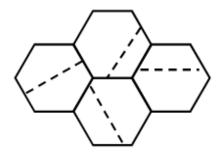
3 Biological Applications of Discrete-Time Markov Chains

Angela Peace

Biomathematics II MATH 5355 Spring 2017

Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press, 2010.

Gibson et al. 2006 Nature



Proliferating epithelial cells in animal tissues have a polygonal shape with most cells being hexagonal (six-sided). An infinite MC is approximated by a finite positive recurrent MC to show the highest probability among all of the polygonal shapes is six-sided.

- \blacktriangleright k sided cell (k sides and k vertices) divides into 2 daughter cells.
- Cell division results in two new vertices and three new sides per cell.

Gibson et al. 2006 Nature

DTMC with following assumptions

- 1. minimal # of sides is 4
- 2. cells don't resort, vertices and sides stay intake
- 3. daughter cells share a common side
- 4. cells have \sim uniform cell cycle times $n \rightarrow n+1$
- 5. cells divide within a side, not a vertex
- 6. mitosis randomly distributes tricellular junctions to both daughter cells

The DTMC is a 2-step process:

- 1. Cell division is considered
- 2. The change in # of sides in neighboring cells is considered

Gibson et al. 2006 Nature

Step 1: Consider cell division

- a single cell has s_n sides at time n
- the random variable r_{n+1} is the # of sides distributed to 1 daughter
- ▶ then the other daughter gets $s_n r_{n+1}$
- Each daughter receives at least two sides from the parent
- So $s_n 4$ sides are distributed among the daughter cells.
 - assume sides are distributed uniformly and randomly
 - use binomial distribution $b(s_n 4, 1/2)$
 - each daughter also gets 2 sides from the new interface
- ▶ The probability of a transition from an *i*-sided cell to a *j*-sides cell is:

$$\mathsf{Prob}\{2+r_{n+1}=j|s_n=i\}=p_{ji}=\binom{i-4}{j-4}\frac{1}{2^{i-4}}$$

Gibson et al. 2006 Nature

$$\mathsf{Prob}\{2+r_{n+1}=j|s_n=i\}=p_{ji}=\binom{i-4}{j-4}\frac{1}{2^{i-4}}$$

- A 4-sided cell divides into 2 4-sided cells:
 - ▶ *p*₄₄ = 1
- ► A 5-sided cell divides into 1 4-sided cell and 1 5-sided cell:
 - ▶ $p_{45} = 1/2$
 - ▶ *p*₅₅ = 1/2
- a 6-sided cell divides into 2 5-sided cells or 1 4-sided and 1 6-sided cell:

▶
$$p_{46} = 1/4$$

•
$$p_{56} = 1/2$$

▶ *p*₆₆ = 1/4

Gibson et al. 2006 Nature

Step 1: Cell division: the # of sides per cell after division gives the following Transition matrix:

$$M = \begin{pmatrix} 1 & 1/2 & 1/4 & 1/8 & 1/16 & \cdots \\ 0 & 1/2 & 1/2 & 3/8 & 1/4 & \cdots \\ 0 & 0 & 1/4 & 3/8 & 3/8 & \cdots \\ 0 & 0 & 0 & 1/8 & 1.4 & \cdots \\ 0 & 0 & 0 & 0 & 1/16 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Gibson et al. 2006 Nature

Step 2: consider the change in the # of sides for the neighboring cells

- each neighbor gains 1 side after division because a new junction is created
- ▶ 1 side is added after cell division: $p_{i+1,i} = 1$
- the transition matrix for the 2nd step:

$$S = \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Gibson et al. 2006 Nature

The 2-step process becomes:

$$p(n+1) = SMp(n) = Pp(n)$$

Here P = SM is the transition matrix for the DTMC.

Questions

- 1. How many communication classes does this DTMC have?
- 2. Are they transient or recurrent?
- 3. Determine an approximation for the stationary probability distribution
- 4. What number of sides is most common?

