

Superficies de Revolución Compactas con Curvatura Media Constante en $\mathbb{S}^3(\rho)$

Álvaro Pámpano Llarena

VI Encuentro de Jóvenes Topólogas y Topólogos

Bilbao, 18-19 de Octubre de 2017

1. Superficies de Revolución con CMC

- 1. Superficies de Revolución con CMC
- 2. Construcción de las Superficies de Revolución con CMC

- 1. Superficies de Revolución con CMC
- 2. Construcción de las Superficies de Revolución con CMC
- 3. Estudio de la Compacidad

Superficies de Revolución con CMC

1. Parametrización

Superficies de Revolución con CMC

- 1. Parametrización
- 2. Formas Fundamentales
- 3. Ecuaciones Fundamentales

Superficies de Revolución con CMC

- 1. Parametrización
- 2. Formas Fundamentales
- 3. Ecuaciones Fundamentales
- 4. Funcional de Blaschke Generalizado

Consideramos la 3-esfera $\mathbb{S}^3(\rho)\subset\mathbb{E}^4$ (espacio euclídeo de dimensión 4) definida por

$$\mathbb{S}^3(\rho) = \{x \in \mathbb{E}^4 \, | \, \langle x, x \rangle = \frac{1}{\rho} \}.$$

Consideramos la 3-esfera $\mathbb{S}^3(\rho)\subset\mathbb{E}^4$ (espacio euclídeo de dimensión 4) definida por

$$\mathbb{S}^3(\rho) = \{x \in \mathbb{E}^4 \mid \langle x, x \rangle = \frac{1}{\rho}\}.$$

Sea $S \subset \mathbb{S}^3(\rho)$ una superficie de revolución de CMC.

Consideramos la 3-esfera $\mathbb{S}^3(\rho)\subset\mathbb{E}^4$ (espacio euclídeo de dimensión 4) definida por

$$\mathbb{S}^3(\rho) = \{x \in \mathbb{E}^4 \, | \, \langle x, x \rangle = \frac{1}{\rho} \}.$$

Sea $S \subset \mathbb{S}^3(\rho)$ una superficie de revolución de CMC. Es decir, S queda invariante por la acción de un grupo uniparamétrico de rotaciones, $\{\phi_t\}$.

Consideramos la 3-esfera $\mathbb{S}^3(\rho)\subset\mathbb{E}^4$ (espacio euclídeo de dimensión 4) definida por

$$\mathbb{S}^3(\rho) = \{x \in \mathbb{E}^4 \, | \, \langle x, x \rangle = \frac{1}{\rho} \}.$$

Sea $S \subset \mathbb{S}^3(\rho)$ una superficie de revolución de CMC. Es decir, S queda invariante por la acción de un grupo uniparamétrico de rotaciones, $\{\phi_t\}$.

Y además, S admite la siguiente parametrización natural

$$x(s,t)=\phi_t(\gamma(s)),$$

donde $\gamma(s)$ se llama curva perfil.

Recordemos que la curva perfil de una superficie de revolución es una curva plana ($\tau = 0$).

Con respecto a la parametrización natural, la métrica inducida se puede ver como una métrica warped product dada por

$$g=ds^2+G(s)^2dt^2.$$

Con respecto a la parametrización natural, la métrica inducida se puede ver como una métrica warped product dada por

$$g=ds^2+G(s)^2dt^2.$$

GEODÉSICAS DE LA SUPERFICIE

Para cada t_o fijo, las curvas $x(s,t_o) := \gamma_{t_o}(s)$ son geodésicas de la superficie S, y por tanto, S admite una foliación geodésica.

Con respecto a la parametrización natural, la métrica inducida se puede ver como una métrica warped product dada por

$$g=ds^2+G(s)^2dt^2.$$

GEODÉSICAS DE LA SUPERFICIE

Para cada t_o fijo, las curvas $x(s, t_o) := \gamma_{t_o}(s)$ son geodésicas de la superficie S, y por tanto, S admite una foliación geodésica.

Si $\gamma_{t_o}(s)$ son también geodésicas de $\mathbb{S}^3(\rho)$, S sería una superficie reglada.

Con respecto a la parametrización natural, la métrica inducida se puede ver como una métrica warped product dada por

$$g = ds^2 + G(s)^2 dt^2.$$

GEODÉSICAS DE LA SUPERFICIE

Para cada t_o fijo, las curvas $x(s, t_o) := \gamma_{t_o}(s)$ son geodésicas de la superficie S, y por tanto, S admite una foliación geodésica.

