
2

= y + 1 = z−2
4

,
x+2
4

= −y
3

= z + 1 .

(Answer: Skew.)

2. {
x−1
2

= y + 1 = z−2
4

,
x+2
4

= −y
3

= −2z+1
2

.

(Answer: Skew.)

1.4 Planes in R3

Definition 1.29 A plane is an affine subspace of dimension two.

Proposition 1.30 For every three non-aligned points in space there is a unique plane passing

through them. Equivalently, it is enough to know a point and two non proportional vectors, or

a point and a normal vector.

Proposition 1.31 Let P = (p1, p2, p3), Q = (q1, q2, q3) and R = (r1, r2, r3) be three non-aligned

points in space and denote by v⃗ = P⃗Q and by u⃗ = P⃗R. Then, the unique plane passing through

P , Q and R can be represented as:
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1. Vector Equation.

π(s, t) = P + tv⃗ + su⃗ = ⟨p1 + tv1 + su1, p2 + tv2 + su2, p3 + tv3 + su3⟩ ,

where t and s are the parameters of the plane.

2. Parametric Equations. 
x = p1 + tv1 + su1 ,

y = p2 + tv2 + su2 ,

z = p3 + tv3 + su3 .

3. Implicit Equations. Let N⃗ = ⟨a, b, c⟩ be any normal vector to the plane (a normal vector

can be computed as the cross product of v⃗ and u⃗), then the implicit equation of the plane

is:

ax+ by + cz = d .

Example 1.32 Represent the plane passing through the points P = (1, 1, 1), Q = (2, 4, 3) and

R = (−1,−2,−1).

Proposition 1.33 Two planes in the space can be:

(i) The same.

(ii) Parallel.

(iii) Intersecting (the intersection is a line).

Let N⃗1 and N⃗2 be the normal vectors, respectively. If they are proportional, then the two planes

are either the same or parallel. In the other case, the planes intersect in a line.

Proposition 1.34 Every line is the intersection of two planes.

Example 1.35 Determine the relative position of the following planes:{
2x+ y − 4z = 3 ,

x− y + z = 2 .

(Answer: Intersecting.)
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1.5 Distance

Definition 1.36 The distance between two affine subspaces (points, lines, planes) is the min-

imum of the distances between all the possible pair of points, i.e.,

d (A,B) = min{d (P,Q) |P ∈ A,Q ∈ B} .

Example 1.37 Compute the distance between the following subspaces:

1. Distance from the point P = (0, 3, 6) to the line r⃗(t) = ⟨1− t, 1 + 2t, 5 + 3t⟩.
(Answer: d(P,L) = d(P,Q) =

√
70/7, where Q = (3/7, 15/7, 47/7).)

2. Distance between the point P = (1, 1, 1) and the plane of equation x− y + z = 2.

(Answer: d(P, π) = d(P,Q) =
√
3/3, where Q = (4/3, 2/3, 4/3).)

3. Distance between the lines

L1 :


x = 2t+ 1

y = t+ 1

z = −t+ 1

, and L2 :

{
x− 2z + 1 = 0

x− y + z = 0
.

(Answer: d(L1,L2) = d(P,Q) =
√
3/3, where P = (1/2, 5/4, 3/4) and

Q = (5/6, 11/12, 13/12).)

1.6 Exercises

1. Find the equation of the plane passing through P = (2, 5, 3) and perpendicular to the

vector N⃗ =< 1,−4,−3 >. (Answer: x− 4y − 3z = −27.)

2. Find the equation of the plane through the point P = (2, 5, 3) and parallel to the plane

x− 4y − 3z = −8. (Answer: x− 4y − 3z = −27.)

3. Find a nonzero vector parallel to the line of intersection of the two planes x−4y−3z = −4

and −3x+ 3y − z = 3. (Answer: < −13,−10, 9 >.)

4. Find the implicit equation for the plane through P = (−3, 3,−1) and normal to the vector

< 1,−4,−3 >. (Answer: x− 4y − 3z = −12.)

5. Find the equation of the plane passing through the points P = (−4, 3, 0), Q = (−3,−1,−3)

and R = (−7, 6,−1). (Answer: 13x+ 10y − 9z = −22.)
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2 Vector-Valued Functions (Chapter 10)

Definition 2.1 Let f(t), g(t) and h(t) be usual functions in the variable t. A vector-valued

function R⃗(t) is a function of the type

R⃗(t) = ⟨f(t), g(t), h(t)⟩ = f(t)⃗i+ g(t)⃗j + h(t)k⃗ ,

and its image for a fixed t is a vector.

Example 2.2 The vector parametric equation of a line,

r⃗(t) = ⟨p1 + tv1, p2 + tv2, p3 + tv3⟩ ,

is a vector valued-function.

Example 2.3 Compute the inner product R⃗ · F⃗ and the cross product R⃗ × F⃗ of the following

vector valued functions:

R⃗(t) = cos t i⃗+ sin t j⃗ + t k⃗ , F⃗ (t) = cos t i⃗− t sin t k⃗ .

Remark 2.4 Vector-valued functions can be understood as the parameterizations of a curve.

Consequently, the vector-valued function R⃗(t) is usually called the position vector.

Definition 2.5 The velocity vector of a curve is the first derivative of the position vector R⃗(t)

with respect to the parameter t, i.e., R⃗ ′(t). The speed is the norm of the velocity vector, i.e.,

∥R⃗ ′(t)∥. And, the acceleration is the second derivative of the position vector (or, equivalently,

the first derivative of the velocity vector) with respect to the parameter t, i.e., R⃗ ′′(t).

Example 2.6 Consider the position vector of a line, i.e.,

r⃗(t) = (p1 + tv1) i⃗+ (p2 + tv2) j⃗ + (p3 + tv3) k⃗ .

The velocity vector is

r⃗ ′(t) = ⟨v1, v2, v3⟩ ,

that is, precisely, the director vector. While, the acceleration is identically zero, i.e., r⃗ ′′(t) =

⟨0, 0, 0⟩.

Example 2.7 Compute the velocity and the acceleration of the curve parameterized by

R⃗(t) = (1− 2t) i⃗− t2 j⃗ + et k⃗ ,

at to = 0.

(Answer: V⃗ (0) = ⟨−2, 0, 1⟩ and A⃗(0) = ⟨0,−2, 0⟩.)
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Example 2.8 Given the acceleration

A⃗(t) = cos t i⃗− t sin t k⃗

the initial velocity V⃗ (0) = ⟨1,−2, 1⟩ and initial position R⃗(0) = ⟨0, 2, 3⟩, find the position vector

R⃗(t).

(Answer: R⃗(t) = (− cos t+ t+ 1) i⃗+ (t2/2− 2t+ 2) j⃗ + (2 cos t+ t sin t+ t+ 1) k⃗.)

Definition 2.9 Given a curve parameterized by a vector-valued function R⃗(t), the unit tangent

vector is given by

T (t) =
R⃗ ′(t)

∥R⃗ ′(t)∥
.

The unit normal vector is given by

N(t) =
T ′(t)

∥T ′(t)∥
,

and the unit binormal is B(t) = T (t)×N(t). We call {T (t), N(t), B(t)} the Frenet frame.

Definition 2.10 The curvature κ(t) of a curve is given by the following formula

κ(t) =
∥R⃗ ′(t)× R⃗ ′′(t)∥

∥R⃗ ′(t)∥3
.

Example 2.11 Compute the curvature of the curve parameterized by

R⃗(t) = cos t i⃗+ sin t j⃗ + t k⃗ .

