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Binormal Evolution of Blaschke’s Curvature Energy
Extremals in the Minkowski 3-Space
Álvaro Pámpano

Abstract
In 1930, in [4], Blaschke studied the solutions of the variational problem for

the energy Θ(γ) =
∫
γ

√
κ acting on certain spaces of curves in the Euclidean

3-space R3. In particular, in R2, he obtained the catenaries.
In this paper, for a fixed µ ∈ R, we are going to extend this problem and we

will consider curves in L3 which are extremals for the action

Θ(γ) =

∫
γ

√
κ− µ . (1)

We are going to get all solutions of the Euler-Lagrange equations of action (1) in
Minkowski 3-space L3, [2].

Finally, making critical curves evolve under their associatedKilling vector field
([1] and [6]), these solutions are going to be related with profile curves of constant
mean curvature invariant surfaces of L3; showing that a invariant surface of L3

has constant mean curvature, if and only if, it is geodesically foliated by critical
curves of (1), [2]. This leads to another description of the well-known families of
constant mean curvature surfaces in L3, ([9] and [10]).
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1 Introduction

These notes are a printed version of the talk given by the author at the meeting
”Young Researcher Workshop on Differential Geometry in Minkowski Space”
held in Granada in April 2017. The purpose of the talk was to offer a partial an-
nouncement of some results included in the work [2]. Here, ideas and arguments
are only sketched while proofs are omitted. Interested readers are referred to [2]
for a complete and more general treatment.

Our background space is going to be the Minkowski 3-space, L3. That is, R3

endowed with the canonical metric of index one,

g = dx2 + dy2 − dz2 ,

which will be denoted by 〈, 〉. On the other hand, its associated Levi-Civita con-
nection is denoted by ∇̃. For more details about this space see, [5].

If γ : I → L3 is a smooth immersed curve in L3, γ̇(t) will represent its
velocity vector dγ(t)

dt and the covariant derivative of a vector field X(t) along γ
will be denoted by DX(t)

dt . A C1 immersed curve in the Minkowski 3-Space is
spacelike (respectively, timelike; respectively, lightlike) if 〈γ̇(t), γ̇(t)〉 > 0, ∀t ∈ I
(respectively, 〈γ̇(t), γ̇(t)〉 < 0, ∀t ∈ I; respectively, 〈γ̇(t), γ̇(t)〉 = 0, ∀t ∈ I).
Of course, there exist curves whose causal character changes as t moves along the
parameter interval, but this kind of curves will not be considered here. A non-null
curve can be parametrized by the arc-length (along this paper it will be denoted by
s) and this natural parameter is called proper time.

For a non-null immersed curve, the first Frenet curvature, or simply, the curva-
ture, is defined as κ =

√
ε2〈Dγ̇(s)ds , Dγ̇(s)ds 〉, where ε2 denotes the causal character

of Dγ̇(s)
ds . A geodesic is a constant speed curve whose tangent vector is parallel

propagated along itself, i.e. a curve whose tangent, γ̇(s) = T (s), satisfies the
equation DT (s)

ds = 0.
Let γ be a unit speed non-geodesic curve contained inL3with non-null velocity

γ̇ = T . If it also has non-null acceleration Dγ̇
ds , then γ is a Frenet curve of rank 2

or 3 (see, [7]) and the classical standard Frenet frame along γ is given by {T =
γ̇, N = ε2

κ ∇TT,B}, and B is chosen so that det(T,N,B) = 1. Then, the Frenet
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equations can be written as

DT

ds
= ∇̃TT = ε2κN,

DN

ds
= ∇̃TN = −ε1κT + ε3τB,

DB

ds
= ∇̃TB = −ε2τN,

where εi, 1 ≤ i ≤ 3, denotes the causal character of T , N and B, respectively,
and {κ, τ} are the curvature and torsion of γ in L3. Notice that, even if the rank
of γ is 2, the binormal B = ε3 T × N is still well defined and Frenet equations
still make sense when τ = 0.

Moreover, the fundamental theorem for Frenet curves tells us that, in L3, the
causal character of the Frenet frame and the Frenet curvatures κ, τ completely
determine the curve up to isometries. Moreover, given functions κ and τ we can
always construct a spacelike (respectively, timelike) Frenet curve, parametrized by
the arc-length, whose curvature and torsion are precisely κ and τ .

2 Extension of a Blaschke’s Variational Problem

We denote by Ωpop1 the space of smooth immersed curves of L3 joining two points
of it, and verifying that κ− µ > 0. We are going to consider the curvature energy
functional acting on Ωpop1

Θ(γ) =

∫
γ

√
κ− µ =

∫ L

0

√
κ(s)− µds ,

where µ ∈ R is a fixed real constant. Take into account that κ = µ would be a
global minimum if we were considering L1([0, L]) as the space of curves.

