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Demography is the study of the population consequences of the fates of individuals. Individuals are differentiated on the
basis of age or, in general, life cycle stages. The movement of an individual through its life cycle is a random process, and
although the eventual destination (death) is certain, the pathways taken to that destination are stochastic and will differ
even between identical individuals; this is individual stochasticity. A stage-classified demographic model contains implicit
age-specific information, which can be analyzed using Markov chain methods. The living stages in the life cycles are
transient states in an absorbing Markov chain; death is an absorbing state. This paper presents Markov chain methods for
computing the mean and variance of the lifetime number of visits to any transient state, the mean and variance of
longevity, the net reproductive rate R0, and the cohort generation time. It presents the matrix calculus methods needed to
calculate the sensitivity and elasticity of all these indices to any life history parameters. These sensitivities have many uses,
including calculation of selection gradients. It is shown that the use of R0 as a measure of fitness or an invasion exponent
gives erroneous results except when R0�l�1. The Markov chain approach is then generalized to variable environments
(deterministic environmental sequences, periodic environments, iid random environments, Markovian environments).
Variable environments are analyzed using the vec-permutation method to create a model that classifies individuals jointly
by the stage and environmental condition. Throughout, examples are presented using the North Atlantic right whale
(Eubaleana glacialis) and an endangered prairie plant (Lomatium bradshawii ) in a stochastic fire environment.

The essence of demography is the connection between the
fates of individual organisms and the dynamics of popula-
tions. There exist diverse mathematical frameworks in
which this connection can be studied (e.g. Keyfitz 1967,
Nisbet and Gurney 1982, Metz and Diekmann 1986,
Caswell 1989, DeAngelis and Gross 1992, Caswell et al.
1997, Tuljapurkar and Caswell 1997). Regardless of the
type of equations used, demographic analysis must account
for differences among individuals, and the ways in which
those differences affect the vital rates. Among the many
ways that individuals may differ, age has long had a kind of
conceptual priority. Age is universal in the sense that every
organism becomes one minute older with the passage of one
minute of time. Age is also often associated with predictable
changes in the vital rates. However, in some organisms
characteristics other than age provide more and better
information about an individual. Ecologists recognized this
long ago, and have developed demographic theory based on
size, maturity, physiological condition, instar, spatial loca-
tion, etc. � what we refer to in general as ‘stage-classified’
demography. Human demographers, who were responsible
for the classical age-classified theory, by no means deny the
importance of other properties (employment, parity, health,
etc.); see Land and Rogers (1982), Goldman (1994),
Robine et al. (2003), or Jasney et al. (2006) for just a
sample of the kinds of issues that arise.

There now exists a comprehensive stage-classified demo-
graphic theory, applicable regardless of taxon or habitat
(Caswell 2001). It includes linear and nonlinear, time-
invariant and time-varying, deterministic and stochastic
models. It describes growth rate, population structure,
stability and bifurcations, transient dynamics and oscilla-
tions, extinctions and quasi-extinctions. It includes sensi-
tivity analyses that make it possible to explore how these
properties respond to changes in the parameters of the
population and its environment.

Even when the demographic model is entirely stage-
classified, however, age is still implicitly present. Individuals
in a given stage may differ in age, and individuals of a given
age may be found in many different stages, but each
individual still becomes one unit of age older with the
passage of each unit of time. Extracting this implicit age-
dependent information makes it possible to calculate inter-
esting age-specific properties, such as survivorship, longevity,
life expectancy, generation time, and net reproductive rate
(Cochran and Ellner 1992, Caswell 2001, 2006, Tuljapurkar
and Horvitz 2006, Horvitz and Tuljapurkar 2008).

Consider a newborn individual. As it develops through
the stages of its life cycle, it may grow, shrink, mature,
move, reproduce, and allocate resources among its biologi-
cal processes. At each moment, it is exposed to various
mortality risks. Because these processes are stochastic, the
lives of any two individuals may differ. These random
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differences (which I propose to call individual stochasticity)
imply that the age-specific properties of an individual (say,
longevity) are random variables � there is a distribution
among individuals that should be characterized by its mean,
moments, etc.

In this paper, I show how to calculate some of these
implicit age-specific properties from any stage-classified
model. The trick is to formulate the life cycle as a Markov
chain, and to generalize the ‘life’ cycle to include death as a
stage. Because death is permanent, it is called an absorbing
state, and the theory of absorbing Markov chains provides
the starting point for our analysis (Feichtinger 1971,
Caswell 2001).

A Markov chain is a stochastic model for the movement
of a particle among a set of states (e.g. Kemeny and Snell
1976, Iosifescu 1980). The probability distribution of the
next state of the particle may depend on the current state,
but not on earlier states. In our context, a ‘particle’ is an
individual organism. The states correspond to the stages of
the life cycle, plus death (or perhaps multiple types of death,
for example deaths due to different causes). This structure is
ideally suited to asking questions about individual stochas-
ticity, because it accounts for all the possible pathways, and
their probabilities, that an individual can follow through its
life. I will focus on discrete-time models, but much of the
theory can no doubt be generalized to continuous-time
models.

Perturbation analysis (sensitivity and elasticity analysis)
plays a particularly important role in demography. The
sensitivity of population properties (e.g. l) to changes in the
underlying parameters is useful in conservation, manage-
ment, pest control, ecotoxicology, epidemiology and evolu-
tion. In this paper, I will present perturbation analyses for
almost all of the properties I consider. These rely on new
mathematical results (Caswell 2006) obtained using matrix
calculus. Although the approach produces amusingly
complicated-looking formulas, with a little practice it is
surprisingly easy to implement (Caswell 2006, 2007, 2008,
2009, Verdy and Caswell 2008). The best way to get that
practice is, naturally, to practice. So, in this paper, I will
pose some of the derivations as challenges. The answers are
given, in detail, in Supplementary material Appendix A, but
I urge you to try some of them before turning to the
solutions. Equations in the Supplementary Appendices are
numbered (A*1), (B*1), etc.

I will present examples of the calculations, but cannot
say whether the results are specific to these studies, or are
general. If they are general, I cannot say what aspects of
the life history influence them. Those questions can be
answered only by a collection of comparative studies; one
goal of this paper is to present the techniques necessary to
begin such a collection. These Markov chain models are
intimately connected with empirical data on identified
individuals followed over time (by marking, banding, or
photographic identification; see Caswell and Fujiwara 2004,
Lebreton et al. 2009). As a result, powerful statistical
methods (e.g. parameter estimation, model selection, con-
fidence intervals, statistical significance tests) are available
for the results I will present here.