2.1 Exercises

1. Find the position vector R⃗(t) given the velocity V⃗ (t) = et⃗i + 8 cos(4t)⃗j + 16t3k⃗ and the

initial position R⃗(0) =< 2,−2, 3 >.

(Answer: R⃗(t) = (et + 1) i⃗+ 2 (sin(4t)− 1) j⃗ + (4t4 + 3) k⃗.)

2. Find the curvature of the planar curve y = 2x+ 1/x at x = 1. (Answer: κ = 1/
√
2.)

3. Find the curvature of the planar curve y = 3ex at x = 0. (Answer: κ = 3/(
√
10)3.)

4. Find the curvature of the curve parameterized by R⃗(t) = 2 sin(2t)⃗i+ 2 cos(2t)⃗j + k⃗.

5. Find the curvature of the curve parameterized by R⃗(t) = t2⃗i− tet⃗j + t2 cos(t)k⃗ at t = 0.
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3 Partial Differentiation (Chapter 11)

3.1 Functions of Several Variables

Definition 3.1 A function of several variables f(x1, ..., xn) is a map from a subset D of Rn

to the real numbers, i.e., it is a scalar-valued function. The subset D is the domain of the

function. The range of f is the set of real numbers that can be written as f(x1, ..., xn).

Remark 3.2 In particular, we will focus on functions of two variables f(x, y).

Example 3.3 Consider the function f(x, y) = 1/
√
x2 − y2. Compute the domain and range

of f .

Remark 3.4 The graph z = f(x, y) of a function of two variables is a surface in space. Locally,

any surface can be described as a graph of a function.

Definition 3.5 A level curve for the constant value c ∈ R is the set of points in the plane

satisfying f(x, y) = c.

Definition 3.6 A quadric is a surface which is described by an equation of the form

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0 .

Proposition 3.7 Quadrics can be classified in the following groups:

(i) Cylinders.

(ii) Ellipsoids:
x2

a2
+

y2

b2
+

z2

c2
= 1 .

In particular, if a = b = c = R we have a sphere of radius R.

(iii) Cones:

z2 =
x2

a2
+

y2

b2
.

(iv) Hyperboloids:

� Hyperboloid of one sheet:
x2

a2
+

y2

b2
− z2

c2
= 1 .

� Hyperboloid of two sheets:
x2

a2
+

y2

b2
− z2

c2
= −1 .
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(v) Paraboloids:

� Elliptic paraboloid:

z =
x2

a2
+

y2

b2
.

� Hyperbolic paraboloid:

z =
x2

a2
− y2

b2
.

3.2 Limits of Functions in Two Variables

Definition 3.8 Let f : D ⊂ R2 −→ R be a function of two variables and (a, b) ∈ D. We say

that the limit of f(x, y) when (x, y) tends to (a, b) is L,

lim
(x,y)→(a,b)

f(x, y) = L ,

if when (x, y) is “close” to (a, b), the value f(x, y) is “close” to L.

Remark 3.9 For functions of two variables there are more options of being “close” than for

functions of one variable, i.e., we can approach the point (a, b) in many ways.

Definition 3.10 The limit lim(x,y)→(a,b) f(x, y) exists if the function f(x, y) approaches the

same value L along every possible way of approaching (a, b).

Proposition 3.11 (Iterated Limits) If the iterated limits

lim
x→a

(
lim
y→b

f(x, y)
)
, and lim

y→b

(
lim
x→a

f(x, y)
)
,

are not equal (or one of them is ±∞), then the limit

lim
(x,y)→(a,b)

f(x, y) ,

does not exist. (However, if they coincide we need to keep working.)

Proposition 3.12 (Limits Along Lines) Consider the general equation of all lines passing

through the point (a, b), y = m (x− a) + b. If the limit

lim
x→a

f(x,m[x− a] + b) ,

depends on the constant m, then the limit

lim
(x,y)→(a,b)

f(x, y) ,

does not exist. (However, if they coincide we need to keep working.)
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Proposition 3.13 (Polar Coordinates) Consider the parameterization of the circles of radii

r centered at (a, b) given by the polar coordinates,{
x = a+ r cos θ ,

y = b+ r sin θ .

Then,

lim
(x,y)→(a,b)

f(x, y) = lim
r→0

f(a+ r cos θ, b+ r sin θ) .

In particular, if above limit depends on θ, then the limit

lim
(x,y)→(a,b)

f(x, y) ,

does not exist. (Otherwise, polar coordinates give us the answer.)

Example 3.14 Compute the following limits:

1.

lim
(x,y)→(0,0)

2x2

x2 + y2
.

2.

lim
(x,y)→(0,0)

xy

x2 + y2
.

3.

lim
(x,y)→(0,0)

2xy2

x2 + y2
.

4.

lim
(x,y)→(0,0)

x2y2

x2 + y2
.

5.

lim
(x,y)→(0,0)

x2 + y2

2
√

x2 + y2 + 9− 6
.

3.3 Continuity of Functions in Two Variables

Definition 3.15 We say that a function of two variables f(x, y) is continuous at a point (a, b)

in its domain if:

(i) f(a, b) exists,

(ii) lim(x,y)→(a,b) f(x, y) exists, and

(iii) lim(x,y)→(a,b) f(x, y) = f(a, b).
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We say that f(x, y) is continuous in a domain D if it is continuous at all (a, b) ∈ D.

Remark 3.16 All the properties about continuous functions in one variable extend to two

variables:

1. The sum of continuous functions is continuous.

2. The product of continuous functions is continuous.

3. The composition of continuous functions is continuous.

Example 3.17 Study the continuity of the following functions:

1.

f(x, y) =

{
x2y2

x2+y2
, (x, y) ̸= (0, 0) ,

0 , (x, y) = (0, 0) .

2.

f(x, y) =

{
x2y2

x2y2+(x−y)2
, (x, y) ̸= (0, 0) ,

0 , (x, y) = (0, 0) .

3.

f(x, y) =

{
x3+y3

x2+y2
, (x, y) ̸= (0, 0) ,

A , (x, y) = (0, 0) .

4.

f(x, y) =

{
xy

x2+y2
, (x, y) ̸= (0, 0) ,

0 , (x, y) = (0, 0) .

3.4 Partial and Directional Derivatives

Definition 3.18 Let f(x, y) be a function in two variables. The partial derivative of f with

respect to x is given by:

fx =
∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
.

Similarly, the partial derivative of f with respect to y is:

fy =
∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h
.

Remark 3.19 From the definition, it is clear that for fx we can differentiate assuming y is

constant. And, similarly for fy.

Example 3.20 Compute the partial derivatives of the following functions:
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(i) f(x, y) = 4x2 + 2xy − y2 + 3x− 2y + 5

(ii) f(x, y) = cos (x3 − 3x2y2 + 2y4)

Definition 3.21 The gradient of f is the vector field given by

∇f(a, b) = fx(a, b)⃗i+ fy(a, b)⃗j .

Remark 3.22 Geometrically, fx represents the slope of the line tangent to the graph z = f(x, y)

parallel to the x-axis. Similarly, for fy.

Remark 3.23 The gradient points in the direction of maximum rate of change.

Definition 3.24 Let S ⊂ R3 be a surface and let P = (a, b, f(a, b)) ∈ S be a point in the

surface. The tangent plane at P is given by the implicit equation

z = f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b) .

Example 3.25 Find the tangent plane to the surface that is the graph of f(x, y) = x3 − x2y+

y2 − 2x+ 3y at (a, b) = (−1, 3).

