# Criticality of Sub-Riemannian Geodesics Projections and Applications 

## Álvaro Pámpano Llarena

23rd International Summer School on Global Analysis and its Applications

Brasov, August 20-24, 2018

## Motivation

## Motivation

Problem: How to recover a covered or damaged image?

## Motivation

Problem: How to recover a covered or damaged image?


## Motivation

Problem: How to recover a covered or damaged image?


## Motivation

Problem: How to recover a covered or damaged image?


In our brain, the primary visual cortex, $V 1$, gives us an intuitive answer.

## Unit Tangent Bundle

Unit Tangent Bundle ([3] And [4])
The unit tangent bundle of the plane, $\mathbb{R}^{2} \times \mathbb{S}^{1}$, can be used as an abstraction to study the organization and mechanisms of V .

## Unit Tangent Bundle

Unit Tangent Bundle ([3] And [4])
The unit tangent bundle of the plane, $\mathbb{R}^{2} \times \mathbb{S}^{1}$, can be used as an abstraction to study the organization and mechanisms of V 1 .

- Each point $(x, y, \theta)$ represents a column of cells associated with a point of retinal data $(x, y) \in \mathbb{R}^{2}$, all of which are adjusted to the orientation given by the angle $\theta \in \mathbb{S}^{1}$.


## Unit Tangent Bundle

Unit Tangent Bundle ([3] And [4])
The unit tangent bundle of the plane, $\mathbb{R}^{2} \times \mathbb{S}^{1}$, can be used as an abstraction to study the organization and mechanisms of V 1 .

- Each point $(x, y, \theta)$ represents a column of cells associated with a point of retinal data $(x, y) \in \mathbb{R}^{2}$, all of which are adjusted to the orientation given by the angle $\theta \in \mathbb{S}^{1}$.
- The vector $(\cos \theta, \sin \theta)$ is the direction of maximal rate of change of brightness at point $(x, y)$ of the picture seen by the eye.


## Unit Tangent Bundle

## Unit Tangent Bundle ([3] And [4])

The unit tangent bundle of the plane, $\mathbb{R}^{2} \times \mathbb{S}^{1}$, can be used as an abstraction to study the organization and mechanisms of V 1 .

- Each point $(x, y, \theta)$ represents a column of cells associated with a point of retinal data $(x, y) \in \mathbb{R}^{2}$, all of which are adjusted to the orientation given by the angle $\theta \in \mathbb{S}^{1}$.
- The vector $(\cos \theta, \sin \theta)$ is the direction of maximal rate of change of brightness at point $(x, y)$ of the picture seen by the eye.
- When the cortex cells are stimulated by an image, the border of the image gives a curve inside the space $\mathbb{R}^{2} \times \mathbb{S}^{1}$, but restricted to be tangent to a specific distribution.


## Sub-Riemannian Structure on $\mathbb{R}^{2} \times \mathbb{S}^{1}$

We consider the topological product space $\mathbb{R}^{2} \times \mathbb{S}^{1}$.

## Sub-Riemannian Structure on $\mathbb{R}^{2} \times \mathbb{S}^{1}$

We consider the topological product space $\mathbb{R}^{2} \times \mathbb{S}^{1}$.

- Take the distribution $\mathcal{D}=\operatorname{Ker}(\sin \theta d x-\cos \theta d y)$.


## Sub-Riemannian Structure on $\mathbb{R}^{2} \times \mathbb{S}^{1}$

We consider the topological product space $\mathbb{R}^{2} \times \mathbb{S}^{1}$.

- Take the distribution $\mathcal{D}=\operatorname{Ker}(\sin \theta d x-\cos \theta d y)$.
- The distribution $\mathcal{D}$ is spanned by

$$
X_{1}=\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}, \quad X_{2}=\frac{\partial}{\partial \theta}
$$

## Sub-Riemannian Structure on $\mathbb{R}^{2} \times \mathbb{S}^{1}$

We consider the topological product space $\mathbb{R}^{2} \times \mathbb{S}^{1}$.

