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Continuous-Time Markov Chains

I Now we switch from DTMC to study CTMC

I Time in continuous: t ∈ [0,∞)

I The Random variables are discrete
I Many of biological applications

I processes with discrete changes that occur at irregular times
I births and deaths in a population that breeds at different rates

throughout the year
I epidemics
I gene expression
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Definitions and Notation
Let {X (t) : t ∈ [0,∞)} be a collection of discrete random variables with
values in a finite or infinite set, {1, 2, ...,N} or {0, 1, 2, ...}.

I The index set is continuous t ∈ [0,∞).

Continuous-Time Markov Chain (CTMC)

The stochastic process {X (t) : t ∈ [0,∞)} is a CTMC if it satisfies the
following conditions for any sequence of real numbers satisfying
0 ≤ t0 ≤ t1 ≤ · · · ≤ tn ≤ tn+1.

Prob{X (tn+1) = in+1|X (t0) = i0,X (t1) = i1, ...,X (tn) = in}
= Prob{X (tn+1) = in+1|X (tn) = in}

I Each random variable X (t) has an associcated probability distribution
{pi (t)}∞i=0 where

pi (t) = Prob{X (t) = i}

I Let p(t) = (p0(t), p1(t), ...)T be the vector of probabilities
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Definitions and Notation

I transition probabilties define the relation between the random
variables X (s) and X (t) for s < t

I transition probabilites are define below for i , j = 0, 1, 2, ...:

pji (t, s) = Prob{X (t) = j |X (s) = i}, s < t

I If the transition probabilites don’t explicitly depend on s or t but only
depend on the length of the time interval t − s, they are called
stationary or homogeneous

I otherwise, they are nonstationary or nonhomogeneous

I We’ll assume the transition probabilities are stationary (unless stated
otherwise)
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Definitions and Notation

Stationary transition probabilities

pji (t − s) = Prob{X (t) = j |X (s) = i}
= Prob{X (t − s) = j |X (0) = i}

for s < t. The transition matrix is P(t) = (pji (t)) where in most cases,
pji (t) ≥ 0 and

∞∑
j=0

pji (t) = 1

for t ≥ 0.

P(t) is a stochastic matrix for all t ≥ 0

A. Peace 2017 5 Continuous-Time Markov Chains 5/82



Definitions and Notation

The transition probabilities are solutions of the Chapman-Kolmogorov
equations:

∞∑
k=0

pjk(s)pki (t) = pji (t + s)

or in matrix form:
P(s)P(t) = P(s + t)

for all s, t ∈ [0,∞).
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DTMC vs CTMC

I DTMC: There is a jump to a new state at discrete times: 1, 2, ...,
I CTMC: The jump can occur at any time t ≥ 0

I consider a CTMC beginning at state X (0)
I the process stays in state X (0) for a random amount of time: W1

I it then jumps to a new state: X (W1)
I is stays in state X (W1) for a random amount of time: W2

I it then jumps to a new state X (W2)

I Wi is a random variable for the time of the i th jump.
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Waiting and Holding Times

Jump times or waiting times

The collection of random variables {Wi}∞i=0 defines the jump times or
waiting times of the process. Where we define W0 = 0.

Interevent times or holding times or sojourn times

Random variables Ti = Wi+1 −Wi are the holding times.
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Explosive Processes (blow up in finite time)
I Exceptional cases that may occur when the state space is infinite
I The transition matrix P(t) = (pji (t)) property

∞∑
j=0

pji (t) = 1

for t ≥ 0 does not hold.
I The value of the state approaches infinity at a finite time:

lim
t→T−

X (T ) =∞ for T <∞

I Here pji (T ) = 0 for all i , j = 0, 1, 2, ... which means that

∞∑
j=0

pji (T ) = 0

I These cases are exceptional. All Finite CTMCs are nonexplosive and
most well-known birth and death processes are nonexplosive.
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Transition Matrix

I An important difference between the treatment of discrete-time and
continuous-time Markov chains is that in the latter case there is no
one canonical transition matrix that is used to characterize the entire
process.

I Instead, we can define an entire family of transition matrices indexed
by time.

I Here pji (t) = p(t, j , i) = Prob{X (t) = j |X (0) = i} are elements of
matrix P(t)

P(t) =


p00(t) p01(t) p02(t) · · ·
p10(t) p11(t) p12(t) · · ·
p20(t) p21(t) p22(t) · · ·
p30(t) p31(t) p32(t) · · ·

...
...

