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Definitions and Notation
Discrete-time stochastic process {Xn}∞n=0

I Xn is discrete random variables on finite or countably infinite state
space

I n index is used for time {0, 1, 2, ...}

Discrete-Time Markov Chain (DTMC)

{Xn}∞n=0 has the Markov property if

Prob{Xn = in|X0 = i0, ..,Xn−1 = in−1} = Prob{Xn = in|Xn−1 = in−1}

and the process is called a DTMC.

I Notation: Prob{·} = PXn{·} used. (P will represent a transition
matrix).

I {pi (n)}∞n=0 is the p.m.f. associate with Xn, where
pi (n) = Prob{Xn = i}.

I Transition probabilities relate state of process at time n to n + 1 (Xn

to Xn+1).
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Definitions and Notation

One-step Transition Probability

pji (n) = Prob{Xn+1 = j |Xn = i}

is the probability that the process is in state j at time n + 1 given that the
process was in state i at time n.
For each state, pji satisfies

∞∑
j=1

pji = 1 & pji ≥ 0.

I The above summation means the process at state i must transfer to j
or stay in i during the next time interval.

I pji don’t depend on time they are stationary or homogeneous

I pji (n) do depend on time they are nonstationary or nonhomogeneous
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Definitions and Notation

Transition Matrix

The DTMC {Xn}∞n=0 with one-step transition probabilities {pij}∞i ,j=1 has
transition matrix P = (pij):

P =


p11 p12 . . . p1j . . .
p21 p22 . . . p2j . . .

...
...

. . .
...

. . .

pi1 pi2 . . . pij . . .
...

...
. . .

...
. . .


I Columns sum to 1, since

∑∞
j=1 pji = 1.

I Called a Stochastic Matrix.

I Note notation: pij is the probability of transition from state j to state
i (other sources may define this differently).
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Definitions and Notation

N-step Transition Probability

p
(n)
ji = Prob{Xn = j |X0 = i}

is the probability of transferring from state i to state j in n time steps.

The n-step transition matrix P(n) =
(
p
(n)
ji

)
, where p

(1)
ji = pji and

p
(0)
ji = δji =

{
1, j = i

0, j 6= i

where δji is the Kronecker delta symbol. Then P(1) = P and P(0) = I the
identity matrix.
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Definitions and Notation

Chapman-Kolmogorov Equations

p
(n)
ji =

∞∑
k=1

p
(n−s)
jk p

(s)
ki , 0 < s < n

Or in terms of matrix notation:

P(n) = P(n−s)P(s)

Here,

P(1) = P

P(2) = P(1)P(1) = P2

...

P(n) = Pn

The n-step transition matrix P(n) is just the nth power of P.
A. Peace 2017 2 Discrete-Time Markov Chains 6/45



Definitions and Notation

Let p(n) = (p1(n), p2(n), ...)T be the vector form of the p.m.f. for Xn

where pi (n) = Prob{Xn = i}. The probabilities satisfy

∞∑
i=1

pi (n) = 1.

The probability distribution associated with Xn+1 can be found:

pi (n + 1) =
∞∑
j=1

pijpj(n) or p(n + 1) = Pp(n)

This projects the process forward in time.

p(n + m) = Pn+mp(0) = Pn(Pmp(0)) = Pnp(m)
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Example

Etterson et al. 2009? propose a simple Markov chain model to describe
the reproductive activities of a single female bird in a single breeding
season. A female can occupy one of four states:

1. actively nesting

2. successfully fledged a brood

3. failed to fledge a brood

4. completed all nesting activities
for the season

The state space is E = {1, 2, 3, 4} and the random variable Xn ∈ E
represents the state of the female following the nth change of state.

?Etterson, Matthew A., et al. ”Markov chain estimation of avian seasonal fecundity.”
Ecological Applications 19.3 (2009): 622-630.
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Example

Etterson et al. 2009 used the transition matrix:

P =


0 sa 1− sa 0

1− qs 0 0 qs
1− qf 0 0 qf

0 0 0 1

 =


0 0.369 0.631 0

0.33 0 0 0.67
0.58 0 0 0.42

0 0 0 1


where s is the daily nest survival probability, a is the average time from
first egg to fledging, qs is the probability that a female quits breeding
following a successful breeding attempt, and qf is the probability that a
female quits breeding following a failed breeding attempt. The numbers
are estimates obtained from field studies of a population of Eastern
Meadowlarks in Illinois.
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Classification of States

Communicate

State j can be reached from state i is there is a nonzero probability

p
(n)
ji > 0 for some n ≥ 0. This is denoted as i → j . If i → j and j → i , i

and j are said to communicate, or be in the same class, denoted as i ↔ j ;
that is, there exists n and n′ such that

p
(n)
ji 0 & p

(n′)
ij > 0

Directed Graph:

i j k

Here, i → j as pji > 0 and i → k as p
(2)
ki > 0 but is is not that case that

k → i .

