

CRITICALITY OF SUB-RIEMANNIAN GEODESICS PROJECTIONS AND APPLICATIONS

Álvaro Pámpano Llarena

23rd International Summer School on Global Analysis and its Applications

Brasov, August 20-24, 2018

<□ > < @ > < E > < E > E のQ @

Problem: How to recover a covered or damaged image?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem: How to recover a covered or damaged image?

Problem: How to recover a covered or damaged image?

Problem: How to recover a covered or damaged image?

In our brain, the primary visual cortex, V1, gives us an intuitive answer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

UNIT TANGENT BUNDLE ([3] AND [4])

The unit tangent bundle of the plane, $\mathbb{R}^2 \times \mathbb{S}^1$, can be used as an abstraction to study the organization and mechanisms of V1.

UNIT TANGENT BUNDLE ([3] AND [4])

The unit tangent bundle of the plane, $\mathbb{R}^2 \times \mathbb{S}^1$, can be used as an abstraction to study the organization and mechanisms of V1.

 Each point (x, y, θ) represents a column of cells associated with a point of retinal data (x, y) ∈ ℝ², all of which are adjusted to the orientation given by the angle θ ∈ S¹.

UNIT TANGENT BUNDLE ([3] AND [4])

The unit tangent bundle of the plane, $\mathbb{R}^2 \times \mathbb{S}^1$, can be used as an abstraction to study the organization and mechanisms of V1.

- Each point (x, y, θ) represents a column of cells associated with a point of retinal data (x, y) ∈ ℝ², all of which are adjusted to the orientation given by the angle θ ∈ S¹.
- The vector (cos θ, sin θ) is the direction of maximal rate of change of brightness at point (x, y) of the picture seen by the eye.

UNIT TANGENT BUNDLE ([3] AND [4])

The unit tangent bundle of the plane, $\mathbb{R}^2 \times \mathbb{S}^1$, can be used as an abstraction to study the organization and mechanisms of V1.

- Each point (x, y, θ) represents a column of cells associated with a point of retinal data (x, y) ∈ ℝ², all of which are adjusted to the orientation given by the angle θ ∈ S¹.
- The vector (cos θ, sin θ) is the direction of maximal rate of change of brightness at point (x, y) of the picture seen by the eye.
- When the cortex cells are stimulated by an image, the border of the image gives a curve inside the space ℝ² × S¹, but restricted to be tangent to a specific distribution.

Sub-Riemannian Structure on $\mathbb{R}^2\times\mathbb{S}^1$

・ロト・日本・モート モー うへぐ

We consider the topological product space $\mathbb{R}^2 \times \mathbb{S}^1$.

We consider the topological product space $\mathbb{R}^2 \times \mathbb{S}^1$.

• Take the distribution $\mathcal{D} = Ker(\sin\theta dx - \cos\theta dy)$.

We consider the topological product space $\mathbb{R}^2 \times \mathbb{S}^1$.

- Take the distribution $\mathcal{D} = Ker(\sin\theta dx \cos\theta dy)$.
- The distribution ${\mathcal D}$ is spanned by

$$X_1 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \ \ X_2 = \frac{\partial}{\partial \theta}$$

We consider the topological product space $\mathbb{R}^2 \times \mathbb{S}^1$.

- Take the distribution $\mathcal{D} = Ker(\sin\theta dx \cos\theta dy)$.
- The distribution ${\mathcal D}$ is spanned by

$$X_1 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \quad X_2 = \frac{\partial}{\partial \theta}$$

• The distribution \mathcal{D} is bracket-generating.

We consider the topological product space $\mathbb{R}^2 \times \mathbb{S}^1$.

- Take the distribution $\mathcal{D} = Ker(\sin\theta dx \cos\theta dy)$.
- The distribution ${\mathcal D}$ is spanned by

$$X_1 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \quad X_2 = \frac{\partial}{\partial \theta}$$

- The distribution \mathcal{D} is bracket-generating.
- Finally, define the inner product ⟨·, ·⟩ by making X₁ and X₂ everywhere orthonormal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We consider the topological product space $\mathbb{R}^2 \times \mathbb{S}^1$.