Si $\gamma_{t_o}(s)$ son también geodésicas de $\mathbb{S}^3(\rho)$, S sería una superficie reglada.

En caso contrario, la segunda forma fundamental viene dada por

$$h = -\kappa(s)ds^2 + \frac{G(s)}{\kappa(s)} \left(G''(s) + \rho G(s)\right) dt^2,$$

donde $\kappa(s)$ es la curvatura de $\gamma(s)$ en $\mathbb{S}^3(\rho)$.

ECUACIONES FUNDAMENTALES

Por el Teorema Fundamental de Subvariedades sabemos que las formas g y h, localmente determinan una única (salvo movimientos rígidos) superficie de revolución S, si y solo si, se verifican las siguientes ecuaciones de compatibilidad

ECUACIONES FUNDAMENTALES

Por el Teorema Fundamental de Subvariedades sabemos que las formas g y h, localmente determinan una única (salvo movimientos rígidos) superficie de revolución S, si y solo si, se verifican las siguientes ecuaciones de compatibilidad

ECUACIONES DE GAUSS-CODAZZI

$$0 = \left(\frac{1}{\kappa}\left(G_{ss} + G(\kappa^2 + \rho)\right)\right)_{s} - \kappa_{s}G.$$

ECUACIONES FUNDAMENTALES

Por el Teorema Fundamental de Subvariedades sabemos que las formas g y h, localmente determinan una única (salvo movimientos rígidos) superficie de revolución S, si y solo si, se verifican las siguientes ecuaciones de compatibilidad

ECUACIONES DE GAUSS-CODAZZI

$$0 = \left(\frac{1}{\kappa}\left(G_{ss} + G(\kappa^2 + \rho)\right)\right)_s - \kappa_s G.$$

Por otro lado, S tendrá curvatura media constante (CMC), si existe $H \in \mathbb{R}$, tal que

$$H = \frac{1}{2\kappa G} \left(G_{ss} - G \left(\kappa^2 - \rho \right) \right) .$$

FUNCIONAL DE BLASCHKE GENERALIZADO (1)

Combinando las ecuaciones de Gauss-Codazzi y la de CMC, llegamos a que

FUNCIONAL DE BLASCHKE GENERALIZADO (1)

Combinando las ecuaciones de Gauss-Codazzi y la de CMC, llegamos a que

• G(s) es solución de

$$(K=)-\frac{G_{ss}}{G}=H^2+\rho,$$

con $\kappa = -H$.

FUNCIONAL DE BLASCHKE GENERALIZADO (1)

Combinando las ecuaciones de Gauss-Codazzi y la de CMC, llegamos a que

• G(s) es solución de

$$(K=)-\frac{G_{ss}}{G}=H^2+\rho,$$

con $\kappa = -H$.

O, por el contrario,

$$G(s) = \frac{1}{2\sqrt{\kappa(s) + H}},$$

y es solución de

$$G_{ss} + G(H^2 + \rho) = \frac{1}{16G^3}.$$

FUNCIONAL DE BLASCHKE GENERALIZADO (2)

En ambos casos, la curva perfil $\gamma(s)$ con curvatura $\kappa(s)$ es una curva crítica para el funcional

$$\mathbf{\Theta}(\gamma) = \int_{\gamma} \sqrt{\kappa(s) + H} \, ds,$$

en la esfera totalmente geodésica $\mathbb{S}^2(\rho)$, [2].

FUNCIONAL DE BLASCHKE GENERALIZADO (2)

En ambos casos, la curva perfil $\gamma(s)$ con curvatura $\kappa(s)$ es una curva crítica para el funcional

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa(s) + H} \, ds,$$

en la esfera totalmente geodésica $\mathbb{S}^2(\rho)$, [2].

• El caso $\kappa = -H$ es un mínimo global entre las curvas inmersas en $\mathbb{S}^2(\rho)$ con $\sqrt{\kappa + H} \in L^1(I)$.

FUNCIONAL DE BLASCHKE GENERALIZADO (2)

En ambos casos, la curva perfil $\gamma(s)$ con curvatura $\kappa(s)$ es una curva crítica para el funcional

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa(s) + H} \, ds,$$

en la esfera totalmente geodésica $\mathbb{S}^2(\rho)$, [2].