A. Peace 2017 2 Discrete-Time Markov Chains 10/45



Classification of States

Equivalence Relation

i ↔ j is an equivalence relation on the state {1, 2, ...}
1. reflexivity: i ↔ i (because p

(0)
ii = 1)

2. symmetry: i ↔ j implies j ↔ i

3. transitivity: i ↔ j , j ↔ k implies i ↔ k .

Communication Classes

The set of equivalences classes in a DTMC are the communication classes.
If every state in the Markov chain can be reached by every other state,
then there is only one communication class.

Irreducible

If there is only one communication class, then the Markov chain is
irreducible, otherwise is it reducible.
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Classification of States

Irreducible

A transition matrix P is irreducible if the directed graph is strongly
connected. It is reducible if the directed graph is not strongly connected.

Closed

Set of states C is closed if it is impossible to reach any state outside of C
from any state in C by one-step transitions: pji = 0 if i ∈ C and j /∈ C .

If C is a closed communicating class for a Markov chain X, then that
means that once X enters C, it never leaves C.

Absorbing State

State i is absorbing if pii = 1.

If i is an absorbing state once the process enters state i , it is trapped there
forever.
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Classification of States

Example

P =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0



1 2 · · · N

The Markov chain is irreducible and it periodic with period N (beginning
in state i , it takes N steps to return to state i : PN = I )
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Classification of States

Periodic

The period of state i is the greatest common divisor of all n ≥ 1 for which

p
(n)
ii > 0:

d(i) = g .c .d .{n|p(n)ii > 0 and n ≥ 1}.

If d(i) > 1 the state is periodic of period d(i). If d(i) = 1 the state is

aperiodic. If p
(n)
ii = 0 for all n ≥ 1 define d(i) = 0.

Example

P =

0 0 0
1 0 0
0 1 1

 1 2 3

Communication classes: {1}, {2}, {3}. d(i) = 0 for i = 1, 2 because here

p
(n)
ii = 0. State 3 is aperiodic since d(3) = 1.
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Classification of States

Example

P =


0 0 p13 0
p21 0 p23 p24
0 0 0 0
0 p42 0 0



1 2 4

3

3 communication classes: {1}, {3}, {2, 4}. Markov chain is reducible.

A. Peace 2017 2 Discrete-Time Markov Chains 15/45



Classification of States

Etterson et al. 2009

Etterson et al. 2009 used the transition matrix:

P =


0 sa 1− sa 0

1− qs 0 0 qs
1− qf 0 0 qf

0 0 0 1


where s ∈ (0, 1), a > 0, and qs , qf ∈ (0, 1). State space E = {1, 2, 3, 4}
includes two communicating classes: C1 = {1, 2, 3} and C2 = {4}. The
Markov chain is reducible. C2 is closed and 4 is an absorbing state.
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First Return

First Return Probability

Let f
(n)
ii be the probability that starting from state i , X0 = i , the first

return to state i is at the nth time step:

f
(n)
ii = Prob{Xn = i ,Xm 6= i ,m = 1, 2, ..., n − 1|X0 = i}, n ≥ 1.

The probabilities f
(n)
ii are the first return probabilities. f

(0)
ii = 0.

f
(1)
ii = pii , but generally f

(n)
ii 6= pnii .
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First Return

Recurrent State
State i is recurrent if

∞∑
n=1

f
(n)
ii = 1.

Let random variable Tii be the first return time. Then {f (n)ii }∞n=0 defines a

probability distributions for Tii . Here, Tii = n with probability f
(n)
ii .

Transient State

State i is transient if
∞∑
n=1

f
(n)
ii < 1.

Then {f (n)ii }∞n=0 is not a complete set of probabilities needed to define a

probability distribution. Here, let fii =
∑∞

n=0 f
(n)
ii < 1 and define 1− fii as

the probability of never returning to i . Tii is the waiting time until the
chain returns to i .
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First Return

Mean Recurrence Time

For recurrent state i , the mean recurrence time is the mean of the
distribution Tii :

µii = E (Tii ) =
∞∑
n=1

nf
(n)
ii

For the recurrent state i if µii <∞ it is positive recurrent. If µii =∞, it is
null recurrent.

