
1.1 Review of Probability Theory

Angela Peace

Biomathemtics II
MATH 5355 Spring 2017

Lecture notes follow: Allen, Linda JS. An introduction to stochastic
processes with applications to biology. CRC Press, 2010.

A. Peace 2017 1.1 Review of Probability Theory 1/33



Basic Concepts and Definitions

Sample Space

Set S collection of elements

σ-algebra

A collection of events (subsets in S) A is a σ-algebra if

1. S ∈ A
2. If B ∈ A, then the complement of B is in A. i.e.

Bc = {s : s ∈ S , S /∈ B} ∈ A
3. If sequence {Bn}∞n=1 ∈ A then the union

⋃∞
n=1 Bn ∈ A

Here A is measurable and the ordered pair (S ,A) is a measurable space.
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Basic Concepts and Definitions

Probability Measure

P, a real-valued function defined on σ-algebra A. The set function
P : A → [0, 1] is a probability measure if

1. P(B) ≥ 0 for all B ∈ A
2. P(S) = 1

3. If Bi
⋂
Bj = ∅ for j , i = 1, 2, ..., i 6= j (pairwise disjoint) then

P(
⋃∞

i=1 Bi ) =
∑∞

i=1 P(Bi ) where Bi ∈ A for i = 1, 2, ...
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Basic Concepts and Definitions

Probability Space

ordered triple (S ,A,P)

I S is the sample space
I A is the collection of events (subsets in S) and is a σ-algebra:

1. S ∈ A
2. If B ∈ A, then the complement of B is in A. i.e.

Bc = {s : s ∈ S ,S /∈ B} ∈ A
3. If sequence {Bn}∞n=1 ∈ A then the union

⋃∞
n=1 Bn ∈ A

I P is a probability measure:

1. P(B) ≥ 0 for all B ∈ A
2. P(S) = 1
3. If Bi

⋂
Bj = ∅ for j , i = 1, 2, ..., i 6= j (pairwise disjoint) then

P(
⋃∞

i=1 Bi ) =
∑∞

i=1 P(Bi ) where Bi ∈ A for i = 1, 2, ...
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Basic Concepts and Definitions

Conditional Probability

For events B1, B2 ∈ A. The conditional probability of event B1 given
event B2 is

P(B1|B2) =
P(B1 ∩ B2)

P(B2)
.

The conditional probability of event B2 given event B1 is

P(B1|B2) =
P(B1 ∩ B2)

P(B1)
.

Independent Events

B1 and B2 are independent if and only if

P(B1 ∩ B2) = P(B1)P(B2)

i.e. P(B1|B2) = P(B1) and P(B2|B1) = P(B2).
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Basic Concepts and Definitions

Random Variable

(S ,A) measurable space. A random variable X is a real function on S .
X : S → R such that

X−1(−∞, a] = {s,X (s) ≤ a} ∈ A.

Let A be the range of X . A = {x ,X (s) = x , s ∈ S}. A is the state space
of X.

I If A is finite or countable infinite then X is a discrete random
variable

I If A is an interval (finite or infinite in length) then X is a continuous
random variable
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Example

Two sequential fair coin tosses

I What is the sample space?
I S = {HH,HT ,TH,TT}

I X is the discrete random variable with state space A = {1, 2, 3, 4}:
I X (HH) = 1, X (HT ) = 2, X (TH) = 3, X (TT ) = 4

I Each event has probability 1/4:
I P({HH}) = 1

4 , P({HT}) = 1
4 , P({TH}) = 1

4 , P({TT}) = 1
4

I Let B1 be the event that 1st coin toss is head and B2 the event that
the 2nd coin toss is head:

I B1 = {HH,HT} = set {1, 2}
I B2 = {HH,TH} = set {1, 3}

I We can see B1 and B2 are independent events:

P(B2|B1) =
P(B1 ∩ B2)

P(B1)
=

P({HH})
P(B1)

=
1/4

1/2
=

1

2
= P(B2)
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Basic Concepts and Definitions
Notation

I Since random variable is defined as X : S → R. Events can be related
to subsets of R.

