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Definitions and Notation

» Let {X(t)} be a collection of continuous random variables defined on
a probability space, a stochastic process that is continuous in time
t € [to,0) and in state

X(t) € (=00, 0) or [0,00) or [0, M]

» The probability density function p(x, t) is associated with X(t)
» To find a probability associated with X(t) you need to integrate:

Prob{X(t) € [a, b]} = /b " p(x, t)dx
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Definitions and Notation

Markov Property

Assume {X(t) : t € [0,00)} is a stochastic process continuous in time
with a continuous state space. It is a Markov process if

Prob{X(t,) < y|X(0) = xo, X(t1) = X1, .., X(tn—1) = Xn—1}
= Prob{X(t,) < y|X(th-1) = xp—1}

for a given sequence of times 0 < ty < t1 < ...tp.

The future state of the process only depends on the current state.
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Definitions and Notation

Transition p.d.f

The transision p.d.f p(y,s; x, t) is the density function for a transition
from state x at time t to state y at time s, t < s.
It is homogeneous if

p(y,s + At;x, t + At) = p(y, s; x, t)

and denoted
p(.y7X7 S — t)

the transitions depend only of the length of time between states, s — t.

Chapman-Kolmogorov equations

p(y,s;x, t) = / p(y,s; z,u)p(z, u; x, t)dz

—00

where t < u < s.
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Definitions and Notation

» The dynamics depend on the initial density of X(0)

» usually the initial density is concentrated at xg
» this means the p.d.f. of X(0) is a Dirac delta function

d(x —x0) =0, x # xg, and / O(x —xp)dx =1

» for simplicity we just write X(0) = xo when the initial p.d.f. is
p(x, to) = 6(x — xo)

> here the p.d.f. of X(t), p(x, t) is the same as the transition probability
density function, p(x, t; xo, 0)
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Random Walk and Brownian Motion

v

Consider a random walk on the set {0, £Ax, +2Ax, ...}
Let p be the probability of moving right

v

\4

g be the probability of moving left

»ptg=1

Let X(t) € {0,£Ax,£2Ax, ...} be the DTMC for this random walk,
where t € {0, At,2At,...} and

v

px(t) = Prob{X(t) = x} = u(x, t)
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Random Walk and Brownian Motion

> |t follows that
u(x,t + At) = pu(x — Ax, t) + qu(x + Ax, t)
» Expanding the right-hand side using Taylor’s formula about the point
(x, t) yields

u(x,t + At) =
putr )+ 25 )+ SO E 4 oan)

u(x 2 x)?
+q [u(x, t) + 8((9x’t)(Ax) il 8( 5 ) (A2 ) + 0((Ax)3)]

ulx 2U X X 2

= u(x,t) +(q—p) (Ax) +
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Random Walk and Brownian Motion
» subtracting u(x, t) and dividing by At yields

u(x, t + At) — u(x, t) ou(x,t) Ax 10%u(x, t) (Ax)? (Ax)3
) () ()

Ox At 2  0x? At At
» Assume

i ( )Ax

im =(p—qg)—=c
At,Ax—0 P—a At

. (Ax)?

| = =D
At,IATHO At

o (Ax?

[ = =0
At,IArQ—>O At

» Letting At, Ax — 0, the probability u(x, t) represents the p.d.f of a
continuous-time and continuous-state process X(t) which is a
solution of the PDE

ou B du D d2%u

E__C&—{_Eﬁ, XG(—O0,00)
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Random Walk and Brownian Motion

ot C@X 2 Ox2’ x 00,00

» This PDE is known as the diffusion equation with drift
» D is the diffusion coefficient
> c is the drift coefficient
» This PDE is also known as the forward Kolmogorov differential
equation for this process
» When p = g = 1/2 the movement is unbiased and the limiting

stochastic process is known as Brownian motion:
ou D o%u e ( )
— = —— x € (—o0, 0
ot 2 0x?’ ’

» Standard Brownian motion (X(0) =0 and D = 1) is also known as
the Wiener process.
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Random Walk and Brownian Motion

» The assumptions on the limits in the random walk model were
necessary to obtain the diffusion equation with drift.