The use of Markov chains in demographic analysis is not
new. As far as I know, Feichtinger (1971, 1973) was the
first to use discrete-time absorbing Markov chains in

demography, paying particular attention to competing risks
and multiple causes of death. At around the same time,
Hoem (1969) applied continuous-time Markov chains in
the analysis of insurance systems (with states such as ‘active,’
‘disabled,’ and ‘dead’). Later, Cochran and Ellner (1992)
independently proposed the use of Markov chains to
generate age-classified statistics from stage-classified models,
but minimized the use of matrix notation in their
presentation. Influenced by Feichtinger’s work, and relying
heavily on Iosifescu’s (1980) treatment of absorbing
Markov chains, I extended the calculations using matrix
notation (Caswell 2001, Keyfitz and Caswell 2005). Later
(Caswell 2006) I introduced sensitivity analysis, and
presented results for both time-invariant and time-varying
models. At the same time, Tuljapurkar and Horvitz (2006)
presented a more extensive investigation of time-variation.

Examples

The calculations will be demonstrated by means of two case
studies. The first is a stage-classified model for the North
Atlantic right whale Eubaleana glacialis. Later, a stochastic
matrix model for the threatened prairie plant Lomatium
bradshawii will appear as part of a study of variable
environments.

The North Atlantic right whale is a large, highly
endangered baleen whale (Kraus and Rolland 2007). Once
abundant in the north Atlantic, it was decimated by whaling,
beginning as much as a thousand years ago (Reeves et al.
2007). By 1900 the western North Atlantic stock had been
effectively eliminated, and the eastern North Atlantic stock
hunted to near extinction. The population has recovered
only slowly since receiving at least nominal protection in
1935, and now numbers only about 300 individuals. Right
whales migrate along the Atlantic coast of North America,
from summer feeding grounds in the Gulf of Maine and Bay
of Fundy to winter calving grounds off the southeastern US.
They are killed by ship collisions and entanglement in
fishing gear (Moore et al. 2005), and may also be affected by
pollution of coastal waters (Rolland et al. 2007).

Individual right whales are photographically identifiable
by scars and callosity patterns. Since 1980, the New
England Aquarium has surveyed the population, accumu-
lating a database of over 10 000 sightings (Crone and Kraus
1990). Treating the first year of identification of an
individual as marking, and each year of resighting as a
recapture, permits the use of mark�recapture statistics to
estimate demographic parameters of this endangered popu-
lation (Caswell et al. 1999, Fujiwara and Caswell 2001,
2002, Fujiwara 2002, Caswell and Fujiwara 2004).

Figure 1 shows a life cycle graph used by Caswell and
Fujiwara (2004) as the basis of a stage-structured matrix
population model for the right whale. The stages are calves,
immature females, mature but non-reproductive females,
mothers, and ‘resting’ mothers (because of the long period
of parental care and gestation, right whales do not
reproduce in the year after giving birth). This life cycle is
typical of large, long-lived monovular mammals and birds.

The model is parameterized in terms of survival
probabilities s1, . . ., s5, the probability of maturation g2,
and the birth probability g3. The projection matrix is
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A�

0 0 F 0 0
s1 s2(1�g2) 0 0 0
0 s2g2 s3(1�g3) 0 s5

0 0 s3g3 0 0
0 0 0 s4 0

0
BBBB@

1
CCCCA (1)

The fertility term in the (1, 3) position is F�0:5s3g3

ffiffiffiffiffis4

p
;

accounting for the sex ratio, the survival of mature females,
their probability of giving birth if they survive, and the
effect of survival of the mother on survival of the calf. For
reasons related to parameter estimation, s5 is constrained to
equal s3.

A note on notation

In this paper, matrices are denoted by upper case bold
symbols (e.g. A), vectors by lower case bold symbols (n); aij

is the (i, j) entry of the matrix A, ni is the ith entry of the
vector n. Vectors are columns, and nT is the row vector
obtained as the transpose of n. Logarithms are natural. In
addition to the ordinary matrix product, the Kronecker
product A�B and the Hadamard product A(B will
appear (Supplementary material Appendix A). The symbol
diag (x) denotes the square matrix with x on the diagonal
and zeros elsewhere. The symbol e denotes a vector of 1s;
the vector ei is a vector with 1 in the ith entry and zeros
elsewhere. The identity matrix is I. Sometimes dimensions
are indicated by subscripts, as in Is for the s�s identity
matrix, or esp�1 for a vector of ones of length sp.

Markov chains

The familiar life cycle graph (Fig. 1a) corresponds to a
projection matrix A, in which aij gives the per-capita

production of stage i individuals at t�1 by a stage j
individual at t. This production may occur by the transition
of an individual from stage j to stage i, or by the production
of one or more new individuals (by reproduction, frag-
mentation, etc.). So, we partition A into a matrix U
describing transition probabilities of extant individuals and
a matrix F describing the production of new individuals

A�U�F (2)

The column sums of U are all less than or equal to 1.
Because individuals eventually die and pass out of the stages
contained in U, those stages are called transient states.

An absorbing Markov chain

If we include death explicitly (Fig. 1b) and remove the arcs
representing reproduction, we obtain the graph correspond-
ing to the transition matrix for an absorbing Markov chain

P�
�

Uj0
mj1

	
(3)

The element mj of the vector m is the probability of mortality
of an individual in stage j. Death is an absorbing state. I will
assume that at least one absorbing state is accessible from any
transient state in U, and that the spectral radius of U is strictly
less than 1. This guarantees that, with probability 1, every
individual ends up in the absorbing state.

The right whale
Fujiwara (2002, Caswell and Fujiwara 2004) estimated U
by applying multi-stage mark-recapture methods to the
photographic identification catalog. Although the best
model, out of a large number evaluated, included significant
time variation in survival and birth rates, here I will analyze
a single matrix obtained from a time-invariant model. The
complete transient matrix U and the fertility matrix F are

U�

0 0 0 0 0
0:90 0:85 0 0 0

0 0:12 0:71 0 1:00
0 0 0:29 0 0
0 0 0 0:85 0

0
BBBB@

1
CCCCA (4)

F�

0 0 0:13 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA (5)

Expected visits to transient states: the fundamental
matrix

As the syllogism asserts, all men are mortal; absorbtion is
certain. Our question is, how long does absorbtion take and
what happens en route? From a demographic perspective,
this is asking about the lifespan of an individual and the
events that happen during that lifetime. The key to these
questions is the fundamental matrix of the absorbing
Markov chain. Consider an individual that is presently in

Figure 1. Life cycle graphs for females of the North Atlantic right
whale (Eubalaena glacialis). Projection interval is one year.
Stages: 1�calf, 2�immature, 3�mature, 4�mother, 5�post-
breeding female. (a) the graph corresponding to the population
projection matrix A. Solid arcs indicate transitions, dashed arcs
indicate reproduction. Each time a mature female enters stage 4,
she produces a calf. See Caswell and Fujiwara (2004) for
explanation and parameter estimates. (b) the graph corresponding
to the absorbing Markov chain, showing transitions of extant
individuals only. Stage 6�death is an absorbing state.
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transient state j. As time passes, it will visit other transient
states, repeating some, skipping others, until it eventually
dies. Let nij denote the number of visits to transient state i
that our individual, starting in transient state j, makes
before being absorbed. The nij are random variables,
reflecting individual stochasticity.