Definition 3.26 Let v⃗ =< v1, v2 > be a unit vector in the plane R2. The directional derivative

of f with respect to v⃗ is:

Dv⃗f = lim
h→0

f(x+ hv1, y + hv2)− f(x, y)

h
.

In general, for an arbitrary vector u⃗ (unit or not) we compute:

Du⃗f = ∇f · u⃗

∥u⃗∥
.

Example 3.27 Compute the directional derivatives of the following functions f(x, y):

(i) f(x, y) = ln (x2 + y2) at P = (1,−3) in the direction of u⃗ =< 2,−3 >.

(ii) f(x, y) = x2 − y2 at P = (1, 0) in the direction of u⃗ =<
√
3/2, 1/2 >.

3.5 Differentiability

Definition 3.28 A function f(x, y) is differentiable at a point (a, b) if

lim
(x,y)→(a,b)

f(x, y)− f(a, b)− fx(a, b) (x− a)− fy(a, b) (y − b)√
(x− a)2 + (y − b)2

= 0 .
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Remark 3.29 Roughly speaking, if the function f(x, y) at (a, b) can be approximated by a linear

function, the tangent plane.

Example 3.30 Is the function f(x, y) = 3x− 4y2 differentiable at (−1, 2)?

Proposition 3.31 If f(x, y) is differentiable at (a, b), then f(x, y) is continuous at (a, b).

Theorem 3.32 Let f(x, y) be a function in two variables and (a, b) ∈ D a point in the domain

of f . If the partial derivatives of f , fx and fy exist and are continuous at (a, b), then f is

differentiable at (a, b).

Remark 3.33 A function can have partial derivatives, without being differentiable. For in-

stance,

f(x, y) =


xy√
x2+y2

, (x, y) ̸= (0, 0) ,

0 , (x, y) = (0, 0) .

3.6 Higher Order Partial Derivatives

Remark 3.34 Given a function f(x, y) its partial derivatives fx and fy are also functions in

two variables, so we can compute their partial derivatives:

fxx =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,

fxy =
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
,

fyx =
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,

fyy =
∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
,

and we can keep going, i.e., fxxx,...

Theorem 3.35 (Clairut-Schwarz) Let f(x, y) be a function of two variables and assume

that f has continuous second order partial derivatives at a point (a, b), then

∂2f

∂x∂y
(a, b) =

∂2f

∂y∂x
(a, b) .

Remark 3.36 Continuity is essential in above result. If not, the following function serves as

a counterexample:

f(x, y) =

{
x3y−y3x
x2+y2

, (x, y) ̸= (0, 0) ,

0 , (x, y) = (0, 0) .

Example 3.37 Compute the second order partial derivatives of the function f(x, y) = sin(3x−
2y) + ex+4y.
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3.7 The Chain Rule

Proposition 3.38 Let x(u, v) and y(u, v) be differentiable functions in the variables u and v,

and assume that f(x, y) is a differentiable function in x and y. Then,

f (x(u, v), y(u, v))

is a differentiable function in u and v and

∂f

∂u
=

∂f

∂x

∂x

∂u
+

∂f

∂y

∂y

∂u
,

∂f

∂v
=

∂f

∂x

∂x

∂v
+

∂f

∂y

∂y

∂v
.

Example 3.39 Let f(x, y) = 3x2−2xy, x(u, v) = e2 sin v and y(u, v) = u+2v+euv. Compute

fu and fv.

Remark 3.40 The chain rule can be used to implicitly differentiate a function.

Example 3.41 Let z ≡ z(x, y) given by the implicit equation x2z + yz3 = x. Compute the

partial derivatives zx and zy.

Example 3.42 Find the tangent plane to the surface 4x2 − 2y2 + z2 = 12 at (2, 2, 2).

3.8 Extrema of Functions of Two Variables

Definition 3.43 Let f(x, y) be a differentiable function of two variables. We say that a point

(a, b) ∈ D in the domain of f is a critical point if either:

(i) ∇f(a, b) =< 0, 0 >= 0, or,

(ii) one of the partial derivatives, fx or fy, does not exist.

Example 3.44 Find the critical points of the function f(x, y) =
√

1− x2 − y2.

Definition 3.45 Let f(x, y) be a differentiable function of two variables. We say that a point

(a, b) ∈ D is:

(i) A local maximum for f , if f(x, y) ≤ f(a, b) for all (x, y) “close” to (a, b).

(ii) A global maximum for f , if f(x, y) ≤ f(a, b) for all (x, y).

(iii) A local minimum for f , if f(x, y) ≥ f(a, b) for all (x, y) “close” to (a, b).
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(iv) A global minimum for f , if f(x, y) ≥ f(a, b) for all (x, y).

Remark 3.46 Clearly global extrema are also local/relative.

Theorem 3.47 Let f(x, y) be a differentiable function of two variables and assume that fx(a.b)

and fy(a, b) exist. If (a, b) ∈ D is a local maximum (or, minimum), then

∇f(a, b) =< 0, 0 >= 0 .

Remark 3.48 The converse is not true. For instance, the function f(x, y) = x2 − y2 has a

critical point at (0, 0) which is not a local maximum nor a local minimum.

Definition 3.49 A saddle point is a critical point which is not a local maximum nor a local

minimum.

Remark 3.50 To understand the local nature of critical points we need to check, at least, the

second order partial derivatives.

Definition 3.51 The Hessian matrix of a function f(x, y) at a point (a, b) ∈ D is

Hf(a, b) =

(
fxx(a, b) fxy(a, b)

fyx(a, b) fyy(a, b)

)
.

We will denote by D = detHf(a, b) to the determinant of the Hessian matrix of f at (a, b).

(That is, D = fxx(a, b)fyy(a, b)− fxy(a, b)fyx(a, b).)

Theorem 3.52 (Second Partial Derivative Test) Let f(x, y) be a differentiable function

and assume that (a, b) is a critical point where ∇f(a, b) =< 0, 0 >. Then:

(i) If D > 0 and fxx(a, b) > 0, the point (a, b) is a local minimum.

(ii) If D > 0 and fxx(a, b) < 0, the point (a, b) is a local maximum.

(iii) If D < 0, the point (a, b) is a saddle point.

(iv) If D = 0, the test is “inconclusive”.

Example 3.53 Compute the critical points of the following functions and classify them:

1. f(x, y) = x3 + 2xy − 6x− 4y2

2. f(x, y) = 2x2 + 2xy + y2 − 2x+ 5

3. f(x, y) = x2y4

4. f(x, y) = 8x3 − 24xy + y3
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Theorem 3.54 (Global Extrema) A continuous function defined on a compact (bounded

and closed) domain attains both its global minimum and global maximum.

Definition 3.55 A set is closed if the boundary is included.

Remark 3.56 How to find the global extrema?

1. Compute the critical points in the interior of the domain. (The interior is the set without

the boundary.)

2. Determine the maximum and minimum value of the function at the boundary. (One

variable problem.)

3. Compare the values of the function at the following points: the points of 1), the points of

2) and the points in the boundary of the boundary.

Example 3.57 Compute the extrema of the following functions:

1. f(x, y) = ex
2−y2 defined on {(x, y) ∈ R2 |x2 + y2 ≤ 1}.

2. f(x, y) = 9x
x2+y2+1

for x ∈ [−1, 1] and y ∈ [−1, 1].

3. f(x, y) = 4x2 − 2xy + 6y2 − 8x+ 2y + 3, for (x, y) ∈ [0, 2]× [−1, 3].

4. f(x, y) = x2 + y2 − 2y + 1 defined on {(x, y) ∈ R2 |x2 + y2 ≤ 4}.