» These assumptions are very important in the derivation of the
Kolmogorov differential equations

» they are are related to the infinitesimal mean and variance of the
process.
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Example

Brownian Motion Example

Consider the equation for Brownian motion with the initial condition
X(O) = X0
ou D d%u
9= 2 e x € (—o0,00)

1. Verify that

u(x,t) =

1 ( (x — x0)2>
exp | ——————
V2w Dt 2Dt
is a solution

2. What kind of distribution does the p.d.f have?
3. The p.d.f has a normal distribution.
4. What is the mean? What is the variance?
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Diffusion Process

The diffusion process is a Markov process with additional properties on the
infinitesimal mean and variance

Diffusion Process

Let {X(t):t € [0,00)} be a Markov process with state space (—o0, )
having continuous sample paths and trasition p.d.f given by p(y,s; x, t),

t <s. Then {X(t)} is a diffusion process if its p.d.f satisfies the following
3 assumptions for any € > 0 and x € (—o0, 00):

1
L lim —— t+ At x, t)dy =0
ArT Af/|y_x|>ep(y’ + At; x, t)dy
1
2. li —_— — t At: t)dy = t
Atsor At/ly—x|§e(y x)ply; t + At;x, t)dy = a(x, t)
1
3. lim — )2 t+ AF x, t)dy = b(x, t
i g xRty At ey =

Here a(x, t) is the drift coefficient and b(x, t) is the diffusion coefficient.
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Diffusion Process

v

Similar but slightly stronger conditions that lead to the conditions
above are expressed in terms of the expectation:

. 1 5
1. AItTm gE(|AX(t)| IX(t)=x)=0, §>2
2. Altli?m A—tE(AX(t)|X(t) =x) = a(x,t)

1
3. lim A—tE([AX(t)]2|X(t) = x) = b(x, t)

where Ax(t) = X(t+ At) — X(t) =y — x
Here a(x, t) is the drift coefficient

> the expected change in a small increment of X starting at x
b(x, t) is the diffusion coefficient

> the variance in a small increment of X starting at x

v

v

v
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Kolmogorov Differential Equations

» The Forward and Backward Kolmogorov Differential Equations follow
from these assumptions

» The backward Kolmogorov DE for a time-homogeneous process is

Oply,x,t) . Oply,x,t) 1, 0%p(y,x1)
AT O vl L

» The forward Kolmogorov DE for a time-homogeneous process is

op(y,x.t) _ Oa(y)p(y,x.t)] | 10°[b(y)p(y.x,t)]
ot dy 2 Oy?

» The p.d.f. p(x,t) with p(x,0) = 6(x — xp) is a solution of the forward
Kolmogorov DE, therefore we can replace p(y, x, t) with p(x, t):
op(x,t) _ _0la(x)p(x. t)] 19%[b(x)p(x, t)]

ot Ox 2 0x2
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Wiener Process

» Wiener process is a continuous-time stochastic process named in
honor of Norbert Wiener.

» It is often called standard Brownian motion due to its historical
connection with the physical process known as Brownian motion
originally observed by Robert Brown.

» Suppose W(t) is the displacement of a small particle from the origin.

» The displacement of the particle over the time interval t; to t is long
compared to the time between impacts.

» The central limit theorem can be applied to the sum of a large
number of these small disturbances so that W(t,) — W(t1) has a
normal density.
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Wiener Process

Wiener Process

The stochastic process {W(t) : t € [0,00)} is a Wierner process if

W(t) € (—o0,00) depends continuously on t and the following conditions
hold:

1. For 0 <t; < to < oo, W(t2) — W(t1) is normally distributed with
mean 0 and variance t, — t7.

> W(tz) = W(tl) ~ N(O7 tr — tl)

2. For 0 < tp < t; < tp < oo the increments W(t;1) — W(to) and
W (t,) — W(t1) are independent

3. Prob{W(0) = 0} =1

A. Peace 2017

8 Stochastic Differential Equations 16/34



Wiener Process

v

Sample paths of W/(t) are continuous functions of t but they do not
have bounded variation and are almost everywhere nondifferentiable.

therefore dVZt(t) has no meaning in the usual sense
. : t dw .
The Riemann integral / g(7) d(T) d7 has no meaning
0 T

since dvgg) is not defined

t
Also / g(7)dW(7)d7 has no meaning

0
since W(7) does not have bounded variation.