- Take the distribution $\mathcal{D}=\operatorname{Ker}(\sin \theta d x-\cos \theta d y)$.
- The distribution $\mathcal{D}$ is spanned by

$$
X_{1}=\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}, \quad X_{2}=\frac{\partial}{\partial \theta}
$$

- The distribution $\mathcal{D}$ is bracket-generating.


## Sub-Riemannian Structure on $\mathbb{R}^{2} \times \mathbb{S}^{1}$

We consider the topological product space $\mathbb{R}^{2} \times \mathbb{S}^{1}$.

- Take the distribution $\mathcal{D}=\operatorname{Ker}(\sin \theta d x-\cos \theta d y)$.
- The distribution $\mathcal{D}$ is spanned by

$$
X_{1}=\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}, \quad x_{2}=\frac{\partial}{\partial \theta}
$$

- The distribution $\mathcal{D}$ is bracket-generating.
- Finally, define the inner product $\langle\cdot, \cdot\rangle$ by making $X_{1}$ and $X_{2}$ everywhere orthonormal.


## Sub-Riemannian Structure on $\mathbb{R}^{2} \times \mathbb{S}^{1}$

We consider the topological product space $\mathbb{R}^{2} \times \mathbb{S}^{1}$.

- Take the distribution $\mathcal{D}=\operatorname{Ker}(\sin \theta d x-\cos \theta d y)$.
- The distribution $\mathcal{D}$ is spanned by

$$
X_{1}=\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}, \quad X_{2}=\frac{\partial}{\partial \theta}
$$

- The distribution $\mathcal{D}$ is bracket-generating.
- Finally, define the inner product $\langle\cdot, \cdot\rangle$ by making $X_{1}$ and $X_{2}$ everywhere orthonormal.


## Visual Curve Completion ([3] and [4])

If a piece of the contour of a picture is missing to the eye vision (or maybe it is covered by an object), then the brain tends to complete the curve by minimizing some kind of energy.

## Direct Approach to Minimize Length



## Direct Approach to Minimize Length



## XEL-PLATFORM [2] (WWW.IKERGEOMETRY.ORG)

A gradient descent method useful for an ample family of functionals defined on certain spaces of curves satisfying both affine and isoperimetric constraints.

## Sub-Riemannian Geodesics

Consider the sub-Riemannian manifold $M^{3}=\left(\mathbb{R}^{2} \times \mathbb{S}^{1}, \mathcal{D},\langle\cdot, \cdot\rangle\right)$.

## Sub-Riemannian Geodesics

Consider the sub-Riemannian manifold $M^{3}=\left(\mathbb{R}^{2} \times \mathbb{S}^{1}, \mathcal{D},\langle\cdot, \cdot\rangle\right)$.

- A $\mathcal{D}$-curve on $M^{3}$ is a curve which is always tangent to $\mathcal{D}$.


## Sub-Riemannian Geodesics

Consider the sub-Riemannian manifold $M^{3}=\left(\mathbb{R}^{2} \times \mathbb{S}^{1}, \mathcal{D},\langle\cdot, \cdot\rangle\right)$.

- A $\mathcal{D}$-curve on $M^{3}$ is a curve which is always tangent to $\mathcal{D}$.
- Every $\mathcal{D}$-curve $\gamma(t)=(x(t), y(t), \theta(t))$ is the lift of a regular curve $\alpha(t)$ in $\mathbb{R}^{2}$ if $\gamma^{*}(\cos \theta d x+\sin \theta d y) \neq 0$.


## Sub-Riemannian Geodesics

Consider the sub-Riemannian manifold $M^{3}=\left(\mathbb{R}^{2} \times \mathbb{S}^{1}, \mathcal{D},\langle\cdot, \cdot\rangle\right)$.