Remark 3.58 Step 2 in previous remark is usually hard if the domain has a weird shape

(other than a circle, an ellipse or a square). To solve this problem we may need the Lagrange

multipliers principle.

3.9 Lagrange Multipliers

Remark 3.59 Lagrange multipliers serve to compute maxima and minima of a differentiable

function f(x, y) subject to a constraint g(x, y) = 0.

Theorem 3.60 (Lagrange Multipliers Principle) Let f(x, y) and g(x, y) be functions in

two variables with continuous partial derivatives and assume that f(x, y) restricted to the curve

g(x, y) = 0 has a local extrema (a, b) such that ∇g(a, b) ̸=< 0, 0 >. Then, there exists a number

λ ∈ R such that

∇f(a, b) = λ∇g(a, b) .

Definition 3.61 The number λ ∈ R is referred as to the Lagrange multiplier.
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Remark 3.62 If we want to find extrema of a function f(x, y) subject to a constraint g(x, y) =

0, from Lagrange multipliers principle, we need to solve{
∇f(x, y) = λ∇g(x, y) ,

g(x, y) = 0 ,

to obtain the candidates. Observe that this is a system of three equations (possibly, nonlinear)

with three unknowns, i.e., x, y and λ.

Example 3.63 Compute maxima and minima of the following functions with their respective

constraints:

1. f(x, y) = x+ y subject to g(x, y) = x2 + y2 − 1 = 0.

2. f(x, y) = 1− x2 − y2 subject to g(x, y) = x+ y − 1 = 0.

3. f(x, y) = x2 + y2 subject to g(x, y) = x2 + xy + y2 − 1 = 0.

4. f(x, y) = ex
2−y2 subject to g(x, y) = x2 + y2 − 1 = 0.

5. f(x, y) = x2 + y2 − 2y + 1 subject to g(x, y) = x2 + y2 − 4 = 0.
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Review Problems

1. Compute the distance from the point P = (3,−1, 4) to the line

L :


x = t ,

y = 2 + t ,

z = 1− t .

(Use the family of planes orthogonal to L to find the closest point in L to P .)

2. Compute the distance from the point P = (1, 1, 2) to the line L(t) = ⟨−2+3t, 1−t, 3+2t⟩.
(Use the family of planes orthogonal to L to find the closest point in L to P .)

3. Compute the distance from the point P = (−2, 1, 0) to the plane π : x− y + 2z = 7.

(Use the line perpendicular to π to find the closest point in π to P .)

4. Determine the relative position between the lines

L1 :


x = 2− t ,

y = 1 + t ,

z = −2− t ,

L2 :


x = 1 + s ,

y = s ,

z = 5 + s .

(If they are skew, compute the distance between them finding the closest points P and

Q.)

5. Determine the relative position between the lines

L1 :


x = 2t+ 3 ,

y = t+ 2 ,

z = −t ,

L2 :

{
x− y + z = 0 ,

2x− y − z + 1 = 0 .

(If they are skew, compute the distance between them finding the closest points P and

Q.)

6. Compute the position vector given the acceleration A⃗(t) = −4 cos(2t)⃗i+ 4 sin(2t)⃗j − 2tk⃗

and initial velocity and position V⃗ (0) = ⟨1, 0, 1⟩ and R⃗(0) = ⟨1, 1, 1⟩, respectively.

7. Compute the position vector given the acceleration A⃗(t) = cos(t)⃗i + sin(t)⃗j + 3tk⃗ and

initial velocity and position V⃗ (0) = ⟨1, 0, 1⟩ and R⃗(0) = ⟨1, 1, 1⟩, respectively.

8. Compute the acceleration and position vector given the velocity V⃗ (t) =
√
t i⃗− et⃗j+sin tk⃗

and initial position R⃗(0) = ⟨1,−1, 2⟩.

9. Compute the acceleration and position vector given the velocity V⃗ (t) = t2⃗i − sin(2t)⃗j +

2tet
2
k⃗ and initial position R⃗(0) = ⟨1,−1/2, 0⟩.
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10. Compute the acceleration and position vector given the velocity V⃗ (t) = e3t⃗i−2 sin(2t)⃗j+√
tk⃗ and initial position R⃗(0) = ⟨1/3,−1, 1⟩.

11. Study the continuity of the following function:

f(x, y) =

{
4xy2

x2+3y4
, (x, y) ̸= (0, 0) ,

0 , (x, y) = (0, 0) .

12. Study the continuity of the following function:

f(x, y) =

{
3xy

x2+y2
, (x, y) ̸= (0, 0) ,

0 , (x, y) = (0, 0) .

13. Study the continuity of the following function:

f(x, y) =


2(x2+y2)√
x2+y2+4−2

, (x, y) ̸= (0, 0) ,

8 , (x, y) = (0, 0) .

14. Study the continuity of the following function:

f(x, y) =

{
x−y

x2+4y4
, (x, y) ̸= (0, 0) ,

A , (x, y) = (0, 0) .

15. Study the continuity of the following function:

f(x, y) =

{
x2y

x3+y2
, (x, y) ̸= (0, 0) ,

0 , (x, y) = (0, 0) .

16. Let f(x, y) = x2 + 2xy + 3y2 − 4x− 3y. Obtain critical points and classify them as local

maximum, local minimum or saddle points.

17. Let f(x, y) = x2 − 3xy + y2. Obtain critical points and classify them as local maximum,

local minimum or saddle points.

18. Let f(x, y) = x2 +3xy+5y3 − 7x− 11y. Obtain critical points and classify them as local

maximum, local minimum or saddle points.

19. Let f(x, y) = x3−3x+y3−3y2. Obtain critical points and classify them as local maximum,

local minimum or saddle points.

20. Let f(x, y) = 2x2 + y2 + 6y be defined on R2. Obtain global extrema, if possible.

21. Let f(x, y) = 2x2 − y2 + 6y be defined on {(x, y) ∈ R2 |x2 + y2 ≤ 16}. Obtain extrema.

22. Let f(x, y) = x2 + 3y2 be defined on R2. Obtain global extrema, if possible.
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23. Let f(x, y) = x2 + 3y2 be defined on {(x, y) ∈ R2 | (x− 1)2 + y2 ≤ 4}. Obtain extrema.

24. Let f(x, y) = 4x2 + y2 − 4x be defined on R2. Obtain global extrema, if possible.

25. Let f(x, y) = 4x2 + y2 − 4x be defined on {(x, y) ∈ R2 |x2 + y2 ≤ 1}. Obtain extrema.

26. Let f(x, y) = x2 + y2 + 2x− 1 be defined on R2. Obtain global extrema, if possible.

27. Let f(x, y) = x2+ y2+2x−1 be defined on {(x, y) ∈ R2 | 2x2+ y2 ≤ 8}. Obtain extrema.

28. Let f(x, y) = −x2 − y2 + 2x− 1 be defined on R2. Obtain global extrema, if possible.

29. Let f(x, y) = −x2 − y2 + 2x − 1 be defined on {(x, y) ∈ R2 | 2x2 + y2 ≤ 8}. Obtain

extrema.
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4 Multiple Integration (Chapter 12)

4.1 Double Integrals Over Rectangular Regions

Definition 4.1 Let f(x, y) be defined on a closed, bounded rectangular region R in the xy-

plane. The double integral of f over R is defined by

∫ ∫
R

f(x, y) dA = lim
∥P∥→0

N∑
k=1

f(x∗
k, y

∗
k)∆Ak ,

where Ak is the area of the k-th representative cell and ∥P∥ is the norm of the partition, i.e.,

the length of the longest diagonal of any rectangle in the partition.

