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Proliferating Epithelial Cells
Gibson et al. 2006 Nature

Proliferating epithelial cells in animal tissues have a polygonal shape with
most cells being hexagonal (six-sided). An infinite MC is approximated by
a finite positive recurrent MC to show the highest probability among all of
the polygonal shapes is six-sided.

I k sided cell (k sides and k vertices) divides into 2 daughter cells.

I Cell division results in two new vertices and three new sides per cell.
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Proliferating Epithelial Cells
Gibson et al. 2006 Nature

DTMC with following assumptions

1. minimal # of sides is 4

2. cells don’t resort, vertices and sides stay intake

3. daughter cells share a common side

4. cells have ∼ uniform cell cycle times n→ n + 1

5. cells divide within a side, not a vertex

6. mitosis randomly distributes tricellular junctions to both daughter cells

The DTMC is a 2-step process:

1. Cell division is considered

2. The change in # of sides in neighboring cells is considered
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Proliferating Epithelial Cells
Gibson et al. 2006 Nature

Step 1: Consider cell division

I a single cell has sn sides at time n

I the random variable rn+1 is the # of sides distributed to 1 daughter

I then the other daughter gets sn − rn+1

I Each daughter receives at least two sides from the parent
I So sn − 4 sides are distributed among the daughter cells.

I assume sides are distributed uniformly and randomly
I use binomial distribution b(sn − 4, 1/2)
I each daughter also gets 2 sides from the new interface

I The probability of a transition from an i-sided cell to a j-sides cell is:

Prob{2 + rn+1 = j |sn = i} = pji =

(
i − 4

j − 4

)
1

2i−4
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Proliferating Epithelial Cells
Gibson et al. 2006 Nature

Prob{2 + rn+1 = j |sn = i} = pji =

(
i − 4

j − 4

)
1

2i−4

I A 4-sided cell divides into 2 4-sided cells:
I p44 = 1

I A 5-sided cell divides into 1 4-sided cell and 1 5-sided cell:
I p45 = 1/2
I p55 = 1/2

I a 6-sided cell divides into 2 5-sided cells or 1 4-sided and 1 6-sided
cell:

I p46 = 1/4
I p56 = 1/2
I p66 = 1/4
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Proliferating Epithelial Cells
Gibson et al. 2006 Nature

Step 1: Cell division: the # of sides per cell after division gives the
following Transition matrix:

M =



1 1/2 1/4 1/8 1/16 · · ·
0 1/2 1/2 3/8 1/4 · · ·
0 0 1/4 3/8 3/8 · · ·
0 0 0 1/8 1.4 · · ·
0 0 0 0 1/16 · · ·
...

...
...

...
...

...
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Proliferating Epithelial Cells
Gibson et al. 2006 Nature

Step 2: consider the change in the # of sides for the neighboring cells

I each neighbor gains 1 side after division because a new junction is
created

I 1 side is added after cell division: pi+1,i = 1

I the transition matrix for the 2nd step:

S =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...
...
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Proliferating Epithelial Cells
Gibson et al. 2006 Nature

The 2-step process becomes:

p(n + 1) = SMp(n) = Pp(n)

Here P = SM is the transition matrix for the DTMC.

Questions

1. How many communication classes does this DTMC have?

2. Are they transient or recurrent?

3. Determine an approximation for the stationary probability distribution

4. What number of sides is most common?
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General Birth and Death Process

I Xn denotes the size of the population at time n

I State space can be finite or infinite

I bi > 0 is the birth probability

I di > 0 is the death probability

I assume only 1 event occurs each time interval n→ n + 1

pji = Prob{Xn+1 = j |Xn = i} =


bi if j = i + 1
di if j = i − 1

1− (bi + di ) if j = i
0 if j 6= i − 1, i , i + 1

for i = 1, 2, ..., p00 = 1 and pj0 = 0 for j 6= 0.
(For finite case: pN+1,N = bN = 0)
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General Birth and Death Process

The transition matrix:

1− b0 d1 0 · · · 0 0
b0 1− (b1 + d1) d2 · · · 0 0
0 b1 1− (b2 + d2) · · · 0 0
0 0 b2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1− (bN−1 + dN − 1) dN
0 0 0 · · · bN−1 1− dN



Questions

1. Find the stationary probability distribution π

2. Describe π when b0 = 0.
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General Birth and Death Process

Assume b0 = 0 and the MC is finite, then

lim
n→∞

Prob{Xn = 0} = lim
n→∞

p0(n) = 1

eventually population extinction occurs from any state.