I Ex: B1 = {HH,HT} = set {1, 2}
I X = x is shorthand for the events {s : X (s) = x , s ∈ S}
I X ≤ x is shorthand for the events {s : X (s) ≤ x , s ∈ S}
I The probability measure can be defined on R:

PX : R→ [0, 1]
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Basic Concepts and Definitions

Cumulative Distribution Function

c.d.f. of the random variable X is the function F : R→ [0, 1] defined by

F (x) = PX ((−∞, x ]).

F is nondecreasing, right continuous, and satisfies

lim
x→∞

F (x) = F (−∞) = 0 & lim
x→∞

F (x) = 1.

I describes how the probabilities accumulate
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Basic Concepts and Definitions
Probability measure for discrete random variable

Probability Mass Function

For discrete random variable X , the function f (x) = PX (X = x) is the
p.m.f. of X .

Some properties of f :∑
x∈A

f (x) = 1 & PX (X ∈ B) =
∑
x∈B

f (x)

for any B ⊂ A. The c.d.f. F of a discrete random variable satisfies

F (x) =
∑
a1≤x

f (ai )

where ai are the elements of A.
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Example

Discrete uniform distribution

A finite number of values are equally likely to be observed; every one of n
values has equal probability 1/n.
Let A = {1, 2, 3, 4, 5} and f (x) = 1/5 for x ∈ A.
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Basic Concepts and Definitions
Probability measure for continuous random variable

Probability Density Function

For continuous random variable X with c.d.f F . If there exists a
nonnegative, integrable function f : R→ [0,∞):

F (x) =

∫ x

−∞
f (y)dy

then f is the p.d.f of X .

Some properties of f :

PX (X ∈ A) =

∫
A
f (x)dx = 1 & PX (X ∈ B) =

∫
B
f (x)dx

for any B ⊂ A, In particular:

PX (a ≤ X ≤ b) =

∫ b

a
f (x)dx = F (b)− F (a)

Note for a continuous random variable PX (a < X < b) = PX (a ≤ x ≤ b).
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Example

Continuous uniform distribution

Each value is equally likely to be observed. For p.d.f.:

f (x) =


1

b−a for a ≤ x ≤ b,

0 for x < a or x > b
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Probability Distributions
Discrete Distributions

Discrete Uniform

f (x) =


1
n for x = 1, 2, ..., n

0 otherwise

Geometric

f (x) = p(1− p)x for x = 0, 1, ... and 0 < p < 1

Here, p is the portability of success and f (x) is the probability of one
success in x + 1 trials
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Probability Distributions
Discrete Distributions

Binomial

f (x) =


(n
x

)
px(1− p)n−x for x = 0, 1, 2, ..., n

0 otherwise

where n is a positive integer, 0 < p < 1 is the probability of success, and(
n

x

)
=

n!

x!(n − x)!
.

It is denoted as b(n, p). Think of f (x) as the probability of x successes in
n trials.

We will see this is the solution for a simple death process.
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Probability Distributions
Discrete Distributions

Negative Binomial

f (x) =


(x+n−1

n−1

)
pn(1− p)x for x = 0, 1, 2, ...

0 otherwise

where n is a positive integer and 0 < p < 1 is the probability of success.
Think of f (x) as the probability of n successes in n + x trials.
For n = 1 it simplifies to the geometric distribution.

We will see this is the solution for a simple birth process.
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Probability Distributions
Discrete Distributions

Poisson

f (x) =


λxe−λ

x! for x = 0, 1, 2, ...

0 otherwise

where λ is a positive constant.

This distribution is important in continuous-time Markov chain models.
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Probability Distributions
Continuous Distributions

Uniform

f (x) =


1

b−a for a ≤ x ≤ b

0 otherwise

where a < b are constants. It is denoted as U(a, b).

The uniform distribution is the basis for random number generators, which
are used for many stochastic models.
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Probability Distributions
Continuous Distributions

Gamma

f (x) =


1

Γ(α)βα x
α−1e−x/β for x ≥ 0

0 for x < 0

where α, β are positive constants, and Γ(α) =
∫∞

0
1
βα xα−1e−x/βdx . For a

positive integer n, Γ(n) = (n − 1)!.