- Take the distribution $\mathcal{D} = Ker(\sin\theta dx \cos\theta dy)$.
- The distribution $\mathcal D$ is spanned by

$$X_1 = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \quad X_2 = \frac{\partial}{\partial \theta}$$

- The distribution \mathcal{D} is bracket-generating.
- Finally, define the inner product ⟨·, ·⟩ by making X₁ and X₂ everywhere orthonormal.

VISUAL CURVE COMPLETION ([3] AND [4])

If a piece of the contour of a picture is missing to the eye vision (or maybe it is covered by an object), then the brain tends to complete the curve by minimizing some kind of energy.

DIRECT APPROACH TO MINIMIZE LENGTH

(ロ)、(型)、(E)、(E)、 E) の(の)

DIRECT APPROACH TO MINIMIZE LENGTH

XEL-PLATFORM [2] (WWW.IKERGEOMETRY.ORG)

A gradient descent method useful for an ample family of functionals defined on certain spaces of curves satisfying both affine and isoperimetric constraints.

- 日本 - 4 日本 - 4 日本 - 日本

Consider the sub-Riemannian manifold $M^3 = (\mathbb{R}^2 \times \mathbb{S}^1, \mathcal{D}, \langle \cdot, \cdot \rangle).$

・ロト・日本・モト・モート ヨー うへで

Consider the sub-Riemannian manifold $M^3 = (\mathbb{R}^2 \times \mathbb{S}^1, \mathcal{D}, \langle \cdot, \cdot \rangle).$

• A \mathcal{D} -curve on M^3 is a curve which is always tangent to \mathcal{D} .

Consider the sub-Riemannian manifold $M^3 = (\mathbb{R}^2 \times \mathbb{S}^1, \mathcal{D}, \langle \cdot, \cdot \rangle).$

- A \mathcal{D} -curve on M^3 is a curve which is always tangent to \mathcal{D} .
- Every D-curve γ(t) = (x(t), y(t), θ(t)) is the lift of a regular curve α(t) in ℝ² if γ*(cosθdx + sinθdy) ≠ 0.

Consider the sub-Riemannian manifold $M^3 = (\mathbb{R}^2 \times \mathbb{S}^1, \mathcal{D}, \langle \cdot, \cdot \rangle).$

- A \mathcal{D} -curve on M^3 is a curve which is always tangent to \mathcal{D} .
- Every D-curve γ(t) = (x(t), y(t), θ(t)) is the lift of a regular curve α(t) in ℝ² if γ*(cosθdx + sinθdy) ≠ 0.
- Conversely, every regular curve $\alpha(t)$ in the plane may be lifted to a \mathcal{D} -curve $\gamma(t)$ by setting $\theta(t)$ equal to the angle between $\alpha'(t)$ and the x-axis.

Consider the sub-Riemannian manifold $M^3 = (\mathbb{R}^2 \times \mathbb{S}^1, \mathcal{D}, \langle \cdot, \cdot \rangle).$

- A \mathcal{D} -curve on M^3 is a curve which is always tangent to \mathcal{D} .
- Every D-curve γ(t) = (x(t), y(t), θ(t)) is the lift of a regular curve α(t) in ℝ² if γ*(cosθdx + sinθdy) ≠ 0.
- Conversely, every regular curve α(t) in the plane may be lifted to a D-curve γ(t) by setting θ(t) equal to the angle between α'(t) and the x-axis.

CRITICALITY OF PROJECTIONS ([2], [3] AND [4])

Geodesics in M^3 are obtained by lifting minimizers (more generally, critical curves) in \mathbb{R}^2 of

$$\mathcal{F}(lpha) = \int_{lpha} \sqrt{1 + \kappa^2(s)} \, ds$$
 .

TOTAL CURVATURE TYPE ENERGY

As biological researches suggest, by the hypercolumnar organization of the visual cortex, it may be more accurate to consider the functional

$$\mathcal{F}(lpha) = \int_lpha \sqrt{\kappa^2(s) + a^2} \, ds$$

acting on planar non-geodesic curves. That is, non-geodesic curves in $\mathbb{R}^2.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

As biological researches suggest, by the hypercolumnar organization of the visual cortex, it may be more accurate to consider the functional

$$\mathcal{F}(lpha) = \int_{lpha} \sqrt{\kappa^2(s) + a^2} \, ds$$

acting on planar non-geodesic curves. That is, non-geodesic curves in $\mathbb{R}^2.$

 If a = 0 we get the Total Curvature Functional, and therefore we call F a total curvature type energy.