... · · ·


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Poisson Process

Poisson Process

A CTMC {X (t) : t ∈ [0,∞)} with state space {0, 1, 2, ...} and the
following properties

1. For t = 0, X (0) = 0

2. For ∆t sufficiently small, the transition probabilites are:

pi+1,i (∆t) = Prob{X (t + ∆t) = i + 1|X (t) = i} = λ∆t + o(∆t)

pii (∆t) = Prob{X (t + ∆t) = i |X (t) = i} = 1− λ∆t + o(∆t)

pji (∆t) = Prob{X (t + ∆t) = j |X (t) = i} = o(∆t), j ≥ i + 2

pji (∆t) = 0, j < i

Functions pi+1,i (∆t)− λ∆t, pii (∆t)− 1 + λ∆t, and pji (∆t) are o(∆t) as
∆t → 0 (”little oh of ∆t”). These are known as infinitesimal transition
probabilities
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Poisson Process

Infinitesimal transition probabilities:

lim
∆t→0

=
pi+1,i (∆t)− λ∆t

∆t
= 0

lim
∆t→0

=
pii (∆t)− 1 + λ∆t

∆t
= 0

lim
∆t→0

=
pji (∆t)

∆t
= 0, j ≥ i + 2
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Poisson Process: transition matrix

P(∆t) =


p00(∆t) p01(∆t) p02(∆t) · · ·
p10(∆t) p11(∆t) p12(∆t) · · ·
p20(∆t) p21(∆t) p22(∆t) · · ·
p30(∆t) p31(∆t) p32(∆t) · · ·

...
...

... · · ·



=


1− λ∆t 0 0 · · ·
λ∆t 1− λ∆t 0 · · ·

0 λ∆t 1− λ∆t · · ·
0 0 λ∆t · · ·
...

...
... · · ·

+ o(∆t)

I Note the columns sum to 1.
I For small ∆t the process can either stay in the same state or move to

the next larger state i → i + 1.
I The probability that the process moves up 2 or more states is small

and approaches 0 when ∆t → 0.
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Poisson Process: derived system of DEs

Derive a system of differential equations for pi (t) for i = 0, 1, 2, ...
Since X (0) = 0 it follows that

pi0(t − 0) = Prob{X (t) = i |X (0) = 0} = Prob{X (t) = i} = pi (t)

Thus pi0(t) = pi (t). It follows that

p0(t + ∆t) = p0(t)[1− λ∆t + o(∆t)]

Subtracting p0(t), dividing by ∆t, and taking the limit as ∆t → 0 yields:

dp0(t)

dt
= −λp0(t)

The initial conditions comes from: p0(0) = Prob{X (0) = 0} = 1.
Solving this system yields:

p0(t) = e−λt
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Poisson Process: derived system of DEs
Similarly,

pi (t + ∆t) = pi (t)[1− λ∆t + o(∆t)] + pi−1(t)[λ∆t + o(∆t)] + o(∆t)

leads to

dpi (t)

dt
= −λpi (t) + λpi−1(t), pi (0) = 0, i ≥ 1

a system of differential-difference equations.
The system can be solved sequentially beginning with p0(t) = e−λt to
show that

p1(t) = λte−λt

p2(t) = (λt)2 e
−λt

2!
...

pi (t) = (λt)i
e−λt

i !
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Poisson Process

The probability distribution {pi (t)}∞i=1 gives a Poisson distribution with
parameter λt

pi (t) = (λt)i
e−λt

i !
, i = 0, 1, 2, ...

with mean and variance:

m(t) = σ2(t) = λt
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Poisson Process: holding time

I The probability p0(t) = e−λt can be thought of as a waiting time
probability

I Its the probability that the first event 0→ 1 occurs at a time greater
than t.

I Let W1 be the random variable for the time until the process reaches
state 1 (the holding time until the first jump)

Prob{W1 > t} = e−λt or Prob{W1 ≤ t} = 1− e−λt

I W1 is an exponential random variable with parameter λ

I In general, it can be shown that the holding time has an exponential
distribution.

I We will see that this is true in general for Markov processes.
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Generator Matrix Q
Basic Ideas

I transition probabilities pji are used to derived transition rates qji
I transition rates form the infinitesimal generator matrix Q

I matrix Q defines a relationship between the rates of change of the
transition probabilites
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Generator Matrix Q
Derivations

I assume transition probabilities pji are continuous and differentiable for
t ≥ 0

I assume at t = 0 the following holds:

pji (0) = 0, j 6= i and pii (0) = 1

I for j 6= i , define

qji = lim
∆t→0+

pji (∆t)− pji (0)

∆t
= lim

∆t→0+

pji (∆t)

∆t

I and define

qii = lim
∆t→0+

pii (∆t)− pii (0)

∆t
= lim

∆t→0+

pii (∆t)− 1

∆t
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Generator Matrix Q
Derivations

I since
∑∞

j=0 pji = 1 it follows that

1− pii (∆t) =
∞∑

j=0,j 6=i

pji (∆t) =
∞∑

j=0,j 6=i

[qji∆t + o(∆t)]

I Then

qii = lim
∆t→0+

pii (∆t)− 1

∆t
= lim

∆t→0+

−
∑∞

j=0,j 6=i [qji∆t + o(∆t)]

∆t
= −

∞∑
j=0,j 6=i

qji

I Note that is can be shown that
∑

j 6=i o(∆t) = o(∆t)
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Generator Matrix Q
Derivations

In general we can express the relationship between pji and qji as

pji (∆t) = δji + qji (∆t) + o(∆t)

where δji is Kronecker’s delta symbol.?