The entries of the matrix U give the probabilities of
visiting each of the transient states after one time step. The
entries of U2 give the probabilities of visiting each of the
transient states after two time steps. Adding the powers of U
gives the expected number of visits to each transient state,
over a lifetime, in a matrix N; i.e.

N�


E(nij)

�

�
X�
t�0

Ut

�(I�U)�1 (6)

The right whale
The fundamental matrix for the right whale is calculated
from (6) to be

N�

1:00 0:00 0:00 0:00 0:00
5:88 6:52 0:00 0:00 0:00

16:35 18:11 22:94 19:49 22:94
4:74 5:25 6:65 6:65 6:65
4:02 4:46 5:65 5:65 6:65

0
BBBB@

1
CCCCA (7)

The first column corresponds to calves. On average, a calf
will spend 1 year as a calf, 5.9 years as a juvenile, 16.3 years
as a mature but non-breeding female, etc. Row 4 of N is of
particular interest. Stage 4 represents mothers, so n4j is the
expected number of reproductive events that a female in
stage j will experience during her remaining lifetime. Based
on this model, a newborn calf could expect to give birth
n41�4.74 times. A mature female could expect to give
birth n43�6.65 times; the difference reflects the likelihood
of mortality between birth and maturity. (Note that n43 �
n44�n45 �n55 and n53 �n54. This seems to be due to the
fact, specific to these data, that the survival probability of
stages 3 and 5 is indistinguishable from 1.0, and influences
the results below.)

We would like to know how the entries of N vary in
response to changes in the vital rates. To accomplish this,
we need matrix calculus, which is the topic of the next
section.

Sensitivity via matrix calculus

The output of a demographic calculation may be a scalar
(e.g. l), a vector (e.g. the stable stage distribution), or a
matrix (e.g. N). The parameters of interest may also be
scalars, vectors (e.g. a vector of survival probabilities), or
matrices (e.g. the entries of U). Thus, sensitivity analysis
requires a way to differentiate scalar-, vector- and matrix-
valued functions of scalar, vector or matrix arguments. This
is provided by matrix calculus. The approach I describe here
is due to Magnus and Neudecker (1985, 1988); it is called
the vector-rearrangement method in the review paper of

Nel (1980). Because matrix calculus has only recently been
applied in ecology (Caswell 2006, 2007, 2008, 2009, Verdy
and Caswell 2008), I summarize some of the basic methods.
For more details see Caswell (2007), the mathematical
introduction in Abadir and Magnus (2005), or the
complete treatment in Magnus and Neudecker (1988).

Differentiation

If x and y are scalars, differentiating y with respect to x gives
the familiar derivative dy/dx. If y is a n�1 vector and x is a
scalar, differentiating y with respect to x gives the n�1
vector

dy

dx
�

dy1

dx
n

dyn

dx

0
BBBBB@

1
CCCCCA

(8)

If y is a scalar and x is a m�1 vector, differentiating y with
respect to x gives the 1�m vector (called the gradient
vector)

dy

dxT
�

� 1y

1x1

� � � 1y

1xm

	
(9)

Note the orientation of dy/dx as a column vector and
dy/dxT as a row vector.

If y is a n�1 vector and x a m�1 vector, differentiating
y with respect to x gives the n�m matrix (called the
Jacobian matrix)

dy

dxT
�

�
dyi

dxj

	
(10)

Derivatives involving matrices are written by transforming
the matrices into vectors using the vec operator (which
stacks the columns of the matrix into a column vector), and
then applying the rules for vector differentiation. That is,
the derivative of the m�n matrix Y with respect to the
p�q matrix X is the mn�pq matrix

dvec Y

d(vec X)T (11)

For notational convenience, I will write vecTX for (vec X)T.
These definitions (unlike some alternatives; see Magnus

and Neudecker 1985) lead to the familiar chain rule of
calculus. If Y is a function of X, and X is a function of Z,
then

dvec Y

dvecT Z
�

dvec Y

dvecT X

dvec X

dvecT Z
(12)

In practice, matrix derivatives are constructed by forming
differentials, where the differential of a matrix (or vector) is
the matrix (or vector) of differentials of the elements; i.e.

dX� (dxij) (13)

The key result was proven by Magnus and Neudecker
(1985, 1988) who showed that if, for some matrix Q, it can
be shown that
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dy�Qdx (14)

then

dy

dxT
�Q (15)

This is the ‘‘first identification theorem’’ of Magnus and
Neudecker (1985).

The combination of the chain rule and the identification
theorem permits more complicated expressions involving
differentials to be turned into derivatives with respect to an
arbitrary vector, say u. If it can be shown that

dy�Qdx�Rdz (16)

then

dy

duT
�Q

dx

duT
�R

dz

duT
(17)

for any u.
To arrive at expressions where the identification theorem

can be applied, we will make extensive use the Kronecker
product, defined as

A�B�
a11B a12B � � �
a21B a22B � � �
n n :::

0
@

1
A (18)

The vec operator and the Kronecker product are related by
a theorem due to Roth (1934); if

Y�ABC (19)

then

vec Y�(CT�A) vec B (20)

Finally, we will want to explore elasticities, or propor-
tional sensitivities. To convert a matrix of sensitivities of y
to x to elasticities requires multiplying the jth column by xj

and dividing the ith row by yi. This can be accomplished by
matrix multiplication as

diag (x)�1

�
dy

dxT

	
diag (y) (21)

Sensitivity of the fundamental matrix

Let us apply matrix calculus to find the sensitivity of the
fundamental matrix N (Caswell 2006). This result will
appear in the sensitivity analysis of most other demographic
quantities. Let u be a vector of parameters (of dimension
p�1) on which the entries of the transition matrix U
depend. The fundamental matrix satisfies

I�NN�1 (22)

Differentiating both sides gives

0�(dN)N�1�N(dN�1) (23)

Applying the vec operator and Roth’s theorem to both sides
gives

vec 0�[(N�1)T�Is] dvec N�(Is�N) dvec N�1 (24)

Solving for dvec N gives

dvec N�[(N�1)T�Is]
�1(Is�N) dvec U (25)

To simplify this, it helps to know two facts about the
Kronecker product:

(A�B)�1�A�1�B�1 (26)

(A�B) (C�D)�(AC�BD) (27)

provided that the sizes of the matrices permit the indicated
operations. Thus dvec N in (25) simplifies to

dvec N�(NT�N)dvec U (28)

The identification theorem (15) implies

dvec N

dvecT U
�NT�N (29)

and the chain rule permits us to write

dvec N

duT
�(NT�N)

dvec U

duT
(30)

The left-hand side of (30) is a matrix, of dimension s2�p,
containing the sensitivity of every entry of N to every
parameter in u. The matrix dvec U/duT is an s2�p matrix
containing the sensitivities of all the elements of U to all the
elements of u. From (21), the elasticity of the fundamental
matrix is given by

diag (vec N)�1 dvec N

duT
diag(u) (31)

The right whale
As an example, we use (30) and (31) to calculate the
elasticity of the expected lifetime number of reproductive
events, E(n41)�n41, with respect to the survival probabil-
ities s1, . . . , s4, the maturation probability g2, and the
breeding probability g3. Figure 2 shows that the number of
breeding events is most elastic to mature female survival
(s3), and less so to the survival of immature females or
mothers (s2 and s4). Changes in the probability of giving
birth, g3, have, remarkably enough, no impact on the
expected number of reproductive events.