As biological researches suggest, by the hypercolumnar organization of the visual cortex, it may be more accurate to consider the functional

$$\mathcal{F}(lpha) = \int_{lpha} \sqrt{\kappa^2(s) + a^2} \, ds$$

acting on planar non-geodesic curves. That is, non-geodesic curves in $\mathbb{R}^2.$

 If a = 0 we get the Total Curvature Functional, and therefore we call F a total curvature type energy.

• From now on, we are going to consider that $a \neq 0$.

EULER-LAGRANGE EQUATION

EULER-LAGRANGE EQUATION

$$\frac{d^2}{ds^2}\left(\frac{\kappa}{\sqrt{\kappa^2+a^2}}\right) - a^2\frac{\kappa}{\sqrt{\kappa^2+a^2}} = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

EULER-LAGRANGE EQUATION

$$\frac{d^2}{ds^2}\left(\frac{\kappa}{\sqrt{\kappa^2+a^2}}\right) - a^2\frac{\kappa}{\sqrt{\kappa^2+a^2}} = 0$$

As $a \neq 0$, we get the first integral of the Euler-Lagrange Equation,

$$\kappa_s^2 = \left(\frac{\kappa^2 + a^2}{a^2}\right)^2 \left(d\kappa^2 + a^2(d - a^2)\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

EULER-LAGRANGE EQUATION

$$\frac{d^2}{ds^2}\left(\frac{\kappa}{\sqrt{\kappa^2+a^2}}\right) - a^2\frac{\kappa}{\sqrt{\kappa^2+a^2}} = 0$$

As $a \neq 0$, we get the first integral of the Euler-Lagrange Equation,

$$\kappa_s^2 = \left(\frac{\kappa^2 + a^2}{a^2}\right)^2 \left(d\kappa^2 + a^2(d - a^2)\right).$$

Thus, we have that the curvature is given by,

$$\kappa(s) = rac{a\sqrt{d-a^2} f\left(as
ight)}{\sqrt{a^2 - \left(d-a^2
ight) f^2\left(as
ight)}},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where, $f(x) = \sinh x$, $\cosh x$ or e^x .

DIFFERENT TYPES OF CRITICAL CURVES (I)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There are basically three essentially different types of critical curves depending on the value of f(x).

DIFFERENT TYPES OF CRITICAL CURVES (I)

There are basically three essentially different types of critical curves depending on the value of f(x). Here, we plot: On the left, $f(x) = \sinh x$; and, on the right, $f(x) = \cosh x$,

ヘロト 人間ト 人間ト 人間ト

-

DIFFERENT TYPES OF CRITICAL CURVES (II)

Finally, here we plot the case $f(x) = e^x$,

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● ● ●

A vector field W along α , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along α if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

 $W(v)(\overline{t},0) = W(\kappa)(\overline{t},0) = 0$.

A vector field W along α , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along α if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

 $W(v)(\overline{t},0) = W(\kappa)(\overline{t},0) = 0$.

• The vector field along α

$$\mathcal{I} = \frac{\kappa}{\sqrt{\kappa^2 + a^2}} B$$

is a Killing vector field along α .

A vector field W along α , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along α if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

 $W(v)(\overline{t},0) = W(\kappa)(\overline{t},0) = 0$.

• The vector field along α

$$\mathcal{I} = \frac{\kappa}{\sqrt{\kappa^2 + a^2}} B$$

is a Killing vector field along α .

• Remark. We are considering \mathbb{R}^2 as a subset of \mathbb{R}^3 .

A vector field W along α , which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along α if it evolves in the direction of W without changing shape, only position. That is, if the following equations hold

 $W(v)(\overline{t},0) = W(\kappa)(\overline{t},0) = 0$.