Or in matrix form:

Q = lim
∆t→0+

P(∆t)− I

∆t

where P(∆t) = (pji (∆t) is the infinitesimal transition matrix and I is the
identity matrix (with appropriate dimensions).

?δj] = 1 for j = i and δj] = 0 for j 6= i .
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Generator Matrix Q
Quick Summary

pji (∆t) = δji + qji (∆t) + o(∆t)

Q = lim
∆t→0+

P(∆t)− I

∆t

I The probability that the process moves from its current state i to
another state j during a short period of time ∆t is approximately
proportional to the amount of time elapsed.

I In other words, qji is the rate at which transitions occur from state i
to state j

qii = −
∞∑

j=0,j 6=i

qji
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Generator Matrix Q
Definition

infinitesimal generator matrix

The matrix of transition rates Q = qji is

Q =


q00 q01 q02 · · ·
q10 q11 q12 · · ·
q20 q21 q22 · · ·

...
...

... · · ·



=


−
∑∞

i=1 qi0 q01 q02 · · ·
q10 −

∑∞
i=1 qi1 q12 · · ·

q20 q21 −
∑∞

i=1 qi2 · · ·
...

...
... · · ·


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Generator Matrix Q
Properties

Q =


−
∑∞

i=1 qi0 q01 q02 · · ·
q10 −

∑∞
i=1 qi1 q12 · · ·

q20 q21 −
∑∞

i=1 qi2 · · ·
...

...
... · · ·


Properties:

I The columns sum to 0

I The diagonal elements are the negative sum of the off-diagonal
elements in the column.
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Generator matrix for Poisson process

The infinitesimal transition matrix for the Poisson process

P(∆t) =


1− λ∆t 0 0 · · ·
λ∆t 1− λ∆t 0 · · ·

0 λ∆t 1− λ∆t · · ·
0 0 λ∆t · · ·
...

...
... · · ·

+ o(∆t)

Taking the limit Q = lim∆t→0+
P(∆t)−I

∆t yields

Q =


−λ 0 0 · · ·
λ −λ 0 · · ·
0 λ −λ · · ·
0 0 λ · · ·
...

...
... · · ·


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Generator matrix for Poisson process

The differential-difference equations for the Poisson process we saw earlier:

dp0(t)

dt
= −λp0(t)

dpi (t)

dt
= −λpi (t) + λpi−1(t), i ≥ 1

can be expressed in terms of the generator matrix Q:

dp(t)

dt
= Qp(t)
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Embedded Markov Chain

Recall:

I Sample paths of CTMC spend a random amount of time in each state
before jumping to a new state

I Wi for i = 0, 1, 2, ... are the waiting times

I Ti = Wi+1 −Wi are the holding times

Embedded Markov Chain

Let Yn denote the random variable for the state of the CTMC
{X (t) : t ∈ [0,∞)} at the nth jump,

Yn = X (Wn), n = 0, 1, 2, ...

The set of random variables {Yn}∞n=0 is the embedded markov chain or
the jump chain associated with the CTMC {X (t) : t ∈ [0,∞)}.
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Embedded Markov Chain
I The embedded Markov chain is a DTMC
I It is useful for classifying the states of the corresponding CTMC
I Define a transition matrix T = (tji ) for the embedded Markov chain:

tji = Prob{Yn+1 = j |Yn = i}

Embedded MC for Poisson Process

Consider the Poisson process, where X (0) = X (W0) = 0 and X (Wn) = n
for n = 1, 2, ... The embedded Markov chain {Yn} satisfies
Yn = n, n = 0, 1, 2, ... The transition from state n to n + 1 occurs with
probability 1. The transition matrix {Yn} is

T =


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...


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Embedded Markov Chain

I Matrix T can be defined using the generator matrix Q:

tii =

{
0 if qii 6= 0

1 if qii = 0

tji =

{−qji
qii

if qii 6= 0

0 if qii = 0
for j 6= i

I where state i is absorbing if qii = 0 (rate of change is 0).
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Embedded Markov Chain

Transition Matrix of the Embedded Markov Chain

For qii 6= 0 for i = 0, 1, 2, ...

T =


0 −q01

q11
−q02

q22
· · ·

−q10
q00

0 −q12
q22

· · ·
−q20

q00
−q21

q11
0 · · ·

...
...

...


If any qii = 0 then tii = 1 and the other elements in that column are 0.

I Matrix T is stochastic

I Transition probabilities are independent of n (homogeneous)

I T n =
(
t

(n)
ji

)
where tnji = Prob{Yn = j |Y0 = i}
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Example

Suppose a finite CTMC has a generator matrix given by

Q =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1


1. What is the Transition matrix of the corresponding embedded Markov

Chain?

2. Is the embedded Markov Chain aperiodic or periodic?

3. Is the corresponding CTMC periodic?
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Classifications of States

I Classifications for states of CTMC are similar to those of DTMC

I Transition probabilities P(t) = (Pji (t)) and the transition matrix for
the embedded MC T = (tji ) are used to define the classification
schemes

Basic Definitions
I State j can be reached from state i , i → j , if pji (t) > 0 for some

t ≥ 0.