The elasticity of n41 to s3 (survival of mature females) is
approximately 30. This implies that a 1% increase in s3

would produce about a 30% increase in the expected
number of reproductive events.

From stage to age

The fundamental matrix summarizes the age-specific
information implicit in the transient matrix U, even if the
model is stage-classified and age does not appear explicitly.
We now extend this, to explore a series of age-specific
demographic indices and their sensitivity analyses. Some are
well known (R0, generation time), others little explored
(variance in longevity, for example). They can, however, all
be easily calculated from any stage-classified model.

Variance in visits to transient states

The number of visits to any transient state is a random
variable; the fundamental matrix N gives its mean. Some
individuals will visit that state more often, some less often,
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some not at all. This basic property of individual
stochasticity can be described by the variance of nij.
Iosifescu (1980, theorem 3.1) gives a formula for all the
moments of the nij; from this we can calculate the matrix of
variances

V�(V(nij))� (2Ndiag�I)N�N(N (32)

(Caswell 2006) where
(

denotes the Hadamard, or ele-
ment-by-element, product and Ndiag is a matrix with the
diagonal elements of N on its diagonal and zeros elsewhere.
The standard deviations of the number of visits to transient
states are the square roots of the elements of V.
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Lifetime reproductive events

Figure 2. (a) the elasticity, to each of the vital rates, of the
expected lifetime number of reproductive events (E(n41)) for the
right whale. (b) the elasticity of the variance in the lifetime number
of reproductive events, V(n41) for the right whale. Vital rates: s1�s4

are survival probabilities (s5�s3 by assumption in this model); g2

is the probability of maturation, and g3 is the probability of
reproduction.
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Figure 3. (a) the elasticity, to each of the vital rates, of life
expectancy for a female right whale calf. (b) elasticity of the
variance in longevity for a female right whale calf. Parameters as in
Fig. 2.
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Figure 4. The elasticity, to each of the vital rates, of the
net reproductive rate (R0) for the right whale. Parameters as in
Fig. 2.
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Figure 5. (a) the sensitivity, to each of the vital rates, of the net
reproductive rate R0 for the right whale. (b) the sensitivity of
population growth rate l. The derivative of l is the selection
gradient; use of the derivative of R0 leads to erroneous predictions
unless the population is at equilibrium. Parameters as in Fig. 2.
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The right whale
For the right whale, the matrix of variances calculated from
(32) is

V�

0:00 0:00 0:00 0:00 0:00
36:18 35:95 0:00 0:00 0:00

466:44 484:80 503:32 494:86 503:32
35:80 36:98 37:54 37:54 37:54
33:28 34:94 37:54 37:54 37:54

0
BBBB@

1
CCCCA

(33)

and the corresponding standard deviations are



SD(nij)

�
�

0:00 0:00 0:00 0:00 0:00
6:02 6:00 0:00 0:00 0:00

21:60 22:02 22:43 22:25 22:43
5:98 6:08 6:13 6:13 6:13
5:77 5:91 6:13 6:13 6:13

0
BBBB@

1
CCCCA
(34)

The variance in the nij is the result of luck, not
heterogeneity. That is, it is the variance among a group of
individuals all experiencing exactly the same stage-specific
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Figure 6. The elasticity, to each of the vital rates, of the cohort
generation time for a newborn calf right whale. Parameters as in
Fig. 2.
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Figure 7. The expectation and standard deviation of longevity for Lomatium bradshawii in a stochastic fire environment. (a) the expected
longevity conditional on the initial environment (e0). Environments: 1�year of a fire, 2�1 year post-fire, 3�2 years post-fire, 4�three
or more years post-fire. (b) the expected longevity averaged over the stationary distribution of initial environments. (c) the standard
deviation of longevity conditional on the initial environment. (d) the standard deviation of longevity over the stationary distribution of
initial environments. The frequency of fire is 0.5 and the temporal autocorrelation r�0.7. Based on matrices from Caswell and Kaye
(2001).
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transition and mortality probabilities in U. As such, it can
provide a null model for studies of heterogeneity in
quantities such as the number of reproductive events.
This idea has been explored independently, and in more
detail, by Tuljapurkar et al. (2009).

The sensitivity of the variance is derived in Supplemen-
tary material Appendix A.1 as

dvec V

duT
�


2(NT�Is) diag (vec Is)�2(Is�Ndiag)�Is2

�2diag(vec N)

�
dvec N

duT

(35)

Elasticities of V are calculated using (21).

Hint � before looking at Supplementary material Appen-
dix A.1, to derive (35), write Ndiag�I(N, differentiate

(32), and use the fact that vec (A(B)�diag (vec A)
vec B�diag (vec B)vec A.

The right whale
The elasticities of V(n41), calculated from (35) and (31), are
shown in Figure 2b. They are roughly proportional to the
elasticities of E(n41); that is, the vital rates that have large
effects on the expected number of reproductive events also
have large effects on the variance.

Longevity and life expectancy

Longevity is an important demographic characteristic
(Carey 2003). Mean longevity, or life expectancy, is one
of the most widely reported demographic statistics, used to
compare populations, species, countries, regions, historical
periods, etc. and to examine the effects of evolutionary,
management, medical, and social processes. The longevity
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of an individual is the sum of the time spent in all of the
transient states before final absorption. Let the random hij

denote the longevity of an individual currently in stage j.
Then

hj�
X

i

nij (36)

A vector E(h) of expected longevities, or life expectancies, is
obtained by summing the columns of N:

E(hT)�eTN (37)

where e is a vector of ones. Often, life expectancy at birth is
of primary interest. If stages are numbered so that birth
corresponds to stage 1, then life expectancy at birth is

E(h1)�eTNe1 (38)

where e1 is a vector with 1 in the first entry and zeros
elsewhere.

The sensitivity of life expectancy in age-classified models
has been studied by Pollard (1982), Keyfitz (1977; see
Keyfitz and Caswell 2005, section 4.3), and Vaupel (1986,
Vaupel and Canudas Romo 2003). For stage-classified
models, the sensitivity of E(h) is (Caswell 2006)

dE(h)

duT
� (Is�eT)(NT�N)

dvec U

duT
(39)

Hint � to obtain (39), differentiate both sides of (37), apply
the vec operator, and use (30) for the derivative of N. See
Supplementary material Appendix A.2 for the derivation.