Exponential

f (x) =

λe
−λx for x ≥ 0

0 for x < 0

where λ is the positive constant.

Exponential d. is a special case of the Gamma d. with α = 1, β = 1/λ.
These distributions are associated with waiting time distributions.
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Probability Distributions
Continuous Distributions

Normal

f (x) =
1

σ
√

2π
exp

(
−(x − µ)2

2σ2

)
for −∞ < x <∞, where µ, σ are constants.

I A random variable X that is uniformly distributed with mean µ and
variance σ2 is denoted as X ∼ N(µ, σ2).

I The standard normal distribution is N(0, 1).

I The normal distribution is the underlying distribution for brownian
motion (diffusion process).
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Expectation

Expectation of X

For continuous random variable X with p.d.f. f , the expectation is defined
as

E (X ) =

∫
R
xf (x)dx .

For discrete random variable X with probability function f defined on
space A = {ai}∞i=1, the expectation is defined as

E (X ) =
∞∑
i=1

ai f (ai).

I helps characterize the p.d.f. of a random variable.

I E (X ) is a weight average: the p.d.f. f is weighted by the values of
the random variable X .
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Expectation
Properties

I Expectations of a function of a random variable:

E (u(X )) =

∫
R
u(x)f (x)dx

E (u(X )) =
∞∑
i=1

u(ai )f (ai)

I The expectation is a linear operator defined on set of functions u(X ):

E (a1u1(X ) + a2u2(X )) = a1E (u1(X )) + a2E (u2(X ))

I E (b) = b for constant b

I We define the mean, variance, and moments of X in terms of the
expectation.
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Mean, Variance, Moments

Mean

The mean of the random variable X is µX = E (X ).

Variance and Standard Deviation

The variance of the random variable X is σ2
X = E ([X − µX ]2).

The standard deviation of X is σ.
Notation: σ2 = σ2

X = VAR(X ).

Moments

The nth moment of X about point a is E ([X − a]n).

The mean is the 1st moment about the origin.
The variance is the 2nd moment about the mean.

σ2
X = E ([X − µX ]2) = E (X 2)− 2µXE (X ) + µ2

X = E (X 2)− µ2
X
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Example

Discrete uniform distribution

X is a random variable with a discrete uniform distribution.

1. What is the mean of X?

µX = E (X ) =
n∑

x=1

xf (x) =
n∑

x=1

x
1

n
=

1

n

n∑
x=1

x =
1

n

(
n(n + 1)

2

)
=

n + 1

2

2. What is the variance of X? σ2
X = E (X 2)− µ2

X

E (X 2) =
n∑

x=1

x2 1

n
=

1

n

n∑
x=1

x2 =
1

n

(
n(n + 1)(2n + 1)

6

)
=

(n + 1)(2n + 1)

6

σ2
X = E (X 2)− µ2

X =
(n + 1)(2n + 1)

6
−
(
n + 1

2

)2

=
n2 − 1

12

A. Peace 2017 1.1 Review of Probability Theory 24/33



Example

Continuous uniform distribution

Y is a random variable with a discrete uniform distribution. Y is
distributed as U(0, 1).

1. What is the mean of Y ?

µY = E (Y ) =

∫ 1

0
yf (y)dy =

∫ 1

0
y

1

1− 0
dy =

∫ 1

0
y dy =

1

2

2. What is the variance of Y ? σ2
Y = E (Y 2)− µ2

Y

E (Y 2) =

∫ 1

0
y2f (y)dy =

∫ 1

0
y2 dy =

1

3

σ2
Y = E (Y 2)− µ2

Y =
1

3
− 1

4
=

1

12
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Multivariate Distributions

Several random variables (X1,X1, ...,Xn) can be associated with the same
sample space. Then multivariate probability density/mass functions can be
defined f (x1, x2, .., xn).