- A $\mathcal{D}$-curve on $M^{3}$ is a curve which is always tangent to $\mathcal{D}$.
- Every $\mathcal{D}$-curve $\gamma(t)=(x(t), y(t), \theta(t))$ is the lift of a regular curve $\alpha(t)$ in $\mathbb{R}^{2}$ if $\gamma^{*}(\cos \theta d x+\sin \theta d y) \neq 0$.
- Conversely, every regular curve $\alpha(t)$ in the plane may be lifted to a $\mathcal{D}$-curve $\gamma(t)$ by setting $\theta(t)$ equal to the angle between $\alpha^{\prime}(t)$ and the $x$-axis.


## Sub-Riemannian Geodesics

Consider the sub-Riemannian manifold $M^{3}=\left(\mathbb{R}^{2} \times \mathbb{S}^{1}, \mathcal{D},\langle\cdot, \cdot\rangle\right)$.

- A $\mathcal{D}$-curve on $M^{3}$ is a curve which is always tangent to $\mathcal{D}$.
- Every $\mathcal{D}$-curve $\gamma(t)=(x(t), y(t), \theta(t))$ is the lift of a regular curve $\alpha(t)$ in $\mathbb{R}^{2}$ if $\gamma^{*}(\cos \theta d x+\sin \theta d y) \neq 0$.
- Conversely, every regular curve $\alpha(t)$ in the plane may be lifted to a $\mathcal{D}$-curve $\gamma(t)$ by setting $\theta(t)$ equal to the angle between $\alpha^{\prime}(t)$ and the $x$-axis.


## Criticality of Projections ([2], [3] and [4])

Geodesics in $M^{3}$ are obtained by lifting minimizers (more generally, critical curves) in $\mathbb{R}^{2}$ of

$$
\mathcal{F}(\alpha)=\int_{\alpha} \sqrt{1+\kappa^{2}(s)} d s .
$$

## Total Curvature Type Energy

As biological researches suggest, by the hypercolumnar organization of the visual cortex, it may be more accurate to consider the functional

$$
\mathcal{F}(\alpha)=\int_{\alpha} \sqrt{\kappa^{2}(s)+a^{2}} d s
$$

acting on planar non-geodesic curves. That is, non-geodesic curves in $\mathbb{R}^{2}$.

## Total Curvature Type Energy

As biological researches suggest, by the hypercolumnar organization of the visual cortex, it may be more accurate to consider the functional

$$
\mathcal{F}(\alpha)=\int_{\alpha} \sqrt{\kappa^{2}(s)+a^{2}} d s
$$

acting on planar non-geodesic curves. That is, non-geodesic curves in $\mathbb{R}^{2}$.

- If $a=0$ we get the Total Curvature Functional, and therefore we call $\mathcal{F}$ a total curvature type energy.


## Total Curvature Type Energy

As biological researches suggest, by the hypercolumnar organization of the visual cortex, it may be more accurate to consider the functional

$$
\mathcal{F}(\alpha)=\int_{\alpha} \sqrt{\kappa^{2}(s)+a^{2}} d s
$$

acting on planar non-geodesic curves. That is, non-geodesic curves in $\mathbb{R}^{2}$.

- If $a=0$ we get the Total Curvature Functional, and therefore we call $\mathcal{F}$ a total curvature type energy.
- From now on, we are going to consider that $a \neq 0$.


## Curvatures of Critical Curves

Euler-Lagrange Equation

## Curvatures of Critical Curves

Euler-Lagrange Equation

$$
\frac{d^{2}}{d s^{2}}\left(\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}}\right)-a^{2} \frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}}=0
$$

## Curvatures of Critical Curves

## Euler-Lagrange Equation

$$
\frac{d^{2}}{d s^{2}}\left(\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}}\right)-a^{2} \frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}}=0
$$

As $a \neq 0$, we get the first integral of the Euler-Lagrange Equation,

$$
\kappa_{s}^{2}=\left(\frac{\kappa^{2}+a^{2}}{a^{2}}\right)^{2}\left(d \kappa^{2}+a^{2}\left(d-a^{2}\right)\right)
$$