- X_n denotes the size of the population at time n
- State space can be finite or infinite
- $b_i > 0$ is the birth probability
- $d_i > 0$ is the death probability
- ▶ assume only 1 event occurs each time interval $n \rightarrow n+1$

$$p_{ji} = \operatorname{Prob}\{X_{n+1} = j | X_n = i\} = \begin{cases} b_i & \text{if } j = i+1\\ d_i & \text{if } j = i-1\\ 1 - (b_i + d_i) & \text{if } j = i\\ 0 & \text{if } j \neq i-1, i, i+1 \end{cases}$$

for $i = 1, 2, ..., p_{00} = 1$ and $p_{j0} = 0$ for $j \neq 0$. (For finite case: $p_{N+1,N} = b_N = 0$)

The transition matrix:

$$\begin{pmatrix} 1-b_0 & d_1 & 0 & \cdots & 0 & 0 \\ b_0 & 1-(b_1+d_1) & d_2 & \cdots & 0 & 0 \\ 0 & b_1 & 1-(b_2+d_2) & \cdots & 0 & 0 \\ 0 & 0 & b_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1-(b_{N-1}+d_N-1) & d_N \\ 0 & 0 & 0 & \cdots & b_{N-1} & 1-d_N \\ \end{pmatrix}$$

Questions

- 1. Find the stationary probability distribution $\boldsymbol{\pi}$
- 2. Describe π when $b_0 = 0$.

Assume $b_0 = 0$ and the MC is finite, then

$$\lim_{n\to\infty} \operatorname{Prob}\{X_n=0\} = \lim_{n\to\infty} p_0(n) = 1$$

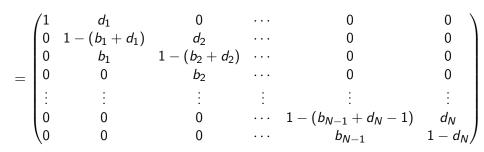
eventually population extinction occurs from any state.

Question

- 1. How long will it take for extinction to occur?
 - computational method using Fundamental matrix
 - analytical method from Nisbet and Gurney 1982

Expected time to extinction: computational method Partition matrix P:

$$P = \begin{pmatrix} 1 & A \\ 0 & T \end{pmatrix}$$



The expected time to extinction can be calculated:

$$\tau = \mathbf{1}(I - T)^{-1} = \mathbf{1}F$$

where $\mathbf{1}$ is a row vector of ones of length 1 - N.

A. Peace 2017

Expected time to extinction: analytical method

Nisbet and Gurney 1982 derived an analytical expression for τ_k .

Theorem 3.1

Suppose $\{X_n\}_{n=0}^N$ is a general birth and death process with $X_0 = m \ge 1$ satisfying $b_0 = d_0 = 0$, $b_i > 0$ for i = 1, 2, ..., N - 1, and $d_i > 0$ for i = 1, 2, ..., N. The expected time until population extinction is

$$\tau_{k} = \begin{cases} \frac{1}{d_{1}} + \sum_{i=2}^{N} \frac{b_{i} \cdots b_{i-1}}{d_{1} \cdots d_{i}} & \text{for } m = 1\\ \\ \tau_{1} + \sum_{s=1}^{m-1} [\frac{d_{1} \cdots d_{s}}{b_{1} \cdots b_{s}} \sum_{i=s+1}^{N} \frac{b_{1} \cdots b_{i-1}}{d_{1} \cdots d_{i}}] & \text{for } m = 2, ..., N. \end{cases}$$

Simple birth and death process example

Suppose the maximal population size is N = 20 in a birth and death process. Let $b_i = bi$ and $d_i = di$ for i = 1, 2, ...20 where b and d are constants. For each of the following cases determine the expected time until population extinction for all initial population sizes.