Question

1. How long will it take for extinction to occur?
I computational method using Fundamental matrix
I analytical method from Nisbet and Gurney 1982
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General Birth and Death Process
Expected time to extinction: computational method

Partition matrix P:

P =

(
1 A
0 T

)

=



1 d1 0 · · · 0 0
0 1− (b1 + d1) d2 · · · 0 0
0 b1 1− (b2 + d2) · · · 0 0
0 0 b2 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1− (bN−1 + dN − 1) dN
0 0 0 · · · bN−1 1− dN


The expected time to extinction can be calculated:

τ = 1(I − T )−1 = 1F

where 1 is a row vector of ones of length 1− N.
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General Birth and Death Process
Expected time to extinction: analytical method

Nisbet and Gurney 1982 derived an analytical expression for τk .

Theorem 3.1

Suppose {Xn}Nn=0 is a general birth and death process with X0 = m ≥ 1
satisfying b0 = d0 = 0, bi > 0 for i = 1, 2, ...,N − 1, and di > 0 for
i = 1, 2, ...,N. The expected time until population extinction is

τk =


1
d1

+
∑N

i=2
bi ···bi−1

d1···di for m = 1

τ1 +
∑m−1

s=1 [d1···dsb1···bs
∑N

i=s+1
b1···bi−1

d1···di ] for m = 2, ...,N.
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General Birth and Death Process

Simple birth and death process example

Suppose the maximal population size is N = 20 in a birth and death
process. Let bi = bi and di = di for i = 1, 2, ...20 where b and d are
constants. For each of the following cases determine the expected time
until population extinction for all initial population sizes.

1. b = 0.02 < 0.03 = d

2. b = 0.025 = d

3. b = 0.03 > 0.02 = d

A. Peace 2017 3 Biological Applications of Discrete-Time Markov Chains 14/29



A. Peace 2017 3 Biological Applications of Discrete-Time Markov Chains 15/29



b = 0.02 < 0.03 = d b = 0.025 = d

b = 0.03 > 0.02 = d
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Logistic Growth Process

I Assumptions on the general birth and death probabilities bi and di to
make the process follow logistic growth

I Recall deterministic logistic model:

dy

dt
= r̃ y

(
1− y

K

)
, y(0) = yo > 0

I where r̃ is the intrinsic growth rate and K is the carrying capacity

I limt→∞ y(t) = K

I The right hand side equals the birth minus the death rate
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Logistic Growth Process

I For a stochastic logistic growth process we assume:

bi − di = ri

(
1− i

K

)

I for i = 0, 1, 2, ...,N, where r = r̃∆t, N > K , and the time interval ∆t
is sufficiently small so that maxi∈{i=0,...,N}{bi + di} ≤ 1. (The time
interval ∆t is the interval n to n + 1. )

I bi − di = 0 when i = 0 or when i = K .

I We can assume that bi and di are either linear or quadratic function
of i .