The right whale
For the right whale, the vector of life expectancies is

E(hT)�
�

32:0 34:3 35:2 31:8 36:2
�

(40)

Because mortality rates vary relatively little among stages,
the life expectancies of the stages differ by only about 15%.
Thus life expectancy for a calf implied by these data was 32
years. The elasticities of life expectancy to the vital rates are
shown in Fig. 3. Life expectancy is most elastic to mature
female survival s3, and less so to s2 and s4. This partly
reflects the longer amount of time spent as a mature female,
compared to an immature female or mother; see (7). The
elasticity to the birth rate g3 is negative, because of the
reduced survival of mothers. A 1% increase in g3 will lead
to a 0.51% decrease in life expectancy. This is one possible
measure of the cost of reproduction.

Variance in longevity

Like the number of visits to a transient state, longevity is a
random variable, the variability of which is a measure of
individual stochasticity. Individuals differ in longevity
depending on the pathways taken from birth to death.
This variance has been explored by human demographers,
using life table methods, as one way of studying the
inequality in life span generated by a given mortality
schedule, and how that inequality has changed over time
(e.g. Wilmoth and Horiuchi 1999, Shkolnikov et al. 2003,
Edwards and Tuljapurkar 2005).

The variance of the time to absorbtion, calculated by
Caswell (2006) from results in Iosifescu (1980, theorem
3.2), is

V(hT)�eTN(2N�I)�E(hT) ( E(hT) (41)

The sensitivity of the variance in longevity is

dV(h)

duT
�

h
2(NT�eT)�2(Is�eTN)�(Is�eT)

�2diag(E(h))(Is�eT)
i
(NT�N)

dU

duT
(42)

The first entry of (42) gives the sensitivity of the variance in
longevity starting in stage 1.

Hint � to derive (42), differentiate (41) and apply the vec
operator and Roth’s theorem to each term, using (39) for
the derivative of E(h). See section A.3 for details.

The right whale
For the right whale, the variance and standard deviation of
longevity are given by

V(h)T�
�

1157 1167 1172 1163 1172
�

(43)

SD(h)T�
�

34:0 34:2 34:2 34:1 34:2
�

(44)

The life expectancy at birth of 32 years has a standard
deviation of about 34 years. Note that this result implies a
very long positive tail of longevity. The interpretation of
this result is tricky; I will return to it in the Discussion.

The elasticities of the variance of longevity of a calf are
shown in Fig. 3b. The variance in longevity is increased by
increases in s3, less so by increases in s2 and s4. The
pattern of the elasticities is strikingly similar to that of the
elasticities of E(h1).

The net reproductive rate

In age-classified demography, the net reproductive rate R0

measures lifetime reproductive output. It also appears in
epidemiology, where it measures the potential of a disease
to spread (e.g. Diekmann et al. 1990, van den Driessche
and Watmough 2002). The classical net reproductive rate
satisfies three conditions:

C1: R0 measures the expected lifetime production of
offspring.

C2: R0 measures the rate of increase per generation (in
contrast to the rate of increase per unit of time, which
is given by l or r).

C3: R0 is an indicator function for population persistence.
If R0�1 then an individidual will, on average,
produce more than enough offspring to replace itself,
the next generation will be larger than the present
generation, and the population will grow. If R0B1,
each generation is smaller than the one before, and the
population will decline to extinction.
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In classical demography (Lotka 1939, Rhodes 1940),

R0�g
�

0

l (x)m(x)dx (45)

where l (x) is survivorship to age x and m(x) is the maternity
function. It is not difficult to show that R0 defined in this
way satisfies conditions C1, C2, and C3.

In stage-classified models, however, the calculation of R0

must account for the multiple pathways that an individual
may follow through the life cycle, and the production of
multiple kinds of offspring along each of these pathways.
Rogers (1974, Lebreton 1996) considered R0 in the context
of an age-classified population distributed across a set of
spatial regions. However, these calculations assume that age-
specific survival and fertility schedules are available for each
region. A more general solution was provided by Cushing
and Yicang (1994) for stage-classified populations with no
age-specific information. Their analysis produces an index
that satisfies as many as possible of the conditions C1, C2

and C3. De Camino-Beck and Lewis (2007, 2008) have
derived graph-theoretic ways to calculate R0.

Consider an initial cohort at t�0 with structure x0, and
call this the first generation. This cohort will produce
offspring according to Fx0. The survivors of the cohort at
t�1 will produce offspring according to FUx0. The
survivors at t�2 will produce offspring FU2x0, and so
on. The second generation is composed of all the offspring
of the first generation, obtained by summing over the
lifetime of the cohort

x(1)�
�

F
X�
i�0

Ui

	
x0� (FN)x0 (46)

Iterating this process leads to a model for the growth from
one generation to the next

x(k�1)�FNx(k) (47)

Cushing and Yicang (1994) define R0 as the per-generation
growth rate, given by the dominant eigenvalue r of FN,

R0�r[FN] (48)

Thus the Cushing-Yicang measure of R0 clearly satisfies
condition C2. Cushing and Yicang (1994) also prove
(theorem 3) that R0 defined in this way is less than, equal
to, or greater than 1 if and only if l is less than, equal to, or
greater than one, respectively, thus satisfying condition C3.

The relation between lifetime offspring production and
R0 (condition C1) is more complicated when the life cycle
contains multiple types of offspring. If only a single type of
offspring is produced (call it stage 1), then F will have
nonzero entries only in its first row, and FN will be upper
triangular, with its dominant eigenvalue appearing in the
(1, 1) position, i.e. the sum of the fertilities of each stage
weighted by the expected time spent in that stage. This is
precisely the expected lifetime offspring production, so for
the case of a single type of offspring, the Cushing-Yicang R0

also satisfies C1.
However, if the life cycle contains multiple types of

offspring (say stages 1, . . . , h), the upper left h�h corner of
FN will contain the expected lifetime production
of offspring of types 1, . . . , h, by individuals starting life
as types 1, . . . , h. Since such a life cycle contains more than

one kind of expected lifetime production of offspring, R0

cannot satisfy C1 in the sense of being the expected lifetime
reproduction. Instead, R0 is calculated from all these
expectations (as the dominant eigenvalue of this h�h
submatrix). It determines per-generation growth and popu-
lation persistence as a function of the expected lifetime
production of all types of offspring in a way that satisfies C2

and C3.

The right whale
The right whale produces only a single type of offspring.
The fundamental matrix N is given by (7), the fertility
matrix is given by (5), and the generation growth matrix is

FN�

2:18 2:42 3:06 2:60 3:06
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA (49)

The dominant eigenvalue of FN is its (1, 1) entry

R0�
X

j

f 1jE(nj1)�2:18 (50)

It is interesting to compare R0�2.18 with E(n14)�4.74.
Only female offspring are counted in R0, whereas E(n14)
counts reproductive events regardless of the sex of the
offspring produced. Still, R0 is less than half of E(n14),
because of the less than perfect survival of calves from t to
t�1.