I State i communicates with state j , i ↔ j , if i → j and j → i .

I The set of states that communicate is called a communication class.

I If every state can be reached from every other state, the Markov
chain is irreducible otherwise, it is said to be reducible

I A set of states C is closed if it is impossible to reach any state outside
of C from a state inside C, pji (t) = 0 for t ≥ 0 if i ∈ C and j /∈ C .
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Classifications of States

I If pji (∆t) = δji + qji∆t + o(∆t), then pji (∆t) > 0 iff qji > 0 for j 6= i
and ∆t sufficiently small.

I Therefore, i ↔ j in the CTMC iff i ↔ j in the embedded Markov
chain.

I The generator matrix Q in the CTMC is irreducible (reducible) iff the
transition matrix T in the embedded Markov chain is irreducible
(reducible).
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Classifications of States

First Return Time

Let Tii be the first time the chain is in state i after leaving state i

Tii = inf{t >W1,X (t) = i |X (0) = i}

Here Tii is a continuous random variable called the first return time. It
can occur at any time t > 0.

Recurrent and Transient States

State i is recurrent (transient) in a CTMC {X (t)}, t ≥ 0, if the first return
time is finite (infinite),

Prob{Tii <∞|X (0) = i} = 1(< 1).
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Classifications of States

I The recurrent and transient definitions in a CTMCs are similar to
those in DTMCs

I Recall in the DTMC, state i is said to be recurrent (transient) in a
DTMC {Yn}, with Y0 = i , if

∞∑
n=0

f
(n)
ii = 1(< 1)

where f
(n)
ii is the probability that the first return to state i is at step n.
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Classifications of States

This theorem relates recurrent and transient states in CTMCs to recurrent
and transient states in the corresponding embedded Markov chains.

Theorem 5.1

State i in a CTMC {X (t)}, t ≥ 0, is recurrent (transient) iff state i in the
corresponding embedded Markov chain {Yn}, n = 0, 1, 2, ..., is recurrent
(transient).

I Recurrence or transience in a CTMC can be determined from the
properties of the embedded DTMC and its transition matrix T.
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Classifications of States

Theorem 5.1, Corollary 1

A state i in a CTMC {X (t)}, t ≥ 0, is recurrent (transient) iff

∞∑
n=0

t
(n)
ii =∞(<∞)

where t
(n)
ii is the (i, i) element in the transition matrix of T n of the

embedded Markov chain {Yn}.

Theorem 5.1, Corollary 2

In a finite CTMC, all states cannot be transient and in addition, if the
finite CTMC is irreducible, the chain is recurrent.
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Classifications of States
Poisson Process Example

The transition matrix of the embedded MC for the Poisson process is:

T =


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·
0 0 1 · · ·
...

...
...


I Here limn→∞ T n = 0 (lower triangular).

I For sufficiently large n and all i , t
(n)
ii = 0, which implies∑∞

n=0 t
(n)
ii <∞

I Therefore, every state is transient in the Poisson process.

I This is an obvious result since each state X (Wi ) = i can only advance
to state i + 1, X (Wi+1) = i + 1

I a return to state i is impossible.
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Classifications of States
I Unfortunately, the concepts of null recurrence and positive recurrence

for a CTMC cannot be defined in terms of the embedded Markov
chain

I Positive recurrence depends on the waiting times {Wi}
I The embedded Markov chain alone is not sufficient to define positive

recurrence.

Positive and Null Recurrence

State i is positive recurrent (null recurrent) in the CTMC
{X (t) : t ∈ [0,∞)} if the mean recurrence time is finite (infinite):

µii = E (Tii |X (0) = i) <∞(=∞).

I This definition is not actually very useful
I The basic limit theorems for DTMCs and CTMCs are more useful

ways to determine µii in order to classify states as positive or null
recurrent.
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Classifications of States
Recall the basic limits theorems for DTMCs

Basic Limit Theorem, Aperiodic DTMC

Let {Yn}∞n=0 be a recurrent, irreducible, and aperiodic DTMC with
transition matrix T = (tij):

lim
n→∞

t
(n)
ij =

1

µii

Basic Limit Theorem, Periodic DTMC

Let {Yn}∞n=0 be a recurrent, irreducible, and d-periodic DTMC, d > 1,
with transition matrix T = (tij):

lim
n→∞

t
(nd)
ii =

d

µii

I Note, there is no concept of aperiodic and periodic in CTMC because
the holding time is random.
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Classifications of States
Basic limits theorem for CTMCs

Basic Limit Theorem for CTMCs

If the CTMC {X (t) : t ∈ [0,∞)} is nonexplosive and irreducible, then for
all i and j ,

lim
t→∞

pji (t) = − 1

qiiµii

where 0 < µii ≤ ∞ is the mean recurrence time. In particular, a finite and
irreducible CTMC is nonexplosive and the above limit exists and is positive.

Corollary

A finite, irreducible CTMC is positive recurrent.