I Ex: absorbing state i . Here, pii = 1 thus f
(1)
ii = 1 and f

(n)
ii = 0 for

n 6= 1. Therefore µii = 1.

I The mean recurrence time for a transient state is infinity: Tii =∞
with probability 1− fii

A. Peace 2017 2 Discrete-Time Markov Chains 19/45



First Return

Example

Consider a two state Markov chain with transition matrix:

P =

(
p11 p12
p21 p22

)
where 0 < pii < 1 for i = 1, 2. Show that both states are positive
recurrent.
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First Passage Time

First Passage Time Probability

Let f
(n)
ji be the probability that starting from state i , X0 = i , the first

return to state j is at the nth time step:

f
(n)
ji = Prob{Xn = j ,Xm 6= j ,m = 1, 2, ..., n − 1|X0 = i}, j 6= i , n ≥ 1.

The probabilities f
(n)
ji are the first passage time probabilities. f

(0)
ji = 0.

First Passage Form State j from State i

If
∑∞

n=0 f
(n)
ji = 1 then {f (n)ji } defines a probability distribution for a

random variable Tji , the first passage to state j from state i .

Mean First Passage Time

If X0 = i , the mean first passage time to state j is:

µji = E (Tji ) =
∑∞

n=1 nf
(n)
ji , j 6= i
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Relationships between step transition and first return probabilities:

p
(n)
ii =

n∑
k=1

f
(k)
ii p

(n−k)
ii & p

(n)
ji =

n∑
k=1

f
(k)
ji p

(n−k)
ji

Generating Functions

Let the generating function for the sequence {f (n)ji } be

Fji (s) =
∞∑
n=0

f
(n)
ji sn, |s| < 1

Let the generating function for the sequence {p(n)ji } be

Pji (s) =
∞∑
n=0

p
(n)
ji sn, |s| < 1

Relationships: Fii (s)Pii (s) = Pii (s)− 1 & Fji (s)Pjj(s) = Pji (s)
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Basic Theorems for Markov Chains

Theorem 2.2

A state i is recurrent (transient) if and only if
∑∞

n=0 p
(n)
ii diverges

(converges), i.e.
∞∑
n=0

p
(n)
ii =∞(<∞)

The Proof of this used the following theorem:

Abel’s Convergence Theorem

If
∞∑
k=0

ak converges, then lim
s→1−

∞∑
k=0

aks
k =

∞∑
k=0

ak = a

If ak ≥ 0 and lim
s→1−

∞∑
k=0

aks
k = a ≤ ∞, then

∞∑
k=0

ak = a
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Basic Theorems for Markov Chains

Theorem 2.2

A state i is recurrent (transient) if and only if
∑∞

n=0 p
(n)
ii diverges

(converges), i.e.
∞∑
n=0

p
(n)
ii =∞(<∞)

Corollaries
I Assume i ↔ j . State i is recurrent (transient) if and only if state j is

recurrent (transient)

I Every recurrent class in a DTMC is a closed set
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Infinite Random Walk

−1· · · 0 1 2 · · ·

p > 0 is the probability of moving to the right: pi+1,i = p
q > 0 is the probability of moving to the left: pi ,i+1 = q
p + q = 1

Example Questions

1. Is the MC reducible or irreducible?

2. Is the MC aperiodic or periodic?

3. Assume p = q = 1
2 , is the MC transient or recurrent?

4. Assume p 6= q, is the MC transient or recurrent?
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Basic Theorems for Markov Chains

Basic Limit Theorem, Aperiodic Markov Chains

Let {Xn}∞n=0 be a recurrent, irreducible, and aperiodic DTMC with
transition matrix P = (pij):

lim
n→∞

p
(n)
ij =

1

µii

Basic Limit Theorem, Periodic Markov Chains

Let {Xn}∞n=0 be a recurrent, irreducible, and d-periodic DTMC, d > 1,
with transition matrix P = (pij):

lim
n→∞

p
(nd)
ii =

d

µii
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Summary of Classification Schemes

Markov chains or classes can be classified as

Periodic or Aperiodic

Then further classified as

Transient or Recurrent

Then recurrent MC can be classified as

Null recurrent or Positive recurrent.
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“Equilibirum” of the Markov Chain

Stationary Probability Distribution

A stationary probability distribution is the vector π = (π1, π2, ...)
T with:

Pπ = π &
∞∑
i=1

πi = 1.