1.
$$b = 0.02 < 0.03 = d$$

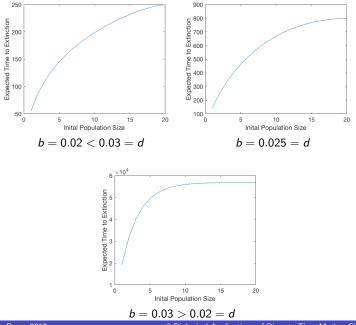
2.
$$b = 0.025 = d$$

3. b = 0.03 > 0.02 = d

```
%simple birth death process
%Use to answer example 3.5 on page 123
b=0.02;
d=0.03:
N=20;
%Setup transition matrix P:
bvec=b*(0:1:N-1);
dvec=d*(1:1:N):
 lowdiag=diag(bvec, -1);
updiag=diag(dvec,1);
P=diag(ones(1,N+1));
lfor i=2:N
    P(i,i)=P(i,i)-lowdiag(i+1,i)-updiag(i-1,i);

    end

P(N+1,N+1)=1-updiag(N, N+1);
P=P+lowdiag+updiag;
%Calculate expected time to extinction:
T=P(2:N+1, 2:N+1);
F=(eye(N)-T)^-1;
tau=ones(1.N)*F:
plot(tau)
xlabel('Inital Population Size')
vlabel('Expected Time to Extinction')
set(gca, 'FontSize',18)
```



A. Peace 2017

3 Biological Applications of Discrete-Time Markov Chains 16/29

- Assumptions on the general birth and death probabilities b_i and d_i to make the process follow logistic growth
- Recall deterministic logistic model:

$$\frac{dy}{dt} = \tilde{r}y\left(1 - \frac{y}{K}\right), \qquad y(0) = y_o > 0$$

- where \tilde{r} is the intrinsic growth rate and K is the carrying capacity
- $\blacktriangleright \lim_{t\to\infty} y(t) = K$
- The right hand side equals the birth minus the death rate

For a stochastic logistic growth process we assume:

$$b_i - d_i = ri\left(1 - \frac{i}{K}\right)$$

For i = 0, 1, 2, ..., N, where r = r̃∆t, N > K, and the time interval ∆t is sufficiently small so that max_{i∈{i=0,...,N}}{b_i + d_i} ≤ 1. (The time interval ∆t is the interval n to n + 1.)

•
$$b_i - d_i = 0$$
 when $i = 0$ or when $i = K$.

- ► We can assume that b_i and d_i are either linear or quadratic function of i.
- These give us 2 cases for the probabilities needed to make the process birth and death process logistic

Stochastic Logistic Growth Model

Case a:

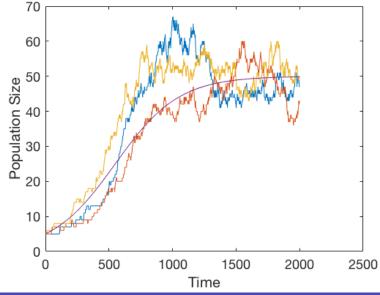
$$b_i = r\left(i - \frac{i^2}{2K}\right)$$
 and $d_i = r\frac{i^2}{2K}$

for i = 0, 1, 2, ..., 2K

Case b:

$$b_i = egin{cases} ri, & i=0,1,2,...,N\ 0, & i\geq N \end{cases}$$
 and $d_i = rrac{i^2}{K}$

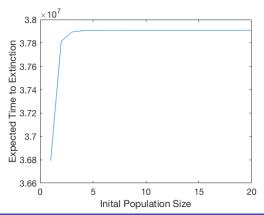
for i = 0, 1, 2, ..., N



A. Peace 2017

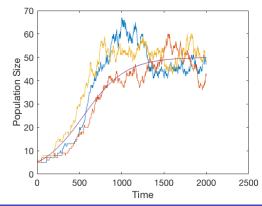
3 Biological Applications of Discrete-Time Markov Chains

- Unlike the deterministic Logistic growth model, In the limit the stochastic logistic growth process does not approach K.
- It is still a birth and death process, and extinction is an absorbing state
- ► For large population size, the time to extinction is very large



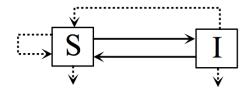
A. Peace 2017

- ► For large *N* the stochastic model follows the deterministic model closely
- Before extinction (which may take a loooong time) the probability distribution is approximately stationary for a long period of time.
- This is called the quasistationary distrbution



A. Peace 2017

- Susceptible individuals
- I Infected individuals
- SIS model:
 - S individuals may become infected I.
 - Infected individuals eventually recovery but do not gain any immunity
 - I individuals become S
 - Assume the total # of births equals the total # of deaths so that the population remains constant: S + I = N.
 - All newborns are born S.