Definition 4.2 The sum
∑N

k=1 f(x
∗
k, y

∗
k)∆Ak is called the Riemann sum of f(x, y).

Definition 4.3 If above limit exists, f is said to be integrable over R.

Proposition 4.4 Let f and g be integrable functions on a rectangular region R. Then, the

following properties of double integrals hold:

(i) Linearity. For constants a, b ∈ R,∫ ∫
R

(af(x, y) + bg(x, y)) dA = a

∫ ∫
R

f(x, y) dA+ b

∫ ∫
R

g(x, y) dA .

(ii) If f(x, y) ≥ g(x, y) on R, ∫ ∫
R

f(x, y) dA ≥
∫ ∫

R

g(x, y) dA .

(iii) If R is subdivided on two rectangles R1 and R2 whose intersection is just a line,∫ ∫
R

f(x, y) dA =

∫ ∫
R1

f(x, y) dA+

∫ ∫
R2

f(x, y) dA .

(iv) Let R = [a, b]× [c, d] and assume f(x, y) = f1(x)f2(y), then∫ ∫
R

f(x, y) dA =

(∫ b

a

f1(x) dx

)(∫ d

c

f2(y) dy

)
.

Remark 4.5 The integral
∫ ∫

R
f(x, y)dA represents the volume of the region bounded between

the xy-plane and the graph of f(x, y).
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Theorem 4.6 (Fubini) Let f(x, y) be an integrable function over a rectangular region R =

[a, b]× [c, d]. Then,∫ ∫
R

f(x, y) dA =

∫ b

a

∫ d

c

f(x, y) dydx =

∫ d

c

∫ b

a

f(x, y) dxdy .

Example 4.7 Compute the following double integrals:

1. ∫ 1

0

∫ 3

−1

(3− x+ 4y) dydx

2. Let R = [1, 2]× [0, 1], ∫ ∫
R

x2y5 dA

3. Let R = {(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ log 5},∫ ∫
R

xexydA

4. ∫ 1

0

∫ π/2

0

x cos(xy) dxdy

4.2 Double Integrals Over General Regions

Definition 4.8 Let D ⊂ R2 be an arbitrary bounded domain and consider a rectangle R such

that D ⊂ R. Assume f is continuous on D and define

F (x, y) =

{
f(x, y) , (x, y) ∈ D ,

0 , otherwise .

Then, ∫ ∫
D
f(x, y) dA =

∫ ∫
R

F (x, y) dA .

Remark 4.9 We will consider regions of the form

D1 = {(x, y) ∈ R2 | a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)} ,

and

D2 = {(x, y) ∈ R2 |h1(y) ≤ x ≤ h2(y), c ≤ y ≤ d} .
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Theorem 4.10 (Fubini) Let f(x, y) be continuous on D1 (and D2), then∫ ∫
D1

f(x, y) dA =

∫ b

a

(∫ g2(x)

g1(x)

f(x, y) dy

)
dx ,

and ∫ ∫
D2

f(x, y) dA =

∫ d

c

(∫ h2(y)

h1(y)

f(x, y) dx

)
dy .

Example 4.11 Compute the following double integrals:

1. ∫ ∫
D
x2exy dA ,

where D is the triangular region enclosed by the lines y = 1, x = 0 and y = x/2.

2. ∫ 1

0

∫ √
x

x2

160xy2 dydx .

3. ∫ ∫
D
(x+ y) dA ,

where D is the triangular region enclosed by the lines y = 0, y = 2x and x = 1.

4. ∫ 1

0

∫ 1

x

ey
2

dydx .

5. ∫ ∫
D
(x2 + y2) dA ,

where D is the planar region enclosed by the curves y = 2x and y = x2.

6. Change the order of integration for∫ 2

0

∫ ex

1

f(x, y) dydx .

Definition 4.12 Given a region D ⊂ R2, the area of D is the integral

A(D) =

∫ ∫
D
1 dA .

Example 4.13 Compute the areas of the following domains D:

1. Find the area of the region D bounded by the parabola y = x2 − 2 and the line y = x.

2. Area of D bounded by y = x3 and y = x3 + 1 for x ∈ [0, 1].

3. Area of D bounded by y = 1, y = x, y = log x and y = 0.
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4.3 Change of Variable in Double Integrals

Definition 4.14 A transformation T : D ⊂ R2 → D̃ ⊂ R2 defined by T (u, v) = (x(u, v), y(u, v))

is bijective (or, one-to-one) if:

(i) Every point in D̃ is in the range of T .

(ii) Different points of D map to different points in D̃.

Theorem 4.15 (Change of Variables) Let T (u, v) = (x(u, v), y(u, v)) be a bijective C1 trans-

formation such that T (S) = R. Let f(x, y) be a continuous and bounded function, then∫ ∫
R

f(x, y) dA =

∫ ∫
S

f (x(u, v), y(u, v)) |detJac(T )| dudv ,

where

Jac(T ) =

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
,

is the Jacobian matrix associated to the transformation.

Remark 4.16 (Polar Coordinates) We can use the polar coordinates as one possible change

of variable:

x = r cos θ ,

y = r sin θ .

In this case, |detJac(T )| = r.

Example 4.17 Compute the following integrals using a suitable change of variable:

1. ∫ 1

0

∫ √
1−x2

0

(
x2 + y2

)
dydx .

2. Let R = {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 4, x ≥ 0} and∫ ∫
R

(x+ y) dA .

3. ∫ ∞

−∞
e−x2

dx .

4. Let R be the parallelogram with vertices (1, 2), (3, 4), (4, 3) and (6, 5), and∫ ∫
R

(x− y) dA .
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4.4 Triple Integrals Over General Regions

Theorem 4.18 Let f(x, y, z) be a continuous and bounded function over the region

B = {(x, y, z) ∈ R3 | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y)} .

Then, ∫ ∫ ∫
B

f(x, y, z) dV =

∫ ∫
D

(∫ u2(x,y)

u1(x,y)

f(x, y, z) dz

)
dA .

Remark 4.19 Once we solve the integral with respect to z, we have a double integral over the

region D, which we know how to deal with.

Example 4.20 Compute the following triple integrals:

1. ∫ 2

−1

∫ 2

1

∫ 1

0

z2yex dxdydz .

2. Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and

x+ y + z = 1.

3. Let B be the region defined by x2 + y2 ≤ 4, z ≥ 0 and z ≤ 4− 2y. Compute∫ ∫ ∫
B

x dV .

Remark 4.21 Change of variables also apply for triple integrals in a similar way as in double

integrals.

Remark 4.22 (Cylindrical Coordinates) We can use the cylindrical coordinates as one

possible change of variable:

x = r cos θ ,

y = r sin θ ,

z = z .

In this case, |detJac(T )| = r.

Example 4.23 Compute the following integrals using cylindrical coordinates:

1. Let B be the region bounded by z = x2 + y2 and z = 4. Compute∫ ∫ ∫
B

√
x2 + y2 dV .
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2. Find the volume of the region B bounded by the cone z =
√

x2 + y2 and the paraboloid

z = 2− x2 − y2.

Remark 4.24 (Spherical Coordinates) We can use the spherical coordinates as one possi-

ble change of variable:

x = ρ cos θ sinϕ ,

y = ρ sin θ sinϕ ,

z = ρ cosϕ .

In this case, |detJac(T )| = ρ2 sinϕ.

Example 4.25 Compute the volume of the region bounded by the cone z =
√

3 (x2 + y2) and

the half-sphere z =
√

4− x2 − y2

4.5 Exercises

1. ∫ 1

0

∫ √
1−x2

0

(
x2 + y2

)
dydx .