• The vector field along α

$$\mathcal{I} = \frac{\kappa}{\sqrt{\kappa^2 + a^2}} B$$

is a Killing vector field along α .

- Remark. We are considering \mathbb{R}^2 as a subset of \mathbb{R}^3 .
- Killing vector fields along curves have unique extensions that are Killing vector fields on the whole space, ℝ³.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Take α any critical curve in \mathbb{R}^2 , and assume that $\mathbb{R}^2 \subset \mathbb{R}^3$.

Take α any critical curve in \mathbb{R}^2 , and assume that $\mathbb{R}^2 \subset \mathbb{R}^3$.

1. Consider the Killing vector field along α in the direction of the binormal, that is,

$$\mathcal{I} = \frac{\kappa}{\sqrt{\kappa^2 + a^2}} \, B.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Take α any critical curve in \mathbb{R}^2 , and assume that $\mathbb{R}^2 \subset \mathbb{R}^3$.

1. Consider the Killing vector field along α in the direction of the binormal, that is,

$$\mathcal{I} = \frac{\kappa}{\sqrt{\kappa^2 + a^2}} \, B.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends \mathcal{I} .

Take α any critical curve in \mathbb{R}^2 , and assume that $\mathbb{R}^2 \subset \mathbb{R}^3$.

1. Consider the Killing vector field along α in the direction of the binormal, that is,

$$\mathcal{I} = \frac{\kappa}{\sqrt{\kappa^2 + a^2}} \, B.$$

- 2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends \mathcal{I} .
- 3. Since \mathbb{R}^3 is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by $\{\phi_t, t \in \mathbb{R}\}$.

Take α any critical curve in \mathbb{R}^2 , and assume that $\mathbb{R}^2 \subset \mathbb{R}^3$.

1. Consider the Killing vector field along α in the direction of the binormal, that is,

$$\mathcal{I} = \frac{\kappa}{\sqrt{\kappa^2 + a^2}} \, B.$$

- 2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends \mathcal{I} .
- 3. Since \mathbb{R}^3 is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by $\{\phi_t, t \in \mathbb{R}\}$.

4. Now, construct the binormal evolution surface

Take α any critical curve in \mathbb{R}^2 , and assume that $\mathbb{R}^2 \subset \mathbb{R}^3$.

1. Consider the Killing vector field along α in the direction of the binormal, that is,

$$\mathcal{I} = \frac{\kappa}{\sqrt{\kappa^2 + a^2}} \, B.$$

- 2. Let's denote by ξ the associated Killing vector field on \mathbb{R}^3 that extends \mathcal{I} .
- 3. Since \mathbb{R}^3 is complete, we have the one-parameter group of isometries determined by the flow of ξ is given by $\{\phi_t, t \in \mathbb{R}\}$.
- 4. Now, construct the binormal evolution surface

$$S_{\alpha} := \{ x(s,t) := \phi_t(\alpha(s)) \}.$$

Geometric Properties of These BES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The surface S_{α} is a ξ -invariant surface

Geometric Properties of These BES

The surface S_{α} is a ξ -invariant surface, and it verifies:

• S_{α} is a rotational surface.

Theorem ([1] and [5])

Let α be a critical curve, then, the binormal evolution surface with initial condition α is a rotational surface.

Geometric Properties of These BES

The surface S_{α} is a ξ -invariant surface, and it verifies:

• S_{α} is a rotational surface.

Theorem ([1] and [5])

Let α be a critical curve, then, the binormal evolution surface with initial condition α is a rotational surface.

• S_{α} has constant negative Gaussian curvature.

THEOREM [5]

Let α be a critical curve, then, the binormal evolution surface generated by α verifies $K = -a^2$, where K denotes its Gaussian curvature.

ROTATIONAL SURFACES WITH $K = -a^2$ (I)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

ROTATIONAL SURFACES WITH $K = -a^2$ (I)

A rotational surface M can be, locally, described by

$$M = S_{\gamma} := \{x(s,t) := \psi_t(\gamma(s))\},\$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where,

- ψ_t is the rotation, and
- γ(s) is the profile curve (that is, the curve everywhere orthogonal to the orbits of ψ_t).