Assumptions

- ▶ time interval n to n + 1 is sufficiently small that at most 1 event occurs
 - S individual becomes I
 - I individual recovers and becomes S
 - An individual gives birth to a new S and a corresponding death of either S or I occurs
- ► S individual becomes I with probability $\beta \frac{I}{N}$
 - ▶ β is the # of contacts made by one I individual that results in a new infection during the time interval *n* to *n* + 1
 - $\beta \frac{S}{N}$ of these contacts can results in a new infection
 - $\beta \frac{SI}{N}$ is the total # of new infections by the entire class of I individuals
- Individuals are born or die with probability b
- \blacktriangleright I individuals recover with probability γ

Deterministic Model

Let S_n and I_n be the # of S and I individuals at time n. The dynamics during the time interval Δt are modeled with a system of **difference equations**.

$$S_{n+1} = S_n - \beta \frac{S_n I_n}{N} + I_n (b + \gamma)$$
$$I_{n+1} = \beta \frac{S_n I_n}{N} + I_n (1 - b - \gamma)$$

where n = 0, 1, 2, ..., and $S_0, I_0 > 0$ with $S_0 + I_0 = N$ and $0 < \beta \le 1$ and $0 < b + \gamma \le 1$.

Deterministic Model

Since $S_n + I_n = N$ the systems can be reduced down to a single equation. Let $S_n = N - I_n$

$$I_{n+1} = \beta \frac{S_n I_n}{N} + I_n (1 - b - \gamma)$$
$$= I_n \left(\beta \frac{N - I_n}{N} + 1 - b - \gamma \right)$$
$$= I_n \left(1 + \beta - b - \gamma - \beta \frac{I_n}{N} \right)$$

where $0 \leq I_n \leq N$.

Deterministic Model

There are 2 equilibria solutions:

$$I_{n0}=0 ext{ and } I_n^*=N\left(1-rac{b+\gamma}{eta}
ight).$$

The basic reproductive number is

$$R_0 = \frac{\beta}{b+\gamma}$$

- If $R_0 \leq 1$ then $\lim_{n \to \infty} I_n = 0$
- If $R_0 > 1$ then $\lim_{n \to \infty} I_n = I_n^*$

Stochastic Model

- ► I_n is a discrete random variable for the # of infected individuals ate time n.
- ▶ Set {0, 1, 2, ..., N} is the state space
- Assume Δt (time interval *n* to n+1) is sufficiently small that there is at most 1 change in I_n .
 - If $I_n = i$ then I_{n+1} is either i, i + 1, or i = i 1.
- The one-step transition probabilities are

$$p_{i+1,i} = \operatorname{Prob}\{I_{n+1} = i + 1 | I_n = i\} = \beta i (N - i) / N = \Pi_i$$

$$p_{i-1,i} = \operatorname{Prob}\{I_{n+1} = i - 1 | I_n = i\} = (b + \gamma)i$$

$$p_{ii} = \operatorname{Prob}\{I_{n+1} = i | I_n = i\} = 1 - \beta i (N - i) / N - (b + \gamma)i$$

$$= 1 - \Pi_i - (b + \gamma)i$$

for i = 0, 1, ..., N and $p_{ji} = 0$ if $j \neq i - 1, i + 1, i$ and $p_{00} = 1$.

Stochastic Model

The transition matrix:

$$P = \begin{pmatrix} 1 & (b+\gamma) & 0 & \cdots & 0 \\ 0 & 1 - \Pi_1 - (b+\gamma) & 2(b+\gamma) & \cdots & 0 \\ 0 & \Pi_1 & 1 - \Pi_2 - 2(b+\gamma) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & N(b+\gamma) \\ 0 & 0 & 0 & \cdots & 1 - N(b+\gamma) \end{pmatrix}$$

where $\max_i \{ \prod_i + i(b + \gamma) \} \le 1$.

- ▶ 2 communication classes: $\{0\}$ and $\{1, 2, ..., N\}$
- $\{0\}$ is absorbing and $\{1, 2, ..., N\}$ is transient
- Iim_{n→∞} Pⁿp(0) = (1, 0, ..., 0)^T. Eventually there are no infected individuals.
- It may take a long time until the epidemic ends. In this case we can consider the disease endemic (quasistationary distribution)