I The result differs from DTMC due to the term qii in the limit.

I This term is needed to define the limit. µii has units of time and qii
has units 1/time.
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Kolmogorov Differential Equations
I The forward and backward Kolmogorov DE show the rate of change

on the transition probabilites
I For the forward DE pji (t + ∆t) is expanded using the

Chapman-Kolmogorov equations

pji (t + ∆t) =
∞∑
k=0

pjk(∆t)pki (t)

I Since pji (∆t) = δji + qji∆t + o(∆t), we rewrite this as

pji (t + ∆t) =
∞∑
k=0

pki (t)[δjk + qjk∆t + o(∆t)]

I subtract pji (t) from both sides, divide by ∆t, and take limit ∆t →∞

pji (t)

dt
=
∞∑
k=0

qjipki (t), i , j = 0, 1, ...
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Kolmogorov Differential Equations

Forward Kolmogorov Diffferential Equation

dP(t)

dt
= QP(t)

where P(t) = (Pji (t)) is the matrix of transition probabilities and
Q = (qji ) is the generator matrix.

I In physics and chemistry, this is referred to as the master equations

I In the case that the initial distribution of the process satisfies
X (0) = k (pi (0) = δik), then the transition probability pik(t) is the
same as the state probability pi (t) = Prob{X (t) = i |X (0) = k}. In
this case,

dp(t)

dt
= Qp(t)

where p(t) = (p0(t), p1(t), ...)T .
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Kolmogorov Differential Equations

I The system of equations

dp(t)

dt
= Qp(t)

can be approximated by a system of difference equations

p(n + 1) = Pp(n)

which are the forward equations corresponding to the DTMC.

I This shows the relationship between the Kolmogrov differential
equations and DTMC models.
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Kolmogorov Differential Equations

I Derivation of the backward Kolmogorov DE is similar
I For the backward DE pji (t + ∆t) is expanded using the

Chapman-Kolmogorov equations

pji (t + ∆t) =
∞∑
k=0

pki (∆t)pjk(t)

I Since pji (∆t) = δji + qji∆t + o(∆t), we rewrite this as

pji (t + ∆t) =
∞∑
k=0

pjk(t)[δki + qki∆t + o(∆t)]

I subtract pji (t) from both sides, divide by ∆t, and take limit ∆t →∞

pji (t)

dt
=
∞∑
k=0

pjk(t)qki , i , j = 0, 1, ...
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Kolmogorov Differential Equations

Backward Kolmogorov Diffferential Equation

dP(t)

dt
= P(t)Q

where P(t) = (Pji (t)) is the matrix of transition probabilities and
Q = (qji ) is the generator matrix.

I The backward Kolmogorov DEs are useful in first passage time
problems

I distributions for the time it takes to reach a specific state
I reaching a specific state for the first time
I These types of problems depend on the initial state of the process
I These are similar to problems we did for DTMC (mean first passage

time, expected duration)
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Kolmogorov Differential Equations

I These differential equations depend on the existence of the generator
matrix Q.

I For finite Markov chains, Q always exists.

I The solution P(t) can be found via the forward or backward equations.

I In birth and death chains and other applications, the transition matrix
P(t) is defined such that the forward and backward Kolmogorov
differential equations can be derived.
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Stationary Probability Distribution

I The Kolmogorov differential Equations

dP(t)

dt
= QP(t) &

dP(t)

dt
= P(t)Q

can be used to define a stationary probability distribution π

I π can be defined in terms of the generator matrix Q or the transition
matrix P(t)
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Stationary Probability Distribution

π in terms of Q

Let {X (t) : t ∈ [0,∞)} be a CTMC with generator matrix Q. Suppose
π = (π0, π1, ..., π)T is nonnegative and

Qπ = 0 &
∞∑
i=0

πi = 1

Then π is called the stationary probability distribution of the CTMC.

π in terms of P(t)

Let {X (t) : t ∈ [0,∞)} be a CTMC with transition matrix P(t).

P(t)π = π, t ≥ 0 &
∞∑
i=0

πi = 1, πi ≥ 0

for i = 0, 1, 2, ....
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Stationary Probability Distribution

I These 2 deffinitions of π (in terms of Q and P(t)) are equivalent only
if the transition matrix P(t) is a solution of the forward and backward
Kolmogorov equations.

dP(t)

dt
= QP(t) &

dP(t)

dt
= P(t)Q

I This is always the case for finite CTMC

I If the CTMC is nonexplosive, positive recurrent, and irreducible then
π is the limiting distribution in the Basic Limit theorem

I The Basic limit theorem for aperiodic DTMC can be extended to
CTMC
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Stationary Probability Distribution

Theorem 5.3

Let {X (t) : t ∈ [0,∞)} be a nonexplosive, possitive recurrent, and
irreducible CTMC with transition matrix P(t) = (pji (t)) and generator
matrix Q = (qji ), then there exiss a unique postive stationary probability
distribution π where Qπ = 0 such that

lim
t→∞

pij(t) = πi , i , j = 1, 2, ...