- El caso $\kappa = -H$ es un mínimo global entre las curvas inmersas en $\mathbb{S}^2(\rho)$ con $\sqrt{\kappa + H} \in L^1(I)$.
- En el segundo caso, la curvatura de γ , $\kappa(s)$ es solución de la ecuación de Euler-Lagrange en el espacio de curvas inmersas en $\mathbb{S}^2(\rho)$ verificando $\kappa > -H$, $\Omega_{p_0p_1}$.

1. Curvas Críticas

- 1. Curvas Críticas
- 2. Campo de Killing Asociado

- 1. Curvas Críticas
- 2. Campo de Killing Asociado
- 3. Evolución Binormal

En $\mathbb{S}^2(\rho)$, consideramos el funcional de Blaschke generalizado

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa(s) + H} \, ds.$$

En $\mathbb{S}^2(\rho)$, consideramos el funcional de Blaschke generalizado

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa(s) + H} \, ds.$$

• Para el espacio de curvas $\sqrt{\kappa + H} \in L^1(I)$, los círculos con curvatura $\kappa = -H$ son críticos.

En $\mathbb{S}^2(\rho)$, consideramos el funcional de Blaschke generalizado

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa(s) + H} \, ds.$$

- Para el espacio de curvas $\sqrt{\kappa + H} \in L^1(I)$, los círculos con curvatura $\kappa = -H$ son críticos.
- En el espacio $\Omega_{p_0p_1}$, la ecuación de Euler-Lagrange queda

$$\frac{d^2}{ds^2} \left(\frac{1}{\sqrt{\kappa + H}} \right) + \frac{1}{\sqrt{\kappa + H}} \left(\kappa^2 + \rho \right) - 2\kappa \sqrt{\kappa + H} = 0.$$

En $\mathbb{S}^2(\rho)$, consideramos el funcional de Blaschke generalizado

$$\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa(s) + H} \, ds.$$

- Para el espacio de curvas $\sqrt{\kappa + H} \in L^1(I)$, los círculos con curvatura $\kappa = -H$ son críticos.
- En el espacio $\Omega_{p_0p_1}$, la ecuación de Euler-Lagrange queda

$$\frac{d^2}{ds^2} \left(\frac{1}{\sqrt{\kappa + H}} \right) + \frac{1}{\sqrt{\kappa + H}} \left(\kappa^2 + \rho \right) - 2\kappa \sqrt{\kappa + H} = 0.$$

Soluciones: círculos de curvatura $\kappa = -H + \sqrt{H^2 + \rho}$; para $2d > H + \sqrt{H^2 + \rho}$ curvas determinadas por

$$\kappa_d(s) = \frac{\rho + H^2}{2d - H - \sqrt{4d^2 - 4Hd - \rho}\sin 2\sqrt{H^2 + \rho}s} - H.$$

Campo de Killing Asociado

Definimos el campo de vectores ${\mathcal I}$ sobre una curva crítica γ (solución de Euler-Lagrange)

$$\mathcal{I} = G(s)B = \frac{1}{2\sqrt{\kappa(s) + H}}B.$$

Campo de Killing Asociado

Definimos el campo de vectores $\mathcal I$ sobre una curva crítica γ (solución de Euler-Lagrange)

$$\mathcal{I} = G(s)B = \frac{1}{2\sqrt{\kappa(s) + H}}B.$$

Campo de Killing sobre γ [4]

Llamamos campo de Killing sobre γ a un campo de vectores sobre γ , W, que verifique $W(v)(s) = W(\kappa)(s) = 0$.

Campo de Killing Asociado

Definimos el campo de vectores ${\mathcal I}$ sobre una curva crítica γ (solución de Euler-Lagrange)

$$\mathcal{I}=G(s)B=\frac{1}{2\sqrt{\kappa(s)+H}}B.$$

Campo de Killing sobre γ [4]

Llamamos campo de Killing sobre γ a un campo de vectores sobre γ , W, que verifique $W(v)(s) = W(\kappa)(s) = 0$.

Proposición [3]

El campo \mathcal{I} es un campo de vectores de Killing sobre γ .