On the other hand, working with the space of curves Ωpop1 , we will be able to
apply the fundamental lemma of the calculus of variations, since for every variation
by immersed curves we can always find a subvariation by curves verifying κ−µ >
0.

In 1930, in [4], Blaschke studied the case µ = 0 in the Euclidean 3-space. Our
curvature energy functional (1) represents an extension of Blaschke’s variational
problem for the Minkowski space of dimension 3, L3, and we are interested in
studying critical curves in this space.
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For this purpose, we are going to obtain the Euler-Lagrange equations for the
curvature energy functional Θ(γ) =

∫
γ

√
κ− µ, in L3. These differential equa-

tions can be written as

d2

ds2
(

ε2√
κ− µ

) +
1√
κ− µ

(ε1κ
2 − ε3τ2) = 2ε1κ

√
κ− µ , (2)

d

ds
(

τ

κ− µ
) = 0 . (3)

Under suitable boundary conditions, solutions of these equations are going to be
critical curves for our energy functional.

In what follows we are going to get explicit solutions of the Euler-Lagrange
equations in terms of the curvature and torsion of the curve.

Let’s consider first that the curvature is constant, κ = κo ∈ R+. Then, the
second Euler-Lagrange equation (3) implies that the torsion is constant, that is, τ =
τo ∈ R. Thus, in this case, γ must be a Frenet helix. Moreover, substituting this
in the first Euler-Lagrange equation (2) we get the relation between the curvature
and torsion of γ

κo = µ+
√
µ2 − ε1ε3τ2o .

Suppose now that the curvature is not constant, then let’s call

a = −ε1ε2µ2 ,
b = 4ε2d+ 2ε1ε2µ ,

c = −ε1ε2 − ε2ε3e2 ,

and ∆ = 4ac− b2 = −16d2−16ε1µd+4ε1ε3µ
2e2, where d, e are real constants,

constants of integration. Then, calling x = κ− µ, the first integrals of the Euler-
Lagrange equations (2)-(3) reduce to

x2s = 4x2(cx2 + bx+ a) ,

τ = ex .

By a simple analysis of the first equation, we realize that the following cases are
not possible:

1. ∆ ≥ 0 and c < 0,

2. a ≤ 0, 2d = −ε1µ and e2 = −ε1ε3.
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In the rest of the cases, we can integrate the Euler-Lagrange equations (2)-(3),
and get the explicit formulas for the curvature of the critical curves. After long
computations, we obtain

1. If ∆ 6= 0 and a 6= 0

κ(s) =
2a+ µ(−b+

√
|∆|f(2µs))

−b+
√
|∆|f(2µs)

,

where, f(x) = sinhx, if ∆ > 0 and a > 0; f(x) = coshx, if ∆ < 0 and
a > 0; and f(x) = sinx, if ∆ < 0 and a < 0.

2. If ∆ = 0 and a > 0

k(s) =
µ+ (2a− bµ) exp (2µs)

1− b exp (2µs)
.

3. If ∆ < 0 and a = 0, that is, (µ = 0)

k(s) =
b

−c+ b2s2
.

4. If ∆ = 0 and a = 0, that is, (µ = d = 0)

k(s) =
1

2
√
cs
.

Observe that, in all the cases above, the torsion of γ obtained from (3) is given
by

τ = e(κ− µ) ,

where e ∈ R is one of the constants of integration. Thus, given the causal charac-
ters εi of the Frenet frame, by the fundamental theorem of Frenet curves in L3 we
have determined a unique curve up to rigid motions.



6

3 Extremals of Blaschke’s Curvature Energy

In this section, we are going to give a geometric interpretation of extremals of
Θ(γ) =

∫
γ

√
κ− µds. Let’s start with the planar case. Take τ = 0, then we

know that γ must lie in a totally geodesic surface of L3, that is a Riemannian or
Lorentzian plane, since we are working with non-null curves. Suppose first that γ
lies in a Riemannian plane, that is we can assume that γ ⊂ R2, then similarly as
in the Euclidean case ([2] and [6]), we have that

Theorem 3.1. Critical curves of Θ(γ) =
∫
γ

√
κ− µds in R2 are precisely the

Delaunay curves, that is, the roulettes of foci of conics (lines, circles, catenaries,
nodaries and undularies).