It follows that the mean recurrence time can be computed from the
stationary distribution:

πi = − 1

qiiµii
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Stationary Probability Distribution

Example

Q =


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1


1. Determine the unique positive stationary probability distribution.

2. What are the mean recurrence times?
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Finite Markov Chains

Corollary 5.2

Let {X (t) : t ∈ [0,∞)} be a finite and irreducible CTMC with transition
matrix P(t) = (pji (t)) and generator matrix Q = (qji ), then there exiss a
unique postive stationary probability distribution π where Qπ = 0 such
that

lim
t→∞

pij(t) = πi = − 1

qiiµii
, i , j = 1, 2, ...,N

I Note: this is similar to the previous theorem but the assumptions of
nonexplosiveness and recurrence are not needed with the CTMC is
finite.
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Finite Markov Chains

Suppose the generator matrix of a CTMC with 2 states is

Q =

(
−a b
a −b

)
where a, b > 0.

1. Is the CTMC reducible or irreducible?

2. What is the unique stationary probability distribution?

3. What are the mean recurrence times?
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Finite Markov Chains
I Sometimes it is possible to find an explicit solution to the forward and

backward Kolmogorov equations.
I Assume the state space of a finite Markov chain is {0, 1, 2, ...,N} and

the infinitesimal transition probabilities satisfy

pji (∆t) = δji + qji (t) + o(∆t)

I The Kolmogorov differential Equations

dP(t)

dt
= QP(t) &

dP(t)

dt
= P(t)Q

with P(0) = I have the unique solution:

P(t) = eQtP(0) = eQt

I Here eQt is the matrix exponential:

eQt = I + Qt + q2 t
2

2!
+ Q3 t

3

3!
+ · · · =

∞∑
k=0

Qk t
k

K !
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Methods to calculate the matrix exponential eQt

Method 1

Suppose Q is an n × n diagonalizable matrix with eigenvalues
λi , i = 1, 2, ..., n. Then Qk = HΛkH−1 where Λ = diag(λ1, λ2, ..., λn) and
the columns of H are the right eigenvectors of Q:

P(t) = eQt = H
∞∑
k=0

Λk t
k

k!
H−1 = Hdiag

(
eλ1t , eλ2t , ..., eλnt

)
H−1
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Method 2 to calculate the matrix exponential eQt

Suppose Q is an n × n with characteristic equation

det(λI − Q) = λn + an−1λ
n−1 + · · ·+ a0 = 0

which is also a characteristic equation of the differential equation

x (n)(t) = an−1x
(n−1)(t) + · · ·+ a0x(t) = 0

To find eQt , find n linearly independent solutions x1(t), x2(t), ..., xn(t)
with the initial conditions

x1(0) = 1

x ′1(0) = 0
...

x
(n−1)
1 (0) = 0

,


x2(0) = 0

x ′2(0) = 1
...

x
(n−1)
2 (0) = 0

, · · · ,


xn(0) = 0

x ′n(0) = 0
...

x
(n−1)
n (0) = 1

Then P(t) = eQt = x1(t)I + x2(t)Q + · · ·+ xn(t)Qn−1
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Example

Suppose the generator matrix of a CTMC with 2 states is

Q =

(
−a b
a −b

)
where a, b > 0.

1. Use the first method to calculate P(t) = eQt

2. Use the second method to calculate P(t) = eQt

3. What is limt→∞ P(t)?

4. How does this matrix relate to the stationary probability distribution?
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Example

Suppose the generator matrix of a CTMC is

Q =


0 1 0 0
0 −1 2 0
0 0 −2 3
0 0 0 −3


1. What is the transition matrix T of the embedded DTMC?

2. Is Q irreducible or reducible?

3. Given the expression for eQt , what is limt→∞ eQt?

eQt =


1 1− e−t 1− 2e−t + e−2t 1− 3e−t + 3e−2t − e−3t

0 e−t 2e−t − 2e−2t 3e−t − 6e−2t + 3e−3t

0 0 e−2t 3e−2t − 3e−3t

0 0 0 e−3t


4. How does this matrix relate to the stationary probability distribution?
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Generating Function Technique

I Heres is another method for getting information about the probability
distribution associates with a CTMC

I A PDE is derived so the solutions of the equation is a generating
function

I Depending on the equation, the solution is either a
I probability generating function (p.g.f)
I moment generating function (m.g.f)
I cumuland generating function (c.g.f)
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Generating Function Technique

probability generating function (p.g.f)

P(z , t) =
∞∑
i=0

pi (t)z i

moment generating function (m.g.f)

M(θ, t) =
∞∑
i=0

pi (t)eθi

cumulant generating function (c.g.f)

K (θ, t) = lnM(θ, t)

The generating functions depend on 2 continuous variables z and t or θ
and t.
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Generating Function Technique

Mean

The mean m(t) of the process at time t is

m(t) =
∂P(z , t)

∂z

∣∣∣∣
z=1

=
∞∑
i=0

ipi (t)

or in terms of the m.g.f and c.g.f. :

m(t) =
∂M(θ, t)