## Curvatures of Critical Curves

## Euler-Lagrange Equation

$$
\frac{d^{2}}{d s^{2}}\left(\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}}\right)-a^{2} \frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}}=0
$$

As $a \neq 0$, we get the first integral of the Euler-Lagrange Equation,

$$
\kappa_{s}^{2}=\left(\frac{\kappa^{2}+a^{2}}{a^{2}}\right)^{2}\left(d \kappa^{2}+a^{2}\left(d-a^{2}\right)\right)
$$

Thus, we have that the curvature is given by,

$$
\kappa(s)=\frac{a \sqrt{d-a^{2}} f(a s)}{\sqrt{a^{2}-\left(d-a^{2}\right) f^{2}(a s)}},
$$

where, $f(x)=\sinh x, \cosh x$ or $e^{x}$.

## Different Types of Critical Curves (i)

There are basically three essentially different types of critical curves depending on the value of $f(x)$.

## Different Types of Critical Curves (i)

There are basically three essentially different types of critical curves depending on the value of $f(x)$. Here, we plot:
On the left, $f(x)=\sinh x$; and, on the right, $f(x)=\cosh x$,



## Different Types of Critical Curves (ii)

Finally, here we plot the case $f(x)=e^{x}$,


## Associated Killing Vector Fields

A vector field $W$ along $\alpha$, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along $\alpha$ if it evolves in the direction of $W$ without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=0
$$

## Associated Killing Vector Fields

A vector field $W$ along $\alpha$, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along $\alpha$ if it evolves in the direction of $W$ without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=0
$$

- The vector field along $\alpha$

$$
\mathcal{I}=\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}} B
$$

is a Killing vector field along $\alpha$.

## Associated Killing Vector Fields

A vector field $W$ along $\alpha$, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along $\alpha$ if it evolves in the direction of $W$ without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=0
$$

- The vector field along $\alpha$

$$
\mathcal{I}=\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}} B
$$

is a Killing vector field along $\alpha$.

- Remark. We are considering $\mathbb{R}^{2}$ as a subset of $\mathbb{R}^{3}$.


## Associated Killing Vector Fields

A vector field $W$ along $\alpha$, which infinitesimally preserves unit speed parametrization is said to be a Killing vector field along $\alpha$ if it evolves in the direction of $W$ without changing shape, only position. That is, if the following equations hold

$$
W(v)(\bar{t}, 0)=W(\kappa)(\bar{t}, 0)=0
$$

- The vector field along $\alpha$

$$
\mathcal{I}=\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}} B
$$

is a Killing vector field along $\alpha$.

- Remark. We are considering $\mathbb{R}^{2}$ as a subset of $\mathbb{R}^{3}$.
- Killing vector fields along curves have unique extensions that are Killing vector fields on the whole space, $\mathbb{R}^{3}$.


## Binormal Evolution Surfaces

## Binormal Evolution Surfaces

Take $\alpha$ any critical curve in $\mathbb{R}^{2}$, and assume that $\mathbb{R}^{2} \subset \mathbb{R}^{3}$.

## Binormal Evolution Surfaces

Take $\alpha$ any critical curve in $\mathbb{R}^{2}$, and assume that $\mathbb{R}^{2} \subset \mathbb{R}^{3}$.

1. Consider the Killing vector field along $\alpha$ in the direction of the binormal, that is,

$$
\mathcal{I}=\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}} B .
$$

## Binormal Evolution Surfaces

Take $\alpha$ any critical curve in $\mathbb{R}^{2}$, and assume that $\mathbb{R}^{2} \subset \mathbb{R}^{3}$.

1. Consider the Killing vector field along $\alpha$ in the direction of the binormal, that is,

$$
\mathcal{I}=\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}} B .
$$

2. Let's denote by $\xi$ the associated Killing vector field on $\mathbb{R}^{3}$ that extends $\mathcal{I}$.

## Binormal Evolution Surfaces

Take $\alpha$ any critical curve in $\mathbb{R}^{2}$, and assume that $\mathbb{R}^{2} \subset \mathbb{R}^{3}$.