Campo de Killing Asociado

Definimos el campo de vectores $\mathcal I$ sobre una curva crítica γ (solución de Euler-Lagrange)

$$\mathcal{I}=G(s)B=\frac{1}{2\sqrt{\kappa(s)+H}}B.$$

Campo de Killing sobre γ [4]

Llamamos campo de Killing sobre γ a un campo de vectores sobre γ , W, que verifique $W(v)(s) = W(\kappa)(s) = 0$.

Proposición [3]

El campo \mathcal{I} es un campo de vectores de Killing sobre γ .

Además, este campo de Killing sobre γ , \mathcal{I} , se puede extender a un campo de vectores de Killing en todo $\mathbb{S}^3(\rho)$. Lo denotaremos por ξ .

• Sea γ una curva crítica (plana) del funcional de Blaschke generalizado en $\mathbb{S}^2(\rho)$.

- Sea γ una curva crítica (plana) del funcional de Blaschke generalizado en $\mathbb{S}^2(\rho)$.
- La evolución de γ bajo el flujo del campo de Killing ξ genera una superficie de evolución binormal ξ -invariante S_{γ} de $\mathbb{S}^{3}(\rho)$.

- Sea γ una curva crítica (plana) del funcional de Blaschke generalizado en $\mathbb{S}^2(\rho)$.
- La evolución de γ bajo el flujo del campo de Killing ξ genera una superficie de evolución binormal ξ -invariante S_{γ} de $\mathbb{S}^{3}(\rho)$.

Proposición [2]

La superficie S_{γ} es una superficie de revolución.

- Sea γ una curva crítica (plana) del funcional de Blaschke generalizado en $\mathbb{S}^2(\rho)$.
- La evolución de γ bajo el flujo del campo de Killing ξ genera una superficie de evolución binormal ξ -invariante S_{γ} de $\mathbb{S}^{3}(\rho)$.

Proposición [2]

La superficie S_{γ} es una superficie de revolución.

TEOREMA [2]

La superficie de revolución S_{γ} tiene curvatura media constante H.

Compacidad

Compacidad

1. Condición de Cierre

Compacidad

- 1. Condición de Cierre
- 2. Existencia de Curvas Críticas Cerradas

COMPACIDAD

- 1. Condición de Cierre
- 2. Existencia de Curvas Críticas Cerradas
- 3. Clasificación

Como $\mathbb{S}^3(\rho)$ es completo, las rotaciones ϕ_t están definidas para todo $t \in \mathbb{R}$. Además, sus órbitas son círculos (cerrados).

Como $\mathbb{S}^3(\rho)$ es completo, las rotaciones ϕ_t están definidas para todo $t \in \mathbb{R}$. Además, sus órbitas son círculos (cerrados). Luego, solo necesitamos curvas perfil cerradas.

Como $\mathbb{S}^3(\rho)$ es completo, las rotaciones ϕ_t están definidas para todo $t \in \mathbb{R}$. Además, sus órbitas son círculos (cerrados). Luego, solo necesitamos curvas perfil cerradas.

Las curvas críticas con curvatura constante son círculos cerrados.

Como $\mathbb{S}^3(\rho)$ es completo, las rotaciones ϕ_t están definidas para todo $t \in \mathbb{R}$. Además, sus órbitas son círculos (cerrados). Luego, solo necesitamos curvas perfil cerradas.

Las curvas críticas con curvatura constante son círculos cerrados. Por otro lado, las curvaturas $\kappa_d(s)$ son periódicas de periódo

$$\frac{\pi}{\sqrt{H^2+\rho}}$$
.

Como $\mathbb{S}^3(\rho)$ es completo, las rotaciones ϕ_t están definidas para todo $t \in \mathbb{R}$. Además, sus órbitas son círculos (cerrados). Luego, solo necesitamos curvas perfil cerradas.

Las curvas críticas con curvatura constante son círculos cerrados. Por otro lado, las curvaturas $\kappa_d(s)$ son periódicas de periódo $\frac{\pi}{\sqrt{H^2+a}}.$

Proposición [1]

Una curva crítica de $\Theta(\gamma) = \int_{\gamma} \sqrt{\kappa + H} \, ds$ en $\mathbb{S}^2(\rho)$ con curvatura no constante, κ_d , será cerrada si y solo si

$$\Lambda(d) = 2\sqrt{d\rho} \int_0^{\frac{\pi}{\sqrt{H^2 + \rho}}} \frac{(\kappa_d(u) + 2H)\sqrt{\kappa_d(u) + H}}{4d(\kappa_d(u) + H) - \rho} du$$

es un múltiplo racional de 2π .