Net reproductive rate in periodic models
Periodic time-varying models (Caswell 2001, chapter 13)
are an interesting special case of the multiple offspring type
problem. In a periodic model, apparently identical offspring
(e.g. seeds) produced at different phases of the cycle (e.g.
seasons) are, in effect, of different types. To the extent that
they face different environments, they will differ in their
expected offspring production, and R0 will differ depending
on the phase of the cycle in which it is calculated.

The net reproductive rate in a periodic environment was
calculated by Hunter and Caswell (2005a) in a study of the
sooty shearwater, a pelagic seabird nesting on offshore
islands in New Zealand. The year was divided into two
short phases, in which breeding and harvest of chicks occur,
and a longer phase encompassing the rest of the year. Let
Bi�Ui�Fi be the projection matrix in phase i of the cycle.
Without loss of generality, consider an environment with a
period of 2 (e.g., winter and summer). The population is
projected over a year, starting in phase 1, by

A1�B2B1 (51)

which is decomposed as

A1� (U2�F2) (U1�F1)
�U2U1�U2F1�F2U1�F2F1 (52)

The first term includes only transitions, whereas the last
three terms all describe some aspect of reproduction. Thus
the annual matrix is A1�Û� F̂; where

Û1�U2U1 (53)
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F̂1�U2F1�F2U1�F2F1 (54)

and

R(1)
0 �r

h
F̂1(I�Û1)

�1
i

(55)

where the superscript 1 indicates that this is the net
reproductive rate of a generation beginning in season 1.
The corresponding matrices for a generation starting in
season 2 are obtained from

A2�B1B2 (56)

and lead to a net reproductive rate R(2)
0 : It is easily verified

that R(1)
0 "R(2)

0 in general. This contrasts with the popula-
tion growth rate l, which is independent of cyclic
permutation of the seasons. However, since l is the same
for A1 and A2, it must be the case that R(1)

0 and R(2)
0 are both

greater than or less than 1 together.

Sensitivity of the net reproductive rate
Since R0 is obtained as an eigenvalue, its sensitivity to
parameter changes is easy to derive. Let x and y be the right
and left eigenvectors of FN corresponding to R0. Then
(Caswell 2006) the sensitivity of R0 is

dR0

duT
�(yTNT�xT)

dvec F

duT
�(yT�xTF)(NT�N)

dvec U

duT

(57)

The first term captures the effects of changing fertility, the
second term captures effects of changes in survival and
transitions. The derivation of (57) is given in Supplemen-
tary material Appendix A.4.

Hint � to derive (57), write R0�r[FN] and write dR0 in
terms of the right and left eigenvectors of FN and the
differential of FN. Then expand d(FN)�(dF)N�Fd(N)
and apply the vec operator and the chain rule. See (A-22)
and (A-23).

The right whale
The elasticity of R0 is shown in Fig. 4; R0 is most elastic to
s3, less so to s2 and s4. Remarkably, the elasticity of R0 to
the birth probability g3 is zero (actually, �10�9). This
is a case where lifetime reproductive output is affected
strongly by survival, slightly by maturation, but not at all by
the probability of breeding given survival. This seems to be
a consequence of the lower survival probability of mothers;
an increase in g3 increases the probability of reproduction,
but reduces the lifetime over which that reproduction will
be realized.

Invasion exponents, selection gradients and R0

Selection on life history traits can be studied in terms of the
invasion exponent, which measures the rate at which a
mutation, introduced at low densities, will increase in the
environment created by a resident phenotype (Metz et al.
1992, Ferriére and Gatto 1993; for a recent introduction
see Otto and Day 2007). The selection gradient on a trait is
the derivative of the invasion exponent with respect to the

value of the trait. If the derivative is positive, selection favors
an increase in the trait, and vice-versa. The invasion
exponent in a density-independent model is given by log
l. In a density-dependent model, the invasion exponent is
given by the growth rate at equilibrium, l[n̂]: The net
reproductive rate R0 is not, strictly speaking, an invasion
exponent, but because it measures expected lifetime
reproduction, it is attractive as a measure of fitness (e.g.
discussion in Kozlowski 1999). Using R0 as a measure of
fitness will lead to erroneous conclusions unless the
selection gradients, measured in terms of l and of R0,
give the same answers, i.e. unless dR0/du8d log l/du.

For an age-classified model, we write R0 in terms of the
net maternity function f(x,u)�l(x,u)m(x,u) where both
survival and reproduction depend on some parameter u.
Then

R0(u)�g
�

0

f(x; u)dx (58)

The growth rate r�log l is the solution to

1�g
�

0

f(x; u)e�r(u)xdx (59)

Differentiating (58) and (59) gives

dR0

du
�g

�

0

df(x; u)

du
dx (60)

dr

du
�
g

�

0

e�rx
df(x;u)

du dx

g
�

0

xf(x; u)e�rxdx
(61)

Equation (61) is Hamilton’s (1966) famous result; the
denominator is the generation time measured as the average
age of reproduction in the stable age distribution.

When R0�1 and r�0, it follows from (60) and (61)
that the gradients dr/du and dR0/du are proportional. Use
of either will lead to the same conclusions about selection.
But when r"0, this is not the case. If r�0, then dr/du is
reduced for traits that operate at later ages, because df/dx
is weighted by e�rx. It is an open problem to generalize this
result to stage-classified models, and prove that

dlog l
duT

8
dR0

duT
(62)

when l�R0�1. In a few cases I have examined, it appears
to be true numerically. As the following example shows, it is
certainly the case that when l"1, the derivatives are not
generally proportional.

The right whale
The lack of proportionality between the selection gradients
in terms of l and of R0 means that predictions can differ
dramatically depending on which is used as the invasion
exponent. This is particularly true when tradeoffs exist
between two or more traits. For the right whale, l�1.025
and R0�2.183. Figure 5 shows the sensitivity of l and of
R0; while the patterns are similar, they are not proportional,
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and the use of R0 as an invasion exponent would result in
erroneous predictions. Suppose a trait existed that would
increase the birth probability g3 at the cost of a reduction in
calf survival s1, with the cost measured by c��ds1/dg3.
An increase in this trait would be favored by selection
provided that

cB
1l=1g3

1l=1s1

�0:96 (63)

But if expected lifetime reproduction was used as an
invasion exponent, the analysis would conclude that
selection would favor an increase in the trait only if

cB
1R0=1g3

1R0=1s1

�0:0 (64)

That is, according to R0, any cost whatsoever of increased
birth rate would prevent selection from favoring it.
According to l (and correctly, in this case), selection would
favor increased birth rate provided that the cost was not too
great. In spite of the superficial similarity of the patterns in
Fig. 5, the evolutionary implications are quite different,
reflecting the impact of timing of life history events on l.
The sensitivities of l to s2 and g2, which influence early
survival and the age at maturity, are larger than the
sensitivities of R0 to the same parameters.