∂θ

∣∣∣∣
θ=0

=
∂K (θ, t)

∂θ

∣∣∣∣
θ=0
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Generating Function Technique

Variance

The variance σ2(t) at time t is

σ2(t) =
∂2P(z , t)

∂z2

∣∣∣∣
z=1

+
∂P(z , t)

∂z

∣∣∣∣
z=1

−
(
∂P(z , t)

∂z

∣∣∣∣
z=1

)2

or in terms of the m.g.f and c.g.f. :

σ2(t) =
∂2M(θ, t)

∂θ2

∣∣∣∣
θ=0

−
(
∂M(θ, t)

∂θ

∣∣∣∣
θ=0

)2

=
∂2K (θ, t)

∂θ2

∣∣∣∣
θ=0
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Generating Function Technique

I A partial differential equation (PDE) is derived from the forward
Kolmogorov equations.

I The p.g.f is a solution of this PDE

I When the initial distribution is a fixed value, then the forward
Kolmogorov equations can be expressed in terms of the state
probabilities

dp

dt
= Qp

dpi (t)

dt
=
∞∑
k=0

qikpk(t), i = 0, 1, 2, ...
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Generating Function Technique
Deriving the PDEs

Starting with the forward Kolmogorov equations

dpi (t)

dt
=
∞∑
k=0

qikpk(t), i = 0, 1, 2, ...

we can derive the following PDE using the p.g.f.

∂P(z , t)

∂t
=
∞∑
k=0

∞∑
i=0

qikpk(t)z i

Here we multiplied the equation by z i , summed over i , and interchanged
the order of differentiation and summations.
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Generating Function Technique
Deriving the PDEs

I A PDE for the m.g.f can be derived with the same technique, but
multiply with e iθ instead of z i

I Alternatively, the PDE for the m.g.f can be derived directly from the
PDE for the p.g.f with a change a variables

I Recall that M(θ, t) = P(eθ, t)
I Therefor z = eθ

I A PDE for the c.m.f can be derived from the PDE of the m.g.f by
letting K (θ, t) = lnM(θ, t)

I The generating function technique is often used with birth and death
chains

I If the PDEs are first-order, they can be solved by the method of
characteristics.
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Poisson process Example

The forward Kolmogorov differential equations for the Poisson process are

dpi (t)

dt
= −λpi (t) + λpi−1(t), i ≥ 1

dp0(t)

dt
= −λp0(t)

1. Derive the PDE for the p.g.f.

2. Use the known initial conditions P(z , 0) = 1 to solve the PDE and
get an expression for the p.g.f.

3. Make a change of variables to formulate the m.g.f

4. Take the ln to formulate the c.g.f.

Note that these generating functions correspond to the Poisson
distribution with parameter λt.

A. Peace 2017 5 Continuous-Time Markov Chains 67/82



Interevent Time and Stochastic Realizations
I In order to calculate sample paths of a CTMC we need to know the

distribution of for the time between successive events or the
interevent time

Recall: Interevent times or holding times or sojourn times

Random variables Ti = Wi+1 −Wi ≥ 0 are the interevent times. Here Wi

is the time of the ith jump.
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Interevent Time

I We will now show for CTMC the Interevent Time has an Exponential
Distribution

I First lets look at the theorem (Theorem 5.4).

I Then we will look at the steps of the proof.
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Interevent Time Theorem

Let {X (t) : t ∈ [0,∞)} be a CTMC such that∑
j 6=n

pjn(∆t) = α(n)∆t + o(∆t)

and
pnn(∆t) = 1− α(n)∆t + o(∆t)

for ∆t sufficiently small. Then the interevent time Ti = Wi+1 −Wi , given
X (Wi ) = n, is an exponential random variable with parameter α(n). The
c.d.f. for Ti is

Fi = 1− e−α(n)t

so that the mean and variance of Ti are

E (Ti ) =
1

α(n)
& Var(Ti ) =

1

[α(n)]2

A. Peace 2017 5 Continuous-Time Markov Chains 70/82



Interevent Time Theorem Proof
I Assume X (Wi ) = n (The process is at state n at time the ith jump).
I Let α(n)∆t + o(∆t) be the probability that the process moves to a

different state in ∆t:∑
j 6=n

pjn(∆t) = α(n)∆t + o(∆t)

I The probability of no change in state is then 1− α(n)∆t + o(∆t):

pnn(∆t) = 1− α(n)∆t + o(∆t)

I Let Gi (t) be the probability that the process remains in state n for a
time length of t, that is [Wi ,Wi+t ]:

Gi (t) = Prob{t + Wi <Wi+1}

I Gi (t) can be written in terms of the interevent time:

Gi (t) = Prob{Ti > t}
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Interevent Time Theorem Proof
I For ∆t sufficiently small

Gi (t + ∆t) = Gi (t)pnn(∆t) = Gi (t)(1− α(n)∆t + o(∆t))

I subtracting Gi (t) from both sides and taking the limit as ∆t → 0:

dGi (t)

dt
= −α(n)Gi (t)

I The initial condition for this ODE is Gi (0) = Prob{Ti > 0} = 1.
I This is a first-order homogeneous differential equation has solution:

Gi (t) = Prob{Ti > t} = e−α(n)t

I Thus the probability that Ti ≤ t for t ≥ 0 is:

Prob{Ti ≤ t} = 1− Gi (t) = 1− e−α(n)t = Fi (t)
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Interevent Time Theorem Proof

Fi (t) = 1− e−α(n)t

I Function Fi (t) is the cumulant distribution function for the interevent
time Ti

I it corresponds to an exponential random variable with parameter
α(n).