1. Consider the Killing vector field along $\alpha$ in the direction of the binormal, that is,

$$
\mathcal{I}=\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}} B .
$$

2. Let's denote by $\xi$ the associated Killing vector field on $\mathbb{R}^{3}$ that extends $\mathcal{I}$.
3. Since $\mathbb{R}^{3}$ is complete, we have the one-parameter group of isometries determined by the flow of $\xi$ is given by $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.

## Binormal Evolution Surfaces

Take $\alpha$ any critical curve in $\mathbb{R}^{2}$, and assume that $\mathbb{R}^{2} \subset \mathbb{R}^{3}$.

1. Consider the Killing vector field along $\alpha$ in the direction of the binormal, that is,

$$
\mathcal{I}=\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}} B .
$$

2. Let's denote by $\xi$ the associated Killing vector field on $\mathbb{R}^{3}$ that extends $\mathcal{I}$.
3. Since $\mathbb{R}^{3}$ is complete, we have the one-parameter group of isometries determined by the flow of $\xi$ is given by $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.
4. Now, construct the binormal evolution surface

## Binormal Evolution Surfaces

Take $\alpha$ any critical curve in $\mathbb{R}^{2}$, and assume that $\mathbb{R}^{2} \subset \mathbb{R}^{3}$.

1. Consider the Killing vector field along $\alpha$ in the direction of the binormal, that is,

$$
\mathcal{I}=\frac{\kappa}{\sqrt{\kappa^{2}+a^{2}}} B .
$$

2. Let's denote by $\xi$ the associated Killing vector field on $\mathbb{R}^{3}$ that extends $\mathcal{I}$.
3. Since $\mathbb{R}^{3}$ is complete, we have the one-parameter group of isometries determined by the flow of $\xi$ is given by $\left\{\phi_{t}, t \in \mathbb{R}\right\}$.
4. Now, construct the binormal evolution surface

$$
S_{\alpha}:=\left\{x(s, t):=\phi_{t}(\alpha(s))\right\} .
$$

## Geometric Properties of These BES

The surface $S_{\alpha}$ is a $\xi$-invariant surface

## Geometric Properties of These BES

The surface $S_{\alpha}$ is a $\xi$-invariant surface, and it verifies:

- $S_{\alpha}$ is a rotational surface.

Theorem ([1] AND [5])
Let $\alpha$ be a critical curve, then, the binormal evolution surface with initial condition $\alpha$ is a rotational surface.

## Geometric Properties of These BES

The surface $S_{\alpha}$ is a $\xi$-invariant surface, and it verifies:

- $S_{\alpha}$ is a rotational surface.

Theorem ([1] AND [5])
Let $\alpha$ be a critical curve, then, the binormal evolution surface with initial condition $\alpha$ is a rotational surface.

- $S_{\alpha}$ has constant negative Gaussian curvature.


## Theorem [5]

Let $\alpha$ be a critical curve, then, the binormal evolution surface generated by $\alpha$ verifies $K=-a^{2}$, where $K$ denotes its Gaussian curvature.

## Rotational Surfaces with $K=-a^{2}$ (i)

## Rotational Surfaces with $K=-a^{2}$ ( )

A rotational surface $M$ can be, locally, described by

$$
M=S_{\gamma}:=\left\{x(s, t):=\psi_{t}(\gamma(s))\right\}
$$

where,

- $\psi_{t}$ is the rotation, and
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of $\psi_{t}$ ).


## Rotational Surfaces with $K=-a^{2}$ (i)

A rotational surface $M$ can be, locally, described by

$$
M=S_{\gamma}:=\left\{x(s, t):=\psi_{t}(\gamma(s))\right\}
$$

where,

- $\psi_{t}$ is the rotation, and
- $\gamma(s)$ is the profile curve (that is, the curve everywhere orthogonal to the orbits of $\psi_{t}$ ).
Then,


## Theorem [5]

Let $M$ be a rotational surface verifying $K=-a^{2}$ and let $\gamma(s)$ be its profile curve. Then, $\gamma$ is a critical curve of the total curvature type energy, $\mathcal{F}$.