Solution: π/8.

2. Let D = {(x, y) ∈ R2 | (x− 1)2 + y2 ≤ 1} and∫ ∫
D

(
4− x2 − y2

)
dA .

Solution: 5π/2.

3. Let D be the region bounded by the lines x+y = 1, x+y = 3 and the curves x2−y2 = −1,

x2 − y2 = 1. Compute, ∫ ∫
D
(x− y)ex

2−y2dA .

Hint: Use the change of variable u = x+ y and v = x− y.

Solution: 2/(3e).

4. Let B be the solid bounded by the surface y2 = x, x = 4, y = 0 and z = 1. Compute,∫ ∫ ∫
B

xyz dV .

Solution: 1.

5. Let B = {(x, y, z) ∈ R3 | −y ≤ x ≤ y, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1− x4 − y4}. Compute,∫ ∫ ∫
B

z dV .

Solution: 11/18.
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6. Let B = {(x, y, z) ∈ R3 | 1 ≤ x2 + y2 ≤ 9, y ≤ 0, 0 ≤ z ≤ 1}. Compute,∫ ∫ ∫
B

√
x2 + y2 dV .

Solution: 26π/3.

7. Let B be the region bounded by x2 + y2 + z2 = 16, z ≥ 0 and 3z2 = x2 + y2. Compute,∫ ∫ ∫
B

z dV .

Solution: 16π.

8. Write the integral for the volume of the region bounded by z =
√

x2 + y2 and z =√
16− x2 − y2, in Cartesian (x, y and z), cylindrical and spherical coordinates. Compute

the volume using cylindrical coordinates.

Solution: 64π
(
2−

√
2
)
/3.
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5 Vector Analysis (Chapter 13)

5.1 Scalar Line Integrals

Remark 5.1 A scalar line integral is a single integral of a function of several variables along

a curve.

Theorem 5.2 Let f(x, y, z) be a continuous function defined on a domain that includes the

curve C parameterized by r⃗(t) with t ∈ [a, b]. Then,∫
C

f ds =

∫ b

a

f (r⃗(t)) ∥r⃗ ′(t)∥ dt .

Remark 5.3 The scalar line integral is independent of the parameterization of the curve.

Example 5.4 Evaluate the following line integrals:

1. Evaluate
∫
C
(x2 + yz) ds where C is parameterized by r⃗(t) = ⟨2t, 5t,−t⟩ with 0 ≤ t ≤ 10.

2. Evaluate
∫
C
xey ds where C is the curve of equation x = ey from (1, 0) to (e, 1).

Example 5.5 Find the parameterization of the intersection between x2 + y2 + z2 = 50 and the

plane y = 5.

Remark 5.6 If the curve can be divided into different parts (i.e., C = C1 ∪ C2), then∫
C

f ds =

∫
C1

f ds+

∫
C2

f ds .

Example 5.7 Evaluate
∫
C
xy2 ds where C is the triangle of vertices (0, 1, 2), (0,−1, 0) and

(1, 0, 3).

5.2 Vector Fields

Definition 5.8 A vector field (in space) is an assignment of a three-dimensional vector F⃗ (x, y, z)

to each point (x, y, z) ∈ D ⊂ R3. The subset D is the domain of the vector field.

Remark 5.9 A vector field is a vector-valued function in several variables,

i.e., F⃗ : D ⊂ R3 −→ R3.

Example 5.10 F⃗ (x, y) = x⃗i+ yj⃗.

Definition 5.11 We say that F⃗ : D ⊂ R3 −→ R3 is a unit vector field if ∥F⃗ (x, y, z)∥ = 1 for

every (x, y, z) ∈ D.
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Remark 5.12 For convenience, we will often use the following notation

F⃗ (x, y, z) = f1(x, y, z)⃗i+ f2(x, y, z)⃗j + f3(x, y, z)k⃗ ,

where fi(x, y, z) for i = 1, 2, 3, are real-valued functions in several variables.

Definition 5.13 We say that a vector field on R3 is smooth if all derivatives (of all orders) of

fi(x, y, z), i = 1, 2, 3, exist and are continuous in the domain of the vector field.

Definition 5.14 Let F⃗ (x, y, z) = f1(x, y, z)⃗i+f2(x, y, z)⃗j+f3(x, y, z)k⃗ be a smooth vector field.

The divergence of F⃗ is the function

div(F⃗ ) = ∇ · F⃗ =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

.

Remark 5.15 We may think ∇ as a formal “vector field”

∇ =
∂

∂x
i⃗+

∂

∂y
j⃗ +

∂

∂z
k⃗ ,

so the divergence ∇ · F⃗ is, roughly speaking, the dot product (or scalar/inner) of ∇ and F⃗ .

Remark 5.16 (Physical Interpretation) If a vector field F⃗ is the velocity of a fluid moving

in space, the divergence at a point measures the flow of the fluid.

Definition 5.17 If the divergence of a vector field is zero, we say that the vector field is

incompressible.

Example 5.18 Compute the divergence of the vector field F⃗ (x, y) = x⃗i+ yj⃗.

Definition 5.19 Let F⃗ (x, y, z) = f1(x, y, z)⃗i+f2(x, y, z)⃗j+f3(x, y, z)k⃗ be a smooth vector field.

The curl of F⃗ is the vector field

curl(F⃗ ) = ∇× F⃗ =

∣∣∣∣∣∣
i⃗ j⃗ k⃗

∂x ∂y ∂z
f1 f2 f3

∣∣∣∣∣∣ ,
that is,

∇× F⃗ =

(
∂f3
∂y

− ∂f2
∂z

)
i⃗+

(
∂f1
∂z

− ∂f3
∂x

)
j⃗ +

(
∂f2
∂x

− ∂f1
∂y

)
k⃗ .

Remark 5.20 As above, understanding ∇ as a “vector field”, the curl ∇ × F⃗ is the cross

product (or vector/outer) of ∇ with F⃗ .

31



Remark 5.21 In the case that the vector field F⃗ is contained in the plane R2, then we can

consider f3 = 0 and f1 and f2 do not depend on z. Therefore,

∇× F⃗ =

(
∂f2
∂x

− ∂f1
∂y

)
k⃗ .

Remark 5.22 (Physical Interpretation) The curl of a vector field measures the spin of the

vector field, i.e., if F⃗ is the velocity of a fluid, at each point, the curl measures the tendency of

the fluid to rotate. The direction of ∇×F⃗ is parallel to the axis of rotation, while the magnitude

represents the speed of rotation.

Definition 5.23 We say that a vector field F⃗ is irrotational if the curl is the vector zero, i.e.,

if

∇× F⃗ = ⟨0, 0, 0⟩ .

Example 5.24 Determine if the following vector fields are irrotational or not:

1. F⃗ (x, y) = y⃗i.

2. The gravitational potential energy:

F⃗ (x, y, z) =
−1

(x2 + y2 + z2)3/2
⟨x, y, z⟩ .

Proposition 5.25 Let F⃗ (x, y, z) = f1(x, y, z)⃗i + f2(x, y, z)⃗j + f3(x, y, z)k⃗ be a smooth vector

field. Then, the divergence of the curl of F⃗ is zero, i.e.,

∇ ·
(
∇× F⃗

)
= 0 .

Definition 5.26 Let f(x, y, z) be a smooth function. The gradient vector field of f is

∇f =
∂f

∂x
i⃗+

∂f

∂y
j⃗ +

∂f

∂z
k⃗ .