A new definition of a stochastic integral is needed
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[t Stochastic Integral

Assume f(t) is a random function satisfying

b
/ E(F2(£))dt < oo.
a
Leta=t1 < tp <--- <ty < typ1 = b be a partition of [a, b],

At =t —ti = (b—a)/k and AW(t;) = W(ti11) — W(t;) where W(t)
is the standard Wiener process. The Itd stochastic integral of f is

k
/b F(E)dW(t) = Lim.ioe Y F(6)AW(E)

i=1
where [.i.m denotes mean square convergence.
k b
If Fie = F(t)AW(t;) and T = / f(t)dW(t) then Li.m.y_ooFix =T

i=1 &

means lim E[(Fx —Z)°] =0
k—o0
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[to Stochastic Integral

» Mean square convergence
E[(Fc—))*] =0
implies convergence in the mean:

E(|Fk —Z]) =0

» The converse is not true
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[to Stochastic Integral

Simple It5 integrals:

|

b
/ dW(t) = W(b) — W(a)
a
» For any well-defined random function F(W/(t),t)

b
/ dF(W(t), t) = F(W(b), b) — F(W(a), )

a

» The Itd stochastic integral is a linear operator on the set of functions
f whose 1t stochastic integral exists.
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[to Stochastic Integral

Properties of It stochastic integrals

b
Assume f(t) and g(t) are random functions satisfying/ F(f?(t))dt < oo
a

and « and a < b < ¢ are constants. Then

b b
./af(t)dW(t):a/ F(£)dW (1)

—

N

b b b
./a(f(t)-l—g(t))dW(t):/ f(t)dW(t)-l—/ g(t)dW(t)

w

| /bf(t)dW(t):/c f(t)dW(t)—i—/b F(£)dW ()

=

E [/abf(t)dW(t)] iy,

E [(/abf(t)dW(t)>2] _ /ab E(F(1))dt

o

A. Peace 2017 8 Stochastic Differential Equations 21/34



[to Stochastic Integral

Example

/t W(r)dW(r) = % W2t — ¢
0

This can be shown using the properties of the Wiener process
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Brownian motion (blue), The integral of brownian motion with itself (red).
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[to Stochastic Integral

Example

The following example highlights that the It integral is different than the
Riemann-Stieltjes integral.

b
1. Evaluate/ W(t)dW(t)
a

» Evaluating It6 integrals using the definition can be very difficult
» We will talk about theory allowing us to evaluate some It6 integrals

> Notation: .
X(t) :/ W(r)dW(r)
0
This integral is often written in differential form:
dX(t) = W(t)dW(t), X(0)=0

This form is 1t6 stochastic differential equation.

A. Peace 2017 8 Stochastic Differential Equations 23/34



[t6 Stochastic Differential Equation

SDE

A stochastic process {X(t) : t € [0,00)} is said to satisfy the It6
stochastic differential equations (SDE):

dX(t) = a(X(t), t)dt + B(X(t), t)dW(t))
if for t > 0 it is a solution of the integral equations:
X(t) = X(0) + /Ot a(X(1),7)dT + /Ot B(X(7),7)dW(T)

where the first integral is a Riemann integral and the second integral is an
[t6 stochastic integral.
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[t6 Stochastic Differential Equation
Example: diffusion with drift

» Consider the diffusion equation with drift. The forward Kolmogorov
differential equation is

0 0 D 9?
p__.9 p

9t Sox T oo X E(70)

p(x,0) = 0(x — xp) with solution

1 (x — xo — ct)?
P(X, t) = mexp _2—Df

» The SDE corresponding to this process is

dX(t) = cdt + VDdW(t), X(0) = xo

So that X(t) ~ N(xo + ct, Dt).
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[t6 Stochastic Differential Equation

Example: exponential growth

» Consider the exponential growth model:

dXx
4 =(A-pX

» The SDE representation of the exponential growth model is

dX(t) = (A — p)X(t)dt + /(A + )X (t)dW(t), X(0)=xo >0

» X(t) has a p.d.f that is a solution of the forward Kolmogorov equation
dp _ d(xp) | A+ pd*(xp)
ot = AT T T e
p(x,0) = d(x — xo)
» The mean and variance are same for the CTMC model

E(X) = Xoe)‘ mt g, Var(X) = Xoi‘—i_iﬂe(/\Jru)t(e(z\Jru)t_l)
—p

€ (0,00)
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[td's Formula is like a “chain rule”.