I These give us 2 cases for the probabilities needed to make the process
birth and death process logistic
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Logistic Growth Process

Stochastic Logistic Growth Model

Case a:

bi = r

(
i − i2

2K

)
and di = r

i2

2K

for i = 0, 1, 2, ..., 2K

Case b:

bi =

{
ri , i = 0, 1, 2, ...,N

0, i ≥ N
and di = r

i2

K

for i = 0, 1, 2, ...,N
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Logistic Growth Process
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Logistic Growth Process
I Unlike the deterministic Logistic growth model, In the limit the

stochastic logistic growth process does not approach K .
I It is still a birth and death process, and extinction is an absorbing

state
I For large population size, the time to extinction is very large
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Logistic Growth Process
I For large N the stochastic model follows the deterministic model

closely
I Before extinction (which may take a loooong time) the probability

distribution is approximately stationary for a long period of time.
I This is called the quasistationary distrbution
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SIS Epidemic Model

I S Susceptible individuals

I I Infected individuals
I SIS model:

I S individuals may become infected I.
I Infected individuals eventually recovery but do not gain any immunity
I I individuals become S
I Assume the total # of births equals the total # of deaths so that the

population remains constant: S + I = N.
I All newborns are born S.
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SIS Epidemic Model
Assumptions

I time interval n to n + 1 is sufficiently small that at most 1 event
occurs

I S individual becomes I
I I individual recovers and becomes S
I An individual gives birth to a new S and a corresponding death of

either S or I occurs

I S individual becomes I with probability β I
N

I β is the # of contacts made by one I individual that results in a new
infection during the time interval n to n + 1

I β S
N of these contacts can results in a new infection

I β SI
N is the total # of new infections by the entire class of I individuals

I Individuals are born or die with probability b

I I individuals recover with probability γ
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SIS Epidemic Model
Deterministic Model

Let Sn and In be the # of S and I individuals at time n.
The dynamics during the time interval ∆t are modeled with a system of
difference equations.

Sn+1 = Sn − β
SnIn
N

+ In(b + γ)

In+1 = β
SnIn
N

+ In(1− b − γ)

where n = 0, 1, 2, ..., and S0, I0 > 0 with S0 + I0 = N and 0 < β ≤ 1 and
0 < b + γ ≤ 1.
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SIS Epidemic Model
Deterministic Model

Since Sn + In = N the systems can be reduced down to a single equation.
Let Sn = N − In

In+1 = β
SnIn
N

+ In(1− b − γ)

= In

(
β
N − In
N

+ 1− b − γ
)

= In

(
1 + β − b − γ − β In

N

)
where 0 ≤ In ≤ N.
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SIS Epidemic Model
Deterministic Model

I There are 2 equilibria solutions:

In0 = 0 and I ∗n = N

(
1− b + γ

β

)

I The basic reproductive number is

R0 =
β

b + γ

I If R0 ≤ 1 then limn→∞ In = 0

I If R0 > 1 then limn→∞ In = I ∗n
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SIS Epidemic Model
Stochastic Model

I In is a discrete random variable for the # of infected individuals ate
time n.

I Set {0, 1, 2, ...,N} is the state space
I Assume ∆t (time interval n to n + 1) is sufficiently small that there is

at most 1 change in In.
I If In = i then In+1 is either i , i + 1, or i = i − 1.

I The one-step transition probabilities are

pi+1,i = Prob{In+1 = i + 1|In = i} = βi(N − i)/N = Πi

pi−1,i = Prob{In+1 = i − 1|In = i} = (b + γ)i

pii = Prob{In+1 = i |In = i} = 1− βi(N − i)/N − (b + γ)i

= 1− Πi − (b + γ)i

for i = 0, 1, ...,N and pji = 0 if j 6= i − 1, i + 1, i and p00 = 1.
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SIS Epidemic Model
Stochastic Model

The transition matrix:

P =



1 (b + γ) 0 · · · 0
0 1− Π1 − (b + γ) 2(b + γ) · · · 0
0 Π1 1− Π2 − 2(b + γ) · · · 0
...

...
... · · ·

...
0 0 0 · · · N(b + γ)
0 0 0 · · · 1− N(b + γ)


where maxi{Πi + i(b + γ)} ≤ 1.

I 2 communication classes: {0} and {1, 2, ...,N}
I {0} is absorbing and {1, 2, ...,N} is transient

I limn→∞ Pnp(0) = (1, 0, ..., 0)T . Eventually there are no infected
individuals.

I It may take a long time until the epidemic ends. In this case we can
consider the disease endemic (quasistationary distribution)
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