Proposition 5.27 Let f(x, y, z) be a smooth function. Then, the curl of the gradient of f is

the vector zero, i.e.,

∇× (∇f) = ⟨0, 0, 0⟩ .

Remark 5.28 The other implication is true under an additional assumption.

Definition 5.29 We say that a domain D is connected if any pair of points can be joint by a

path contained in D. We say that D is simply-connected if it is connected and any simple loop

in D can be shrunk to a point.
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Remark 5.30 In two dimensions, a domain is simply-connected if it is connected and has no

holes.

Proposition 5.31 Let F⃗ be a smooth vector field defined on a simply-connected domain. If F⃗

is irrotational (i.e., ∇ × F⃗ = ⟨0, 0, 0⟩), then F⃗ is a gradient vector field. That is, it exists a

function f such that

F⃗ = ∇f .

Definition 5.32 The scalar-valued function f is called a (scalar) potential for F⃗ .

Example 5.33 Determine if the following vector fields are gradient vector fields and, if yes,

find the scalar potentials:

1. F⃗ (x, y) = 2xy3⃗i+ (3x2y2 + cos y) j⃗.

2. F⃗ (x, y, z) = 2xy⃗i+ (x2 + 2yz3) j⃗ + (3y2z2 + 2z) k⃗.

Definition 5.34 Let f(x, y, z) be a smooth function. We define the Laplacian as the function

given by the divergence of the gradient of f , i.e.,

∆f = ∇2f = ∇ · ∇f = fxx + fyy + fzz .

5.3 Vector Line Integrals

Definition 5.35 An orientation on a curve C is a choice of direction on C. For a closed curve

the positive orientation is counter-clockwise, i.e., enclosing a domain on the left.

Remark 5.36 Unless the opposite stated, we will always assume that our curves are positively

oriented.

Definition 5.37 Let F⃗ be a smooth vector field defined on a domain containing a curve C and

assume that C is parameterized by r⃗(t) with t ∈ [a, b]. The vector line integral of F⃗ along C is∫
C

F⃗ ds =

∫ b

a

F⃗ (r⃗(t)) · r⃗ ′(t) dt .

Remark 5.38 Sometimes, the vector line integral can also be denoted as∫
C

F⃗ dr⃗ .

Example 5.39 Evaluate the following vector line integrals:
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1.
∫
C
F⃗ ds, where F⃗ (x, y) = −y⃗i + x⃗j and C is the semicircle parameterized by r⃗(t) =

⟨cos t, sin t⟩, with 0 ≤ t ≤ π.

2.
∫
C
F⃗ ds, where F⃗ (x, y, z) = 4x⃗i+2⃗j+4y2k⃗ and C is parameterized by r⃗(t) = ⟨4 cos 2t, 2 sin 2t, 3⟩,

with t ∈ [0, π/4].

3. The vector line integral of the vector field F⃗ (x, y) = y2⃗i + (2xy + 1) j⃗ along the triangle

with vertices (0, 0), (4, 0) and (0, 5), positively oriented.

Theorem 5.40 (Fundamental Theorem of Line Integrals) Let F⃗ be a smooth gradient

vector field (i.e., F⃗ = ∇f , for some function f) and let C be a curve parameterized by r⃗(t) with

t ∈ [a, b]. Then, ∫
C

F⃗ ds =

∫
C

∇f ds = f (r⃗(b))− f (r⃗(a)) .

Definition 5.41 We say that a vector field is conservative if the line integral
∫
C
F⃗ ds does not

depend on the path C, but only on the initial and final points.

Remark 5.42 If C is closed and F⃗ is conservative, then∫
C

F⃗ ds = 0 ,

since the initial and final points of a closed curve are the same.

Proposition 5.43 A vector field is conservative if and only if it is a gradient vector field. In

other words, if and only if there exists a scalar potential.

Remark 5.44 To sum up, we have that a vector field F⃗ is conservative (i.e., line integrals

only depend on the endpoints, not on the path) if and only if F⃗ is a gradient vector field (i.e.,

F⃗ = ∇f , for some function f). Moreover, gradient vector fields (and so, conservative vector

fields) are always irrotational (that is, ∇×F⃗ = ∇×(∇f) = ⟨0, 0, 0⟩). However, for the converse
of this last statement, we need a simply-connected domain.

Example 5.45 Consider the vector field

F⃗ (x, y) =
−y

x2 + y2
i⃗+

x

x2 + y2
j⃗ .

Is this vector field irrotational? Can we conclude that it is a gradient vector field? Compute

the line integral
∫
C
F⃗ ds along the closed circle of radius one centered at (0, 0).
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5.4 Green’s Theorem

Theorem 5.46 (Green’s Theorem) Let D be a region in the plane with boundary ∂D to-

gether with the induced positive orientation, and consider a smooth vector field F⃗ (x, y) =

f1(x, y)⃗i+ f2(x, y)⃗j defined on D. Then,∮
∂D

F⃗ ds =

∫ ∫
D

(
∂f2
∂x

− ∂f1
∂y

)
dA .

Remark 5.47 The notation
∮

just means that we are computing the line integral
∫

along

closed curves.

Remark 5.48 Observe that the integrand on the right-hand side of Green’s Theorem is just

the curl of F⃗ , ∇× F⃗ .

Example 5.49 Use Green’s Theorem to compute the followings:

1. The line integral of the vector field F⃗ (x, y) = y2⃗i + (2xy + 1) j⃗ along the triangle with

vertices (0, 0), (4, 0) and (0, 5).

2. The line integral of the vector field F⃗ (x, y) = sin(x2)⃗i+ (3x− y) j⃗ along the triangle with

vertices (−1, 2), (4, 2) and (4, 5).

3. The area of the region enclosed by the curve r⃗(t) = ⟨sin t cos t, sin t⟩, 0 ≤ t ≤ π.

4. The line integral of the vector field F⃗ (x, y) = x3⃗i + (5x+ ey sin y) j⃗ along ∂D where

D = {(x, y) ∈ R2 | 4 ≤ x2 + y2 ≤ 25}.

Remark 5.50 The area of a region D can be computed, for instance, as

A(D) =
1

2

∮
∂D

⟨−y, x⟩ ds .

There are more ways to compute the area using Green’s Theorem.

5.5 Surface Integrals

Remark 5.51 A surface integral is similar to a line integral, but the integration is over a

surface not a curve.

Definition 5.52 A parameterized surface is a map X⃗(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩ from a

domain D ⊂ R2 to R3. The image of D is the surface S = X⃗(D).

Definition 5.53 We say that a surface X⃗(u, v) is regular if the vector X⃗u×X⃗v never vanishes.

The vector field X⃗u × X⃗v is the normal vector field to the surface.
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Definition 5.54 The surface integral of a function f over a surface S parameterized by X⃗(u, v)

is ∫ ∫
S

f dS =

∫ ∫
D
f
(
X⃗(u, v)

)
∥X⃗u × X⃗v∥ dA ,

where D is the domain of the parameterization.

Definition 5.55 Let X⃗(u, v) be a smooth parameterization of a surface S with (u, v) ∈ D. The

surface area of S is

A(S) =

∫ ∫
D
∥X⃗u × X⃗v∥ dA .

Example 5.56 Compute the surface area of a sphere of radius ρ.

Example 5.57 Find the area of the surface generated by rotating the curve y = f(x), x ∈ (a, b),

around the x-axis. Answer:

A(S) = 2π

∫ b

a

f(x)

√
1 + (f ′(x))2 dx .