Cohort generation time

Generation time measures the typical age at which
offspring are produced, or the age at which the typical
offspring is produced. It appears in the IUCN criteria for
classifying threatened species (IUCN 2001) as well as in
various evolutionary considerations. There are several
definitions of generation time (Coale 1972); here we
will examine the cohort generation time, defined as the
mean age of production of offspring in a cohort of
newborn individuals. From the definition it is clear why
calculation of generation time is a challenge in stage-
classified models, in which the age of parents does not
appear. Moreover, in stage-classified models, individuals
may be born into several stages (e.g. cleisthogamous vs
chasmogamous seeds; LeCorff and Horvitz 2005), each
with a different subsequent pattern of development,
survival, and fertility. There could be a different genera-
tion time for each type of offspring, and if individuals
may produce more than one type of offspring, the average
age at which they are produced could differ from one kind
of offspring to another.

Thus, we expect to have a generation time that measures
the mean age of production of offspring of type i by an
individual born in stage j. Write this as a vector m(j): Then it
can be shown (Supplementary material Appendix A.5) that

m(j)�diag (FNej)
�1 FNUNej (65)

The sensitivity of m(j) is obtained by a methodical
application of matrix calculus to (65). To simplify notation,
define (for this calculation only)

X�diag (FNej) (66)

r�FNUNej (67)

The resulting sensitivity of m(j) is

dm(j)

duT
��(rT�I)(X�1�X�1) diag (vec I)

�

(eeT

j NT�I)
dvec F

duT
�(eej�F)

dvec N

duT

�

�
�

[(NUNej)
T�I]

dvec F

duT
�[(UNej)

T�F]

� dvec N

duT
�[(Nej)

T�FN]
dvec U

duT

�[eT
j �FNU]

dvec N

duT

�
(68)

Hint � to derive (68), it helps to note that, for any vector z,
one can write diag(z)�I � zeT: Apply this to X, differentiate
all the terms in m(j); and apply the vec operator. With any
luck, you will come out to this answer. See Supplementary
material Appendix A.5.1 for derivation.

The right whale
The elasticities of the generation time m(1) of a calf are
shown in Fig. 6. Changes in early survival (s1 and s2) have
little effect. Adult survival s3 and, to a lesser extent, s4

increase the generation time by extending the reproductive
lifespan. The maturation probability g2 and the birth
probability g3 have negative effects on generation time,
because they speed up reproduction.

Variable environments

All the results presented so far have pertained to constant
environments. The extension to variable environments is
obviously interesting, and there are exciting recent devel-
opments in this area (Caswell 2006, Tuljapurkar and
Horvitz 2006). Several cases can be considered:

. Deterministic aperiodic environments. These usually
appear as specific historical sequences; e.g. the specific
sequence of vital rates exhibited by the right whale
between 1980 and 1998 (Caswell 2006). That
sequence is fixed, and is neither random nor periodic.

. Periodic environments. A periodic model may de-
scribe seasonal variation within a year, or may
approximate inter-annual variability in events such as
floods, fires, or hurricanes.

. Stochastic iid environments. In such environments,
successive states are drawn independently from a fixed
probability distribution; hence the identifier iid, short
for ‘independent and identically distributed.’

. Markovian stochastic environments. In a Markovian
environment the probability distribution of the next
environmental state may depend on the current state.
This permits study of the effects of environmental
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autocorrelation. Markovian environments include
periodic and iid environments as special cases.

See Tuljapurkar (1990) for a thorough discussion of types
of stochastic environments.

When studying variable environments, it is important to
distinguish period and cohort calculations. Period calcula-
tions are based on the vital rates in a given year. They
describe the results of the hypothetical situation where the
conditions of year t are maintained indefinitely, and
compare those to the results for conditions in year t�1,
etc. Period calculations are a way to summarize the effects of
changing environment. But an individual born in year t
does not live its life under the conditions of year t. It spends
its first year of life under the conditions in year t, its second
year under the conditions of year t�1, and so on. Results
calculated in this way are called cohort calculations, because
they describe a cohort born in year t and living through the
environmental sequence starting then. Period-specific cal-
culations are easy; simply apply the time-invariant calcula-
tion to the vital rates of each year and tabulate the results.
Cohort calculations, however, must account for all the
possible environmental sequences through which a cohort
may pass. Caswell (2006) and Tuljapurkar and Horvitz
(2006) independently introduced two different, comple-
mentary approaches to doing so. I will present the former
approach here.

After presenting the analysis, I will present an example
using a model for a prairie plant in a stochastic fire
environment. The matrices for this example are large, and
are presented in Supplementary material Appendix B. I will
refer to those matrices at appropriate places throughout the
derivations.

A model for variable environments

In a variable environment, the transient matrix U is a
time-varying matrix U(t). We can define a fundamental
matrix by

N�I�U(0)�U(1)U(0)�U(2)U(1)U(0)� � � � (69)

The (i, j) element of N is the expected number of visits to
transient state i by an individual starting in transient state
j at time 0, and experiencing the specific sequence of
environments U(0), U(1), . . .. Thus there will be a
different matrix N for each possible environmental
sequence.

Tuljapurkar and Horvitz (2006), whose paper I highly
recommend, work directly from (69) to develop the means
and variances of N, h, and survivorship, in periodic, iid,
and Markovian environments. My previous paper (Caswell
2006) presented a different approach, in which an
individual is jointly classified by its stage and its environ-
ment. This approach is an extension of the vec-permutation
model developed by Hunter and Caswell (2005b) for spa-
tial models. The relations between these two approaches,
formal proofs of their equivalence, and extensions of both
to additional demographic variables are intresting open
problems.

Suppose that there are q environmental states o�1, . . .,
q and s stages, g�1, . . ., s. Corresponding to environment
i is a s�s transient matrix Ui. Assemble the matrices Ui into
a block-diagonal matrix

U�
U1 :::

Uq

0
@

1
A (70)

of dimension sq�sq (see equation (B-1)).
The transitions among environmental states are defined

by a q�q column-stochastic matrix D. Use the matrix D to
construct a block-diagonal environmental transition matrix

D�

D 0 � � � 0
0 D � � � 0

:::
0 0 � � � D

0
BB@

1
CCA (71)

of dimension sq�sq (B-2).
Suppose that there are 4 environmental states. In an

aperiodic deterministic environment

D�

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 1

0
BB@

1
CCA (72)

That is, the environment moves deterministically from state
1 to state 2 to state 3 to state 4. Setting d44�1 solves the
problem of what to do at the end of the sequence, by the
(possibly satisfactory) trick of letting the final state repeat
indefinitely. In a periodic environment,

D�

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

0
BB@

1
CCA (73)

In an iid environment in which environment i occurs with
probability pi,

D�

p1 p1 p1 p1

p2 p2 p2 p2

p3 p3 p3 p3

p4 p4 p4 p4

0
BB@

1
CCA (74)

In a Markovian environment, D is a column stochastic
transition matrix describing the transition probabilities. I
will assume that the environmental Markov chain is
ergodic, with a stationary probability distribution denoted
by p. This gives the long-term frequency of occurrence of
each environmental state.

