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Problem: How to recover a covered or damaged image?

In our brain, the primary visual cortex, V 1, gives us an intuitive
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Unit Tangent Bundle

Unit Tangent Bundle ([3] and [4])

The unit tangent bundle of the plane, R2 × S1, can be used as an
abstraction to study the organization and mechanisms of V1.

• Each point (x , y , θ) represents a column of cells associated
with a point of retinal data (x , y) ∈ R2, all of which are
adjusted to the orientation given by the angle θ ∈ S1.

• The vector (cos θ, sin θ) is the direction of maximal rate of
change of brightness at point (x , y) of the picture seen by the
eye.

• When the cortex cells are stimulated by an image, the border
of the image gives a curve inside the space R2 × S1, but
restricted to be tangent to a specific distribution.
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Sub-Riemannian Structure on R2 × S1

We consider the topological product space R2 × S1.

• Take the distribution D = Ker(sin θdx − cos θdy).

• The distribution D is spanned by

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 =

∂

∂θ

• The distribution D is bracket-generating.

• Finally, define the inner product 〈·, ·〉 by making X1 and X2

everywhere orthonormal.

Visual Curve Completion ([3] and [4])

If a piece of the contour of a picture is missing to the eye vision (or
maybe it is covered by an object), then the brain tends to complete
the curve by minimizing some kind of energy.
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Direct Approach to Minimize Length

XEL-platform [2] (www.ikergeometry.org)

A gradient descent method useful for an ample family of
functionals defined on certain spaces of curves satisfying both
affine and isoperimetric constraints.
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Sub-Riemannian Geodesics

Consider the sub-Riemannian manifold M3 =
(
R2 × S1,D, 〈·, ·〉

)
.

• A D-curve on M3 is a curve which is always tangent to D.

• Every D-curve γ(t) = (x(t), y(t), θ(t)) is the lift of a regular
curve α(t) in R2 if γ∗(cos θdx + sin θdy) 6= 0.

• Conversely, every regular curve α(t) in the plane may be lifted
to a D-curve γ(t) by setting θ(t) equal to the angle between
α′(t) and the x-axis.

Criticality of Projections ([2], [3] and [4])

Geodesics in M3 are obtained by lifting minimizers (more generally,
critical curves) in R2 of

F(α) =

∫
α

√
1 + κ2(s) ds .
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Total Curvature Type Energy

As biological researches suggest, by the hypercolumnar
organization of the visual cortex, it may be more accurate to
consider the functional

F(α) =

∫
α

√
κ2(s) + a2 ds

acting on planar non-geodesic curves. That is, non-geodesic curves
in R2.

• If a = 0 we get the Total Curvature Functional, and therefore
we call F a total curvature type energy.

• From now on, we are going to consider that a 6= 0.
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Curvatures of Critical Curves

Euler-Lagrange Equation

d2

ds2

(
κ√

κ2 + a2

)
− a2

κ√
κ2 + a2

= 0

As a 6= 0, we get the first integral of the Euler-Lagrange Equation,

κ2s =

(
κ2 + a2

a2

)2 (
dκ2 + a2(d − a2)

)
.

Thus, we have that the curvature is given by,

κ(s) =
a
√
d − a2 f (as)√

a2 − (d − a2) f 2 (as)
,

where, f (x) = sinh x , cosh x or ex .
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Different Types of Critical Curves (i)

There are basically three essentially different types of critical
curves depending on the value of f (x).

Here, we plot:
On the left, f (x) = sinh x ; and, on the right, f (x) = cosh x ,
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Different Types of Critical Curves (ii)

Finally, here we plot the case f (x) = ex ,
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Associated Killing Vector Fields

A vector field W along α, which infinitesimally preserves unit
speed parametrization is said to be a Killing vector field along α if
it evolves in the direction of W without changing shape, only
position. That is, if the following equations hold

W (v)(t̄, 0) = W (κ)(t̄, 0) = 0 .

• The vector field along α

I =
κ√

κ2 + a2
B

is a Killing vector field along α.

• Remark. We are considering R2 as a subset of R3.