I The p.g.f. for Ti is F ′i (t) = fi (t) = α(n)e−α(n)t .

I Recall that the mean and variance for an exponential random variable
with parameter α(n) are

E (Ti ) =
1

α(n)
& Var(Ti ) =

1

[α(n)]2
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Interevent Time Theorem

Let {X (t) : t ∈ [0,∞)} be a CTMC such that∑
j 6=n

pjn(∆t) = α(n)∆t + o(∆t)

and
pnn(∆t) = 1− α(n)∆t + o(∆t)

for ∆t sufficiently small. Then the interevent time Ti = Wi+1 −Wi , given
X (Wi ) = n, is an exponential random variable with parameter α(n). The
c.d.f. for Ti is

Fi = 1− e−α(n)t

so that the mean and variance of Ti are

E (Ti ) =
1

α(n)
& Var(Ti ) =

1

[α(n)]2
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Interevent Time Theorem Examples

Examples of birth and death processes

Consider a birth process with birth probability bn∆t + o(∆t) and
X (Wi ) = n.

1. What is the mean waiting time until another birth occurs?

Consider a birth and death process with birth probability bn∆t + o(∆t)
and death probability dn∆t + o(∆t) and X (Wi ) = n.

1. What is the mean waiting time until another event (a birth or a
death) occurs?

2. When an event occurs, what is the probability that the event will be a
birth?

3. When an event occurs, what is the probability that the event will be a
death?
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Stochastic Realizations

I The random variable Ti can be expressed in terms of the distribution
function Fi (t) and a uniform random variable U.

I This will be useful for simulating sample paths

Theorem 5.5

Let U be a uniform random variable defined on [0, 1] and T be a
continuous random variable defined on [0,∞) with Prob{T ≤ t} = F (t).
Then T = F−1(U), where F is the cumulative distribution of the random
variable T .

For F (t) = 1− e−α(n)t

T = F−1(U) = − ln(1− U)

α(n)
= − ln(U)

α(n)

A. Peace 2017 5 Continuous-Time Markov Chains 76/82



Simple Birth and Death Process

I X (t) is a random variable for the total population size at time t
I Two events can occur

I birth event: i → i + 1
I death event: i → i − 1

I For ∆t sufficiently small the transition probabilities are

pi+j ,i (∆t) = Prob{∆x(t) = j |X (t) = i}

=


di∆t + o(∆t), j = −1

bi∆t + o(∆t), j = 1

1− (b + d)i∆t + o(∆t), j = 0

o(∆t), j 6= −1, 0, 1

Given X (Wi ) = n, α(n) = (b + d)n.

1. What is the interevent time Ti?

2. What is the probability that the next event will be a birth?
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Simple Birth and Death Process

I The deterministic analogue of this simple birth and death process is
the differential equation:

dn

dt
= (b − d)n, n(0) = N

I This has solution:
n(t) = Neb−d t

I We can compare stochastic realizations, or sample paths, with this
deterministic solution
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Simple Birth and Death Process
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Gillespie Algorithm
Simulating Sample Paths

I It was created by Joseph L. Doob and others (circa 1945)

I and popularized by Dan Gillespie in 1976, 1977 where he uses it to
simulate chemical or biochemical systems of reactions

I The advantage of this approach is that rather than generating
multiple exponential random variables, one for each possible transition
out of the current state, we only need to generate two random
variables, one for the holding time and one for the next state.
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Gillespie Algorithm
Simulating Sample Paths

Gillespie Algorithm

1. Initialization: Initialize the number of molecules in the system,
reaction constants, and random number generators.

2. Monte Carlo step: Generate random numbers to determine the next
reaction to occur as well as the time interval. The probability of a
given reaction to be chosen is proportional to the number of substrate
molecules

3. Update: Increase the time step by the randomly generated time in
Step 2. Update the molecule count based on the reaction that
occurred.

4. Iterate: Go back to Step 2 unless the number of reactants is zero or
the simulation time has been exceeded.
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Gillespie Algorithm
Simulating Sample Paths

I Gillespie developed the direct method

I Examples of this are in the appendix of Chp. 5
I Here 2 uniform random variables are needed per iteration

I One to simulate the time to the next event
I The other to choose the event

I This method works well when population sizes are small, but becomes
costly for large population sizes

I Many modifications and adaptations exist: next reaction method
(Gibson & Bruck), tau-leaping, as well as hybrid techniques
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