For a finite MC π is an eigenvector of P with eigenvalue λ = 1:

Pπ = λπ &
N∑
i=1

πi = 1

If a chain is initially at a stationary probability distribution p(0) = π, then
p(n) = Pnπ = π for all time n.
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“Equilibirum” of the Markov Chain

There may be more than one linearly independent eigenvector for λ = 1.
In this case, the stationary probability distribution is not unique. However
a positive recurrent, irreducible, and aperiodic DTMC has a unique
stationary probability distribution:

Theorem 2.5

Let {Xn}∞n=0 be a positive recurrent, irreducible, and aperiodic DTMC.
There is a unique positive stationary probability distribution π with Pπ = π

lim
n→∞

p
(n)
ij = πi , i , j = 1, 2, ...

The basic limit theorem then yields:

πi =
1

µii
> 0

where µii is the mean recurrence time for state i .
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“Equilibirum” of the Markov Chain

Example

P =

(
1/2 1/3
1/2 2/3

)

1. What is the stationary probability distribution for P?

2. What are the mean recurrence times?
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Finite Markov Chains

In finite DTMC, there are NO null recurrent states and not all states
can be transient.

I 4 classification schemes: periodic or aperiodic and transient or
positive recurrent

I An irreducible finite DTMC is positive recurrent

In a finite DTMC, a class is recurrent if and only if it is closed
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Grey vs. Red Squirrel

Red Squirrel are native to areas of Great Britain and Gray Squirrels
invaded many regions in the 19th century. Each region is classified as
being in one the following states:

1. occupied by Red squirrels only

2. occupied by Gray squirrels only

3. occupied by both

4. no squirrels

The transitions between states over a period of 1 year were estimated for
the following transition matrix:

P =


0.8797 0.0382 0.0527 0.0008
0.0212 0.8002 0.0041 0.0143
0.0981 0.0273 0.8802 0.0527
0.0010 0.1343 0.0630 0.9322
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Grey vs. Red Squirrel

P =


0.8797 0.0382 0.0527 0.0008
0.0212 0.8002 0.0041 0.0143
0.0981 0.0273 0.8802 0.0527
0.0010 0.1343 0.0630 0.9322


The eigenvector corresponding to the eigenvalue λ = 1:

π = (0.1705, 0.0560, 0.3421, 0.4314)T

1. Describe the squirrel population in the regions over the long run.

2. Determine and interpret the mean recurrence times
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Mean First Passage Time
Method to calculate mean first passage time and time until absorption:

M = (µij) =


µ11 µ12 · · · µ1N
µ21 µ22 · · · µ2N

...
... · · ·

...
µN1 µN2 · · · µNN


M is the matrix of mean first passage times. The time it takes to go from
i → j is described below:

µji = pji +
N∑

k=1,k 6=j

pki (1 + µjk) = 1 +
N∑

k=1,k 6=j

pkiµjk

where j is reached in 1 time step with probability pji or it takes multiple
time steps and goes through state k . In Matrix form (E is matrix of 1s):

M = E + (M − diag(M))P

Can solve this system (N2 equations and N2 unknowns)
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Mean First Passage Time

Suppose the MC has k absorbing states. Partition the matrix into k
absorbing states and m − k transient states:

P =

(
I A
0 T

)

Lemma 2.2

Submatrix T = (tjk) of transition matrix P, where indices j , k are from the
set of transient states has the following property

lim
n→∞

T n = 0.
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Mean First Passage Time
Let vij be the random variable for the # of visits (before absorption) to the
transient state i beginning from j . The expected # of visits to i from j is

(E [vij ]) = I + T + T 2 + T 3 + · · · = (I − T )−1

Fundamental Matrix

This is the Fundamental Matrix in DTMC:

F = (I − T )−1

The expected time to absorption is the time spent in each of the transient
states. Therefore, we can calculate the time to absorption by summing the
columns of F :

Expected Time Untill Absorptions

m = 1TF

where 1 is a column vector of ones.
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Example

Consider the MC with transition matrix:

P =


1/2 0 0 1/2
1/2 1 0 0

0 0 0 1/2
0 0 1 0


1. What are the communication classes? Classify each class?

2. Reorder the states and determine matrix T .

3. What is the fundamental matrix?

4. What is the mean time until absorption?
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Genetics Inbreeding Problem