• Killing vector fields along curves have unique extensions that
are Killing vector fields on the whole space, R3.
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Binormal Evolution Surfaces

Take α any critical curve in R2, and assume that R2 ⊂ R3.

1. Consider the Killing vector field along α in the direction of the
binormal, that is,

I =
κ√

κ2 + a2
B.

2. Let’s denote by ξ the associated Killing vector field on R3

that extends I.

3. Since R3 is complete, we have the one-parameter group of
isometries determined by the flow of ξ is given by {φt , t ∈ R}.

4. Now, construct the binormal evolution surface

Sα := {x(s, t) := φt(α(s))}.
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Geometric Properties of These BES

The surface Sα is a ξ-invariant surface

, and it verifies:

• Sα is a rotational surface.

Theorem ([1] and [5])

Let α be a critical curve, then, the binormal evolution surface with
initial condition α is a rotational surface.

• Sα has constant negative Gaussian curvature.

Theorem [5]

Let α be a critical curve, then, the binormal evolution surface
generated by α verifies K = −a2, where K denotes its Gaussian
curvature.
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Rotational Surfaces with K = −a2 (i)

A rotational surface M can be, locally, described by

M = Sγ := {x(s, t) := ψt(γ(s))},
where,

• ψt is the rotation, and

• γ(s) is the profile curve (that is, the curve everywhere
orthogonal to the orbits of ψt).

Then,

Theorem [5]

Let M be a rotational surface verifying K = −a2 and let γ(s) be
its profile curve. Then, γ is a critical curve of the total curvature
type energy, F .
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Rotational Surfaces with K = −a2 (ii)



Consequences and Future Work

Local Description [5]

A surface of R3 is a negative constant Gaussian curvature
rotational surface, if and only if, it is a binormal evolution surface
with initial filament critical for the total curvature type energy.

Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and
geodesics in M3 (the sub-Riemannian structure of the unit tangent
bundle that models V 1).

Therefore, following this model

• Mechanism of V 1 may give extra information. That is, not
only the completion curve, but also a surface (negative
constant Gaussian rotational surface).



Consequences and Future Work

Local Description [5]

A surface of R3 is a negative constant Gaussian curvature
rotational surface, if and only if, it is a binormal evolution surface
with initial filament critical for the total curvature type energy.

Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and
geodesics in M3 (the sub-Riemannian structure of the unit tangent
bundle that models V 1).

Therefore, following this model

• Mechanism of V 1 may give extra information. That is, not
only the completion curve, but also a surface (negative
constant Gaussian rotational surface).



Consequences and Future Work

Local Description [5]

A surface of R3 is a negative constant Gaussian curvature
rotational surface, if and only if, it is a binormal evolution surface
with initial filament critical for the total curvature type energy.

Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and
geodesics in M3 (the sub-Riemannian structure of the unit tangent
bundle that models V 1).

Therefore, following this model

• Mechanism of V 1 may give extra information. That is, not
only the completion curve, but also a surface (negative
constant Gaussian rotational surface).



Consequences and Future Work

Local Description [5]

A surface of R3 is a negative constant Gaussian curvature
rotational surface, if and only if, it is a binormal evolution surface
with initial filament critical for the total curvature type energy.

Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and
geodesics in M3 (the sub-Riemannian structure of the unit tangent
bundle that models V 1).

Therefore, following this model

• Mechanism of V 1 may give extra information.

That is, not
only the completion curve, but also a surface (negative
constant Gaussian rotational surface).



Consequences and Future Work

Local Description [5]

A surface of R3 is a negative constant Gaussian curvature
rotational surface, if and only if, it is a binormal evolution surface
with initial filament critical for the total curvature type energy.

Relation with Sub-Riemannian Geodesics

There is a correspondence between these critical curves and
geodesics in M3 (the sub-Riemannian structure of the unit tangent
bundle that models V 1).

Therefore, following this model

• Mechanism of V 1 may give extra information. That is, not
only the completion curve, but also a surface (negative
constant Gaussian rotational surface).



References

1. J. Arroyo, O. J. Garay and A. Pámpano, Binormal Motion of Curves
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Thank You!
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