Curvas Críticas Cerradas

TEOREMA

Existen curvas críticas cerradas con curvatura no constante inmersas en $\mathbb{S}^2(\rho)$.

Curvas Críticas Cerradas

TEOREMA

Existen curvas críticas cerradas con curvatura no constante inmersas en $\mathbb{S}^2(\rho)$.

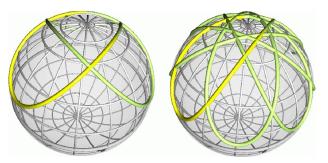


FIGURA: Curvas Críticas Cerradas para H = 0, [1].

CLASIFICACIÓN (1)

Superficies de Revolución Compactas con CMC:

• Generadas a partir de mínimos globales de Θ , γ con $\kappa = -H$,

- Generadas a partir de mínimos globales de Θ , γ con $\kappa = -H$,
 - 1. El ecuador $\mathbb{S}^2(\rho)$ (superficie totalmente geodésica) cuando H=0.

- Generadas a partir de mínimos globales de Θ , γ con $\kappa = -H$,
 - 1. El ecuador $\mathbb{S}^2(\rho)$ (superficie totalmente geodésica) cuando H=0.
 - 2. Superficies totalmente umbilicales, $\mathbb{S}^2(r)$ con $r > \rho$, cuando $H \neq 0$.

- Generadas a partir de mínimos globales de Θ , γ con $\kappa = -H$,
 - 1. El ecuador $\mathbb{S}^2(\rho)$ (superficie totalmente geodésica) cuando H=0.
 - 2. Superficies totalmente umbilicales, $\mathbb{S}^2(r)$ con $r > \rho$, cuando $H \neq 0$.
- Generadas a partir de soluciones de Euler-Lagrange,

Superficies de Revolución Compactas con CMC:

- Generadas a partir de mínimos globales de Θ , γ con $\kappa = -H$,
 - 1. El ecuador $\mathbb{S}^2(\rho)$ (superficie totalmente geodésica) cuando H=0.
 - 2. Superficies totalmente umbilicales, $\mathbb{S}^2(r)$ con $r > \rho$, cuando $H \neq 0$.
- Generadas a partir de soluciones de Euler-Lagrange,
 - 3. Superficies de evolución binormal isoparamétricas llanas (Toros de Hopf)

$$\mathbb{S}^1\left(\sqrt{\rho+\kappa^2}\right)\times\mathbb{S}^1\left(\frac{\sqrt{\rho}}{\kappa}\sqrt{\rho+\kappa^2}\right)\,,$$

 $\mathrm{con}\; \kappa = -H + \sqrt{H^2 + \rho} \; \mathrm{curvatura} \; \mathrm{de \; la \; curva \; perfil, \; } \gamma.$

Superficies de Revolución Compactas con CMC:

- Generadas a partir de soluciones de Euler-Lagrange,
 - 4. Superficies de evolución binormal no isoparamétricas generadas por una curva perfil, γ , con curvatura

$$\kappa_d(s) = \frac{\rho + H^2}{2d - H - \sqrt{4d^2 - 4Hd - \rho}\sin 2\sqrt{H^2 + \rho}s} - H,$$

para $d > \frac{H + \sqrt{H^2 + \rho}}{2}$ y verificando la condición de cierre.

REFERENCIAS

- J. Arroyo, Presión Calibrada Total: Estudio Variacional y Aplicaciones al Problema de Willmore-Chen, PhD Thesis UPV/EHU (2001).
- 2. J. Arroyo, O. J. Garay y A. Pámpano, Constant Mean Curvature Invariant Surfaces and Extremals of Curvature Energies, preprint.
- 3. O. J. Garay y A. Pámpano, Binormal Evolution of Curves with Prescribed Velocity, WSEAS Trans. Fluid Mech., vol. 11 (2016).
- 4. J. Langer y D. Singer, Langrangian Aspects of the Kirchhoff Elastic Rod, SIAM Review, vol. 38 (1996).
- 5. O. M. Perdomo, Rotational Surfaces in S^3 with Constant Mean Curvature, J. Geom. Anal., vol. 26 (2016).

FIN

FIGURA: Proyección Estereográfica del Toro de Clifford.