I An allele is a variant form of a gene

I Suppose there are 2 types of alleles for a given gene: a and A

I A diploid individual (2 sets of chromosomes) can have 3 different
genotypes or combinations of alleles: AA, aa,Aa

I Assume 2 individuals are randomly mated. Then the next generation
of their offsprings (brother and sister) are randomly mated. This
inbreeding process continues each year.
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Genetics Inbreeding Problem
I Let the mating types be states of a DTMC
I There are 6 states:

1. AA× AA

2. AA× Aa

3. Aa× Aa

4. Aa× aa

5. AA× aa

6. aa× aa

I Suppose parents are type 1: AA× AA
I Next generation of offsprings are all AA
I Next generation mating combinations are all type 1
I p11 = 1
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Genetics Inbreeding Problem

I Suppose parents are type 2: AA× Aa

I Next generation of offsprings are 1/2 AA and 1/2 Aa
I Next generation mating combinations are (AA× AA), (AA× Aa),

(Aa× Aa)
I proportion of matings of type (AA× AA) =

(
1
2

) (
1
2

)
= 1

4
I proportion of matings of type (AA× Aa)? =

(
1
2

) (
1
2

)
+
(
1
2

) (
1
2

)
= 1

2
I proportion of matings of type (Aa× Aa) =

(
1
2

) (
1
2

)
= 1

4

I p12 = 1/4, p22 = 1/2, p32 = 1/4

?(AA× Aa) and (Aa× AA)
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Genetics Inbreeding Problem

I Suppose parents are type 3: Aa× Aa
I Next generation of offsprings are 1/4 AA, 1/2 Aa, and 1/4 aa
I Next generation mating combinations are (AA× AA), (AA× Aa),

(Aa× Aa), (Aa× aa), (AA× aa), and (aa× aa).
I proportion of matings of type (AA× AA) =

(
1
4

) (
1
4

)
= 1

16
I proportion of matings of type (AA× Aa) =

(
1
4

) (
1
2

)
+
(
1
2

) (
1
4

)
= 1

4
I proportion of matings of type (Aa× Aa) =

(
1
2

) (
1
2

)
= 1

4
I proportion of matings of type (Aa× aa) =

(
1
2

) (
1
4

)
+
(
1
4

) (
1
2

)
= 1

4
I proportion of matings of type (AA× aa) =

(
1
4

) (
1
4

)
+
(
1
4

) (
1
4

)
= 1

8
I proportion of matings of type (aa× aa) =

(
1
4

) (
1
4

)
= 1

16

I p13 = 1/16, p23 = 1/4, p33 = 1/4, p43 = 1/4, p53 = 1/8, p63 = 1/16
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Genetics Inbreeding Problem

p =



1 1/4 1/16 0 0 0
0 1/2 1/4 0 0 0
0 1/4 1/4 1/4 1 0
0 0 1/4 1/2 0 0
0 0 1/8 0 0 0
0 0 1/16 1/4 0 1



p =



1 | 1/4 1/16 0 0 | 0
− − − − − − − −
0 | 1/2 1/4 0 0 | 0
0 | 1/4 1/4 1/4 1 | 0
0 | 0 1/4 1/2 0 | 0
0 | 0 1/8 0 0 | 0
− − − − − − − −
0 | 0 1/16 1/4 0 | 1


=

1 A 0
0 T 0
0 B 0
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Questions

1. What are the communication classes? Classify them.

2. Are there any absorbing states?

3. Determine the expected time until absorption.

4. What are the probabilities of absorption into states 1 and 6?
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Unrestricted Random Walk in Higer Dimensions

Recall infinite random walk in 1D:

−1· · · 0 1 2 · · ·

p > 0 is the probability of moving to the right: pi+1,i = p
q > 0 is the probability of moving to the left: pi ,i+1 = q
p + q = 1

Properties

1. MC is irreducible

2. MC is periodic with period =2

3. Assume p = q = 1
2 , then the MC is recurrent

4. Assume p 6= q, then the MC is transient
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Unrestricted Random Walk in Higer Dimensions

I 1 Dimension:
I Chain is null recurrent if and only if p = q = 1/2
I Probability of moving left equals probability of moving right

I 2 Dimensions:
I If probabilities of moving in any direction are equal (1/4 for up, down,

right, and left) then the chain is null recurrent

I 3 Dimensions:
I If probabilities of moving in any direction are equal (1/6 for up, down,

right, left, forward, and backward) then the chain is transient
I A path along a line or in a plane is much more restricted than in space
I Behavior is 3 or higher dimensions in more complicated
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