Moreover, in [8], Hano and Nomizu gave a description of spacelike roulettes
in the Minkowski plane L2, and therefore, if we suppose that γ is contained in L2

we are able to prove

Theorem 3.2. The locus of the origin when a part of a spacelike quadratic curve is
rolled along a spacelike line is a spacelike critical curve forΘ(γ) =

∫
γ

√
κ− µds

in L2.

That is, planar extremals of the extended Blaschke’s curvature energy represent
the spacelike roulettes of foci of conics in L3.

On the other hand, if the critical curve of the action (1) is not planar we have
the following relation between its curvature and torsion

eµ = eκ− τ . (4)

As we already said in the previous section, if the curvature of γ, κ, is constant then
so is its torsion τ and thus, we are dealing with Frenet helices.

Furthermore, whenµ = 0, our critical curves are Lancret curves, that is, curves
making a constant angle with a fixed direction. These curves in L3 are character-
ized by τ = λκ for some non-zero constant λ, [3].

Finally, if µ 6= 0, above relation (4) between the curvature and the torsion
implies that γ is a Bertrand curve (see [11] for the definition and characterization
of Bertrand curves in theMinkowski 3-Space) and it can be proved that its Bertrand
mate is not critical for our energy functional (1).
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4 Binormal Evolution of Extremals

In this part we are going to relate our critical curves with invariant surfaces of
constant mean curvature, following the method described in ([1] and [6]). This
construction of immersed surfaces consist on letting γ evolve under its associated
Killing vector field.

A vector fieldW along γ, which infinitesimally preserves the parametrization
by its proper time is said to be a Killing vector field along γ if it evolves in the
direction of W without changing shape, only position. That is, if the following
equations hold

W (v)(t̄, 0) = W (κ)(t̄, 0) = W (τ)(t̄, 0) = 0 .

Let’s consider our functionalΘ(γ) =
∫
γ

√
κ− µds acting on the space Ωpop1 and

take γ a solution of the Euler-Lagrange equations, then the vector field

I =
1

2
√
κ− µ

B (5)

is a Killing vector field along γ, [1], [6].
In our case, since L3 is complete, we can consider the one-parameter group of

isometries determined by the flow of I (5) that is, {φt, t ∈ R}. Now, we construct
the surface Sγ := {x(s, t) := φt(γ(s))} by evolving γ under the flow of I. The
surface Sγ is a I-invariant surface whose mean curvature is

H = −ε1ε2µ.

Finally, as µ ∈ R is fixed, Sγ has constant mean curvature.
Notice that the immersed surfaces generated by evolving in the direction of

the binormal a Bertrand curve are called Razzaboni surfaces, [11]. Thus, our I-
invariant surfaces of constant mean curvature are Razzaboni surfaces.

Now, for the converse, assume that S is a non-degenerate Gξ-invariant surface
of L3, i.e., for any x ∈ S and Φt ∈ Gξ we have Φt(S) = S. The following theorem
characterizes every constant mean curvature (CMC) ξ-invariant surfaces of L3,

Theorem 4.1. Any ξ-invariant CMC surface S of L3 admits a local geodesic
parametrization where the leaves provide a geodesic foliation by critical curves
of the extended Blaschke’s variational problem with µ = −ε1ε2H .
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Thus, every ξ-invariant CMC surface is a ruled surface or, it is generated by
evolving a critical curve of Θ(γ) =

∫
γ

√
κ+ ε1ε2H ds under the flow of the

Killing vector field ξ. This section leads to another description of the well-known
families of constant mean curvature surfaces in L3, (see [9] and [10]).

5 Isometric Families of CMC Surfaces

Themethod developed in previous sections also allows us to deform CMC surfaces
isometrically preserving the mean curvature. In fact, applying Theorem 4.1, we
get that a ξ-invariant surface of CMC which is not a plane or a cylinder (both
Riemannian or Lorentzian) can isometrically be deformed if the following relations
involving the constants d and e,

1. If ∆ 6= 0 and a 6= 0, ∆ = νb2,

2. If ∆ = 0 and a > 0, (there is no any isometric deformation),

3. If ∆ < 0 and a = 0, c = νb2 and

4. If ∆ = a = 0, (as d = 0, there is no biparametric family) there is no any
constraint,

are verified for some ν ∈ R. Then for each correspondent solution of the Euler-
Lagrange equations, we can prove

Theorem 5.1. For each real constant µ, let {Sγ}d,e be the family of ξ-invariant
surfaces shaped on a critical curve γ of Θ(γ) =

∫
γ

√
κ− µds. Under the rela-

tions above (except for case 2), the family {Sγ}d is generated by isometric surfaces
with the same constant mean curvature H = −ε1ε2µ.
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