State Space for random vector (X1,X2)

A = {(X1(s),X2(s))|s ∈ S} ⊂ R2

Joint Probability Density Function

Continuous random variables X1,X2 with probability measure
P : S → [0, 1]. f : R2 → [0,∞) is the joint p.d.f if∫∫

A
f (x1, x2)dx1dx2 = 1 & P(x1,x2)(B) =

∫∫
B
f (x1, x2)dx1dx2

for B ⊂ A. The marginal p.d.f for X1 is f1(x1) =
∫
R f (x1, x2)dx2.
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Multivariate Distributions

Joint Probability Mass Function

Discrete random variables X1,X2 with probability measure P : S → [0, 1].
f : A→ [0, 1] is the joint p.m.f if∑

A

f (x1, x2) = 1 & P(x1,x2)(B) =
∑
B

f (x1, x2)

for B ⊂ A. The marginal p.m.f for X1 is f1(x1) =
∑

x2
f (x1, x2).

Covariance

The covariance of X1 and X2, two jointly distributed random variables is

cov(X1,X2) = E (X1,X2)− E (X1)E (X2).

If cov(X1,X2) = 0 the random variables are uncorrelated.
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Generating Functions
Discrete random variable

X discrete random variable on state space {0, 1, 2, ...} with p.m.f.
f (j) = Prob{X = j} = pj where

∑∞
j=0 pj = 1.

µX = E (X ) =
∞∑
j=0

jpj & σ2
X = E (X 2)− µ2

X =
∞∑
j=0

j2pj − µ2
X .

Probability Generating Function

The p.g.f of X is the function

PX (t) = E (tX ) =
∞∑
j=0

pj t
j

for some t ∈ R.

Since
∑∞

j=0 pj = 1 the sum converges absolutely if |t| ≤ 1.
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Generating Functions
Discrete random variable

Probability Generating Function

The p.g.f of X is the function

PX (t) = E (tX ) =
∞∑
j=0

pj t
j

for some t ∈ R.

P(t) generates the probabilities associated with the distribution

PX (0) = p0, P ′X (0) = p1, P ′′X (0) = 2!p2, ... , P(k)
X (0) = k!pk

Mean and variance calculated from the p.g.f.

P ′X (1) =
∞∑
j=1

jpj = E (X ) = µX & σ2
X = P ′′X (1)+P ′X (1)−(P ′X (1))2
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Generating Functions
Discrete random variable

Moment Generating Function

MX (t) = E (etx) =
∞∑
j=0

pje
jt

m.g.f. generates the moments E (X k) of the distribution of X .

MX (0) = 1, M ′X (0) = E (X ), M ′′X (0) = E (X 2), ..., M
(k)
X (0) = E (X k)

Characteristic Function

φX (t) = E (e itX ) =
∞∑
j=0

pje
ijt

Cumulant Generating Function

KX (t) = ln[MX (t)]
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Generating Functions
Continuous random variable X with p.d.f f

Probability Generating Function

PX (t) = E (tX ) =

∫
R
f (x)txdx

Moment Generating Function

MX (t) = E (etx) =

∫
R
f (x)etxdx

Characteristic Function

φX (t) = E (e itX ) =

∫
R
f (x)e ixtdx

Cumulant Generating Function

KX (t) = ln[MX (t)]
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Generating Functions
Continuous random variable X with p.d.f f

Mean and variance calculated from the p.g.f., m.g.f, and c.g.f.

µX = P ′X (1) = M ′X (0) = K ′X (0)

σ2
X =


P ′′X (1) + P ′X (1)− [P ′X (1)]2

M ′′X (0)− [M ′X (0)]2

K ′′X (0)
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Central Limit Theorem

Let X1,X2, ...,Xn, ..., be a sequence of independent and identically
distributed variables (i.i.d : n independent variables with the same
distribution) with finite mean |µ| <∞ and standard deviation 0 < σ <∞.

Wn =

∑n
i=1 Xi/n − µ
σ/
√
n

has a standard normal distribution for n→∞ .

I Relates the sum of independent random variables to the normal dist.
I Even if the original variables themselves are not normally distributed

I For any distribution of the Xn (as long as mean/variance finite), these
amplified differences will be ∼ normally distributed for n large.

I If the distribution is skewed and discrete - the sample size may need to be
large for a good approximation

I This observation presumably explains why so many quantities are
approximately normally distributed

I The microscopic details are lost to the limit when we consider a macroscopic
system in which the components act additively.
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