ROTATIONAL SURFACES WITH $K = -a^2$ (I)

A rotational surface M can be, locally, described by

$$M = S_{\gamma} := \{x(s,t) := \psi_t(\gamma(s))\},\$$

where,

- ψ_t is the rotation, and
- γ(s) is the profile curve (that is, the curve everywhere orthogonal to the orbits of ψ_t).

Then,

THEOREM [5]

Let *M* be a rotational surface verifying $K = -a^2$ and let $\gamma(s)$ be its profile curve. Then, γ is a critical curve of the total curvature type energy, \mathcal{F} .

ROTATIONAL SURFACES WITH $K = -a^2$ (II)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

LOCAL DESCRIPTION [5]

A surface of \mathbb{R}^3 is a negative constant Gaussian curvature rotational surface, if and only if, it is a binormal evolution surface with initial filament critical for the total curvature type energy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LOCAL DESCRIPTION [5]

A surface of \mathbb{R}^3 is a negative constant Gaussian curvature rotational surface, if and only if, it is a binormal evolution surface with initial filament critical for the total curvature type energy.

Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and geodesics in M^3 (the sub-Riemannian structure of the unit tangent bundle that models V1).

LOCAL DESCRIPTION [5]

A surface of \mathbb{R}^3 is a negative constant Gaussian curvature rotational surface, if and only if, it is a binormal evolution surface with initial filament critical for the total curvature type energy.

Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and geodesics in M^3 (the sub-Riemannian structure of the unit tangent bundle that models V1).

Therefore, following this model

• Mechanism of V1 may give extra information.

LOCAL DESCRIPTION [5]

A surface of \mathbb{R}^3 is a negative constant Gaussian curvature rotational surface, if and only if, it is a binormal evolution surface with initial filament critical for the total curvature type energy.

Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and geodesics in M^3 (the sub-Riemannian structure of the unit tangent bundle that models V1).

Therefore, following this model

• Mechanism of V1 may give extra information. That is, not only the completion curve, but also a surface (negative constant Gaussian rotational surface).

References

- 1. J. Arroyo, O. J. Garay and A. Pámpano, Binormal Motion of Curves with Constant Torsion in 3-Spaces, *Adv. Math. Phys.*, **2017** (2017).
- J. Arroyo, O. J. Garay and A. Pámpano, Curvature-Dependent Energies Minimizers and Visual Curve Completion, Nonlinear Dyn., 86 (2016), 1137-1156.

 O. J. Garay and A. Pámpano, A Variational Characterization of Profile Curves of Invariant Linear Weingarten Surfaces, *preprint*, (2018).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

References

- G. Ben-Yosef and O. Ben-Shahar, A Tangent Bundle Theory for Visual Curve Completion, IEEE Trans. Pattern Anal. Mach. Intell., 34-7 (2012), 1263-1280.
- R. Duits, U. Boscain, F. Rossi and Y. Sachkov, Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2), J. Math. Imaging Vis., 49 (2014), 384-417.

References

- 1. J. Arroyo, O. J. Garay and A. Pámpano, Binormal Motion of Curves with Constant Torsion in 3-Spaces, *Adv. Math. Phys.*, **2017** (2017).
- J. Arroyo, O. J. Garay and A. Pámpano, Curvature-Dependent Energies Minimizers and Visual Curve Completion, Nonlinear Dyn., 86 (2016), 1137-1156.
- G. Ben-Yosef and O. Ben-Shahar, A Tangent Bundle Theory for Visual Curve Completion, IEEE Trans. Pattern Anal. Mach. Intell., 34-7 (2012), 1263-1280.
- R. Duits, U. Boscain, F. Rossi and Y. Sachkov, Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2), J. Math. Imaging Vis., 49 (2014), 384-417.
- O. J. Garay and A. Pámpano, A Variational Characterization of Profile Curves of Invariant Linear Weingarten Surfaces, *preprint*, (2018).

Thank You!

Acknowledgements: This research was supported by by MINECO-FEDER grant MTM2014-54804-P and Gobierno Vasco grant IT1094-16. The author has also been supported by Programa Predoctoral de Formacion de Personal Investigador No Doctor, Gobierno Vasco, 2015.