Example 5.58 Calculate the surface integral
∫ ∫

S
(x+y2)dS where S is the cylinder x2+y2 = 4,

0 ≤ z ≤ 3.

Definition 5.59 An orientation on a surface S is the choice of a unit normal vector N⃗ on S.

We say that S has the positive orientation if N⃗ points outward (of any convex domain).

Definition 5.60 Let F⃗ be a vector field in R3 defined on a domain that contains a surface S

oriented with a unit normal vector N⃗ . The flux of F⃗ (vector surface integral) along S is defined

as the surface integral∫ ∫
S

F⃗ dS =

∫ ∫
S

F⃗ · N⃗ dS =

∫ ∫
D
F⃗
(
X⃗(u, v)

)
· X⃗u × X⃗v dA ,

where X⃗(u, v) is the parameterization of S.

Example 5.61 Calculate the flux of the vector field F⃗ (x, y, z) = −y⃗i + x⃗j over X⃗(u, v) =

⟨u, v2 − u, u+ v⟩, 0 ≤ u ≤ 3 and 0 ≤ v ≤ 4.

5.6 Divergence Theorem

Theorem 5.62 (Divergence Theorem) Let B be a solid in space whose boundary is a sur-

face S and assume S is positively oriented (i.e., outward unit normal). Then, for a smooth

vector field F⃗ defined on B, ∫ ∫
S

F⃗ dS =

∫ ∫ ∫
B

∇ · F⃗ dV .
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Example 5.63 Let F⃗ (x, y, z) = (x− y)⃗i+ (x+ z)⃗j + (z− y)k⃗ and S be the cone x2 + y2 = z2,

0 ≤ z ≤ 1 with the top disc. Verify the Divergence Theorem.

Remark 5.64 The Divergence Theorem allows us to give an interpretation of the divergence

vector field. Let Br be a ball of radius r (very small) centered at P and Sr be the boundary of

Br. The flux of a vector field F⃗ across Sr can be approximated as∫ ∫
Sr

F⃗ dS =

∫ ∫ ∫
Br

∇ · F⃗ dV ≃ ∇ · F⃗ (P )V(Br) ,

and we can conclude that

∇ · F⃗ (P ) = lim
r→0

1

V(Br)

∫ ∫
Sr

F⃗ dS .

If ∇ · F⃗ (P ) is positive (respectively, negative) it means that the vector field goes outside (resp.,

inside) the ball.

Example 5.65 Compute
∫ ∫

S
F⃗ dS where S is the cylinder x2 + y2 = 1, 0 ≤ z ≤ 2 and

F⃗ (x, y, z) =

(
x3

3
+ yz

)
i⃗+

(
y3

3
− sin(xz)

)
j⃗ + (z − x− y)k⃗ .

5.7 Stokes’ Theorem

Theorem 5.66 (Stokes’ Theorem) Let S be a surface with boundary C, which is simple and

closed, positively oriented. Then, for a smooth vector field F⃗ defined on a domain containing

S, ∮
C

F⃗ ds =

∫ ∫
S

∇× F⃗ dS .

Example 5.67 Let F⃗ (x, y, z) = y⃗i + 2zj⃗ + x2k⃗ and S be z = 4 − x2 − y2 with z ≥ 0. Verify

Stokes’ Theorem.

Remark 5.68 If the surface S is a planar region D, Stokes’ Theorem is just Green’s Theorem.

Example 5.69 Compute
∫ ∫

S
∇× F⃗ dS where F⃗ (x, y, z) = z⃗i+ x⃗j+ yk⃗ and for any surface S

whose boundary is the circle of radius 1 centered in the origin of the xz-plane.

5.8 Exercises

1. Compute
∫ ∫

S
z2 dS where S is the part of the sphere x2 + y2 + z2 = 4 above the plane

z = 1 and the disc enclosed by the intersection of the plane and the sphere.

Solution: 37π/3.
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2. Let F⃗ (x, y, z) = xy⃗i+(x2+y2+z2)⃗j+yzk⃗ be a vector field and C be the boundary of the

parallelogram with vertices (0, 0, 1), (0, 1, 0), (2, 0,−1) and (2, 1,−2). Compute
∫
C
F⃗ ds.

Hint: Use Stokes’ Theorem.

Solution: 3.

3. Consider the vector field F⃗ (x, y, z) = x2y3⃗i+ j⃗ + 2k⃗ and let C be the intersection of the

cylinder x2 + y2 = 4 and the half-sphere x2 + y2 + z2 = 16, z ≥ 0. Compute
∫
C
F⃗ ds.

Solution: −8π.
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Review Problems

1. Let D be the region bounded by the triangle of vertices (−3, 0), (0, 0) and (0, 3) and

consider the vector field F⃗ (x, y) = (xy2 + x2) i⃗+ (4x− 1) j⃗.

(a) Compute the (vector) line integral of F⃗ along the triangle ∂D, using the definition

of line integrals.

(b) Compute the (vector) line integral of F⃗ along the triangle ∂D, using Green’s Theo-

rem.

2. Let D be the region below x2 + y2 = 2 and above y = x2.

(a) Compute the area of D using double integrals.

(b) Compute the area of D applying Green’s Theorem.

(c) Compute the line integral of F⃗ (x, y) = (x2 − y)⃗i+ (x− sin2 y)⃗j along the positively

oriented boundary of D.

3. Let D be the region enclosed by x2 + y2 = 25 and such that x ≤ 0. Consider the vector

field F⃗ (x, y) = yx2⃗i− x2j⃗.

(a) Compute the (vector) line integral of F⃗ along the boundary ∂D, using the definition

of line integrals.

(b) Compute the (vector) line integral of F⃗ along the boundary ∂D, using Green’s

Theorem.

4. Consider the vector field F⃗ (x, y, z) = (−4x+ 4− 4y2 + 2z3) i⃗ + (−8xy + 2z) j⃗ + (6xz2 +

2y)k⃗.

(a) Is the vector field F⃗ conservative?

(b) If possible, find all the scalar potentials.

(c) Compute the (vector) line integral of F⃗ over the closed curve C which is the inter-

section of the cylinder x2 + y2 = 2x and the sphere x2 + y2 + z2 = 4.

(d) Compute the (vector) line integral of F⃗ over the curve C parameterized by r⃗(t) =

⟨t3 − t2, sin2(πt) + t, 1− cos(πt)⟩, for t ∈ [0, 1].

5. Consider the vector field F⃗ (x, y, z) =
(
2x+ 1

x
+ yexy

)
i⃗+ (z + xexy) j⃗ + yk⃗.

(a) Is the vector field F⃗ conservative?

(b) If possible, find all the scalar potentials.

(c) Compute the (vector) line integral of F⃗ along every possible closed curve in the

space.

(d) Compute the (vector) line integral of F⃗ along every possible curve joining the points

(1, 0, 0) and (2, 0, 1).
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6. Let B be the region enclosed by z = x2 + y2 and the plane z = 9.

(a) Compute the volume of B, using triple integrals.

(b) Compute the volume of B, using the Divergence Theorem.

(c) Compute the flux of the vector field F⃗ (x, y, z) = −y⃗i+ x⃗j+ e
√
zk⃗ over the boundary

∂B.

7. Compute the flux of the vector field F⃗ (x, y, z) = yx2⃗i+(xy2− 3z4)⃗j+(x3+ y2)k⃗ over the

boundary of the region enclosed by the sphere of radius 4, z ≤ 0 and y ≤ 0.

8. Compute the flux of the vector field F⃗ (x, y, z) = i⃗+ zj⃗ +6xk⃗ over the sphere of radius 3.
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