## Rotational Surfaces with $K=-a^{2}$ (ii)



## Consequences and Future Work

## Consequences and Future Work

## Local Description [5]

A surface of $\mathbb{R}^{3}$ is a negative constant Gaussian curvature rotational surface, if and only if, it is a binormal evolution surface with initial filament critical for the total curvature type energy.

## Consequences and Future Work

## Local Description [5]

A surface of $\mathbb{R}^{3}$ is a negative constant Gaussian curvature rotational surface, if and only if, it is a binormal evolution surface with initial filament critical for the total curvature type energy.

## Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and geodesics in $M^{3}$ (the sub-Riemannian structure of the unit tangent bundle that models $V 1$ ).

## Consequences and Future Work

## Local Description [5]

A surface of $\mathbb{R}^{3}$ is a negative constant Gaussian curvature rotational surface, if and only if, it is a binormal evolution surface with initial filament critical for the total curvature type energy.

## Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and geodesics in $M^{3}$ (the sub-Riemannian structure of the unit tangent bundle that models $V 1$ ).

Therefore, following this model

- Mechanism of $V 1$ may give extra information.


## Consequences and Future Work

## Local Description [5]

A surface of $\mathbb{R}^{3}$ is a negative constant Gaussian curvature rotational surface, if and only if, it is a binormal evolution surface with initial filament critical for the total curvature type energy.

## Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and geodesics in $M^{3}$ (the sub-Riemannian structure of the unit tangent bundle that models $V 1$ ).

Therefore, following this model

- Mechanism of V1 may give extra information. That is, not only the completion curve, but also a surface (negative constant Gaussian rotational surface).


## References

1. J. Arroyo, O. J. Garay and A. Pámpano, Binormal Motion of Curves with Constant Torsion in 3-Spaces, Adv. Math. Phys., 2017 (2017).
2. J. Arroyo, O. J. Garay and A. Pámpano, Curvature-Dependent Energies Minimizers and Visual Curve Completion, Nonlinear Dyn., 86 (2016), 1137-1156.
3. O. J. Garay and A. Pámpano, A Variational Characterization of Profile Curves of Invariant Linear Weingarten Surfaces, preprint, (2018).

## References

3. G. Ben-Yosef and O. Ben-Shahar, A Tangent Bundle Theory for Visual Curve Completion, IEEE Trans. Pattern Anal. Mach. Intell., 34-7 (2012), 1263-1280.
4. R. Duits, U. Boscain, F. Rossi and Y. Sachkov, Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2), J. Math. Imaging Vis., 49 (2014), 384-417.

## References

1. J. Arroyo, O. J. Garay and A. Pámpano, Binormal Motion of Curves with Constant Torsion in 3-Spaces, Adv. Math. Phys., 2017 (2017).
2. J. Arroyo, O. J. Garay and A. Pámpano, Curvature-Dependent Energies Minimizers and Visual Curve Completion, Nonlinear Dyn., 86 (2016), 1137-1156.
3. G. Ben-Yosef and O. Ben-Shahar, A Tangent Bundle Theory for Visual Curve Completion, IEEE Trans. Pattern Anal. Mach. Intell., 34-7 (2012), 1263-1280.
4. R. Duits, U. Boscain, F. Rossi and Y. Sachkov, Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2), J. Math. Imaging Vis., 49 (2014), 384-417.
5. O. J. Garay and A. Pámpano, A Variational Characterization of Profile Curves of Invariant Linear Weingarten Surfaces, preprint, (2018).

## THE END

## Thank You!

Acknowledgements: This research was supported by by MINECO-FEDER grant MTM2014-54804-P and Gobierno Vasco grant IT1094-16. The author has also been supported by Programa Predoctoral de Formacion de Personal Investigador No Doctor, Gobierno Vasco, 2015.