It6's Formula
Suppose X(t) is a solution of the 1td SDE:

dX(t) = a(X(t), t)dt + B(X(t), t)dW(t))

If F(x,t) is a real-valued function defined for x € R and t € [a, b] with

g g g g 2
continuous partial derivatives %—’;, %, ?)7’;_ then

dF (X(t), t) = f(X(t), t)dt + g(X(t), t)dW(t)
where

OF (x, t)
ot

OF(x,t) 1 5 0%F(x, t)
2l | g2 Tt

f(X7 t) = 8X2

+ a(x, t)

and g(x, t) = B(x, t) 2E6)

There is a multidimensional Ités formula for multivariate processes.
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Examples: growth with environmental variation
Exponential growth
Consider the SDE

dX(t) = rX(t)dt + cX(t)dW(t)

1. Apply 1t8's formula letting F(x) = Inx
2. Integrate from 0 to t and solve for X(t).

Logistic growth
Consider the SDE

X(t
dX(t) = rX(t) (1 - %) dt + cX(t)dW(t)
1. Give brief explanations of the terms in above model
2. Apply 1t&'s formula letting F(x) = 1.
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Examples using [t6's Formlula

Use 1t6's Formlula to verify integrals

1.

[ wiawe) = 2ws) - wie) - o)

/a i tdW(t)
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Deriving 1t6 SDE from forward Kolmogorov equation

» Under suitable smoothness of the coefficients, a solution of the SDE

dX(t) = a(X(t), t)dt + B(X(t), t)dW(t)
is a diffusion process.
» That means that it is also a solution of the Kolmogorov equation

Op __dal,0p) 1025, t)p)
ot Ox 2 Ox?2
where p(x, t) is the p.d.f of the stochastic process.
» Given a forward Kolmogorov equation, in the above form, we can

write the SDE.

Question 9 from chp. 8

The forward Kolmogorov equation of a diffusion process has the form

op 0 102

E = —a [((bl — dl)X — (b2 + dz)X ) ]+§ﬁ [((bl — dl)X -+ (b2 + dz)Xz) p]

x € (0,00), b, d; > 0, and by > di. Write the corresponding SDE.
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Deriving 1t6 SDE from probabilities

» Given the probabilities of events for a stochastic process we can
formulate a SDE using the expectation and covariance matrices

» Consider the following probabilities associated with changes in 2
interacting populations

)i | Probability, p;
) b1 At
) byAt

0) di At
0,-1) dhAt
1)
)

mo1 At
mpp At

OB WI N~
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Deriving 1t6 SDE from probabilities

» Step 1: Calculate the expectation

(b1 —di—mo1 + mp
E(AX) = <b2 —do + mp1 — m12> At

» Step 2: Calculate an approximation to the covariance matrix

T(AX) = E([AX]IAXT]) = E(AX)[E(AX)T]

-~ (AX1)?  (AXi)(AX:)
NE((Axl)(sz) (DX )

_ (bl + di + mo1 + myo —mo1 — M2 > At
—mp1 — M2 by 4 do + mo1 + myo
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Deriving 1t6 SDE from probabilities

» Step 3: Find a matrix B such that ¥ = BBT At

» dimensions of B are (# variables) by (# events)
> based of the table of probabilities, under the square root
» Check that ¥ = BBT At after you formulate B

B:<\/b»1 0 —Vdi 0 —y/mo1 \/m12>
0 Vb 0 —/d» mo1  —y/m2

» The SDE has the form:
dX(t) = p(X(t), t)dt + B(X(t), t)dW(t)

where 11 is the ODE system and W(t) is a vector of independent
Wiener process with length of the # events.
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Deriving 1t6 SDE from probabilities

SIR Epidemic Process
Consider the probabilities associated withe changes in the SIR model:

i | (AX); | Probability, p;
1](-1,1) BSI/NAt
2 [(0,-1) VIAt

1. Use the table of parameters to set up a system of SDEs
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