The state of the cohort is described by a matrix X, of
dimension s�q, with rows corresponding to stages and
columns to environments, and where xij(t) is the expected
number of individuals in stage i and environmental state j at
time t.

X(t)�
x11 � � � x1q

n n
xs1 � � � xsq

0
@

1
A (75)

We rearrange X into a vector by applying the vec operator
to XT,
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vec XT�


x11 � � � x1q½ � � � � � � � � � ½xs1 � � � xsq

�T

(76)

The first block of entries gives stage 1 individuals in
environments 1 through q. The second block gives stage 2
individuals in environments 1 through q, and so on.

To describe the dynamics of the cohort, suppose that
individuals first move among stages, according to the vital
rates determined by the current environment, and then the
environment changes to a new state according to D. Then

vec TX(t�1)�DKs;qU KT
s;qvecTX(t) (77)

The matrix Ks,q is the vec-permutation matrix (Henderson
and Searle 1981, Hunter and Caswell 2005b), also called
the commutation matrix (Magnus and Neudecker 1979),
which permutes the entries of a vector so that

vec TX�Ks;qvec X (78)

Like all permutation matrices, its transpose is equal to its
inverse (see Henderson and Searle 1981 or Hunter and
Caswell 2005b for its calculation). In the model its role
is to rearrange the population vector into a form appro-
priate for multiplication by the block-diagonal matrices B
and D.

Working from right to left, (77) first rearranges the
vector, then applies the block-transition matrix U, then
reverses the rearrangement of the vector, and finally applies
the environmental transition block matrix D to obtain the
expected cohort at t�1. This gives a transition matrix for
the joint process,

Ũ�D Ks;q U KT
s;q (79)

that incorporates the demographic transitions within each
environment and the patterns of time variation among
environments (see (B-3) for an example). Here and in
what follows, the tilde distinguishes the matrix from the
environment-specific matrices. Note that (77) computes
the expected population at t�1 from the expected
population at t. If this approach was taken using
projection matrices instead of transient transition matri-
ces, the eigenvalues of the resulting product matrix would
give the growth rate of the mean population, but not
the stochastic growth rate (which is always less than or
equal to the growth rate of the mean population). For
calculations such as life expectancy, which are explicitly
properties of the expected population, the difference does
not arise.

Matrices of similar form, but not using this formalism,
were introduced by Horvitz to study populations in habitat
patches where the habitat patches change state over time, for
example in recovering from disturbance (Horvitz and
Schemske 1986, Pascarella and Horvitz 1998). Horvitz
introduced the term ‘‘megamatrix’’ to describe these
models. It can be shown (Caswell unpubl.) that a mega-
matrix arises as a special case of (79) when the population is
classified by stages within environmental states, the demo-
graphic matrices are applied first, and the environmental
transition matrices Di are identical for all stages, as is the
case in (71).

The fundamental matrix

Since Ũ is the transient matrix of an absorbing Markov
chain, the fundamental matrix in the time-varying environ-
ment is

Ñ�(Isp�Ũ)�1 (80)

The elements of Ñ give the expected number of visits to
each stage, in each environment, as a function of the
starting stage and starting environment.

Notation alert
Any attempt to develop a complete system of notation for Ñ
would obscure more than it would clarify. However,
pictures can help a great deal. As I present the fundamental
matrix and some of the properties calculated from it, I will
use diagrams for a simple case with three stages and two
environments. I will often indicate the dimension of
matrices and vectors with subscripts. I will use g to denote
stages (g�1, 2, . . . , s) and e to denote environments
(e�1, . . . , q). I will use superscripts on Ñ and quantities
derived from it, to distinguish different ways of combining
information across environmental states (Table 1).

Recall that in a constant environment, nij was the
number of visits to stage i, starting in stage j. Now we
must consider the visits to stage i in environment e, starting
in stage j and environment e0, so we write

Ñ�E(nij;e½e0) (81)

The structure of Ñ when s�3 and q�2 is

Table 1. Superscript notation for time-varying models. The tilde on the variables indicates that they are calculated from the time-varying
transient matrix Ũ in (79). Visits to transient states and times to absorbtion depend on the initial and final demographic and environmental
states. The superscripts (%, §, ) indicate various choices of summing and averaging over the environmental states. The superscripts are shown
here for the fundamental matrix Ñ.

Symbol Definition Description Equation

Ñ E(nij,eje0) Expected visits to state i in environment e, starting from state j in environment e0 (81)
Ñ% E(nijje0) Expected visits to state i, summed over environments, starting from state j in environment e0 (82)
Ñ%% Rearrangement of the rows and columns of Ñ% (83)
Ñ§ E(nij,e) Expected visits to state i and environmental state e, averaged over initial environmental states. (84)
Ñ§§ Rearrangement of the rows and columns of Ñ§ (85)
Ñ E(nij) Expected visits to state i summed over environments, starting from state j and averaged over initial

environmental states.
(86)
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(see (B-4) for an example). From Ñ we can obtain the
expected number of visits to each stage, regardless of the
environment in which those visits occur, by aggregating
rows. The resulting matrix N% is

Ñ
$
�E(nij½e0)�(Is�eT

q�1)Ñ (82)

where eq�1 is a vector of ones. The structure of N% is:

(see (B-5) for an example). If it is useful to group stages
within initial environments, rather than grouping environ-
ments within stages, N% can be rearranged as

Ñ
%%
�Ñ

%
Ks;q (83)

with the structure

The matrices Ñ
%

and Ñ
%%

both display expected visits to
each stage as a function of initial environment. To describe
the fates of individuals without specifying their initial
environment, we take an expectation over the stationary
distribution p of initial environments. This gives

Ñ
&
�E[nij;e]�Ñ(Is�p) (84)

The structure of Ñ
&

is

(see (B-6) for an example). The rows of Ñ
&

can be
rearranged to display stages within environments, giving

Ñ
&&
�KT

s;qÑ
&

(85)

with the structure

Finally, aggregating over destination environments and
averaging over initial environments gives a matrix contain-
ing the expected visits to stages as a function of initial stage,
averaged over environments

Ñ �E[nij]�(Is�eT
q�1) Ñ(Is�p) (86)

The structure of /Ñ is

(see (B-7) for an example). The matrix Ñ , obtained by the
simple calculation (86), is ‘the’ fundamental matrix for
the variable environment. It could be compared directly to
the fundamental matrix in a constant environment (e.g. the
environment defined by one of the environmental states).

Longevity in a variable environment

Life expectancy, as a function of initial stage and initial
environment, is obtained by summing the columns of Ñ;

E(h̃
T
)�E(hT½e0)�eT

sq�1Ñ (87)

The structure of E(h̃
T
) is:

(see (B-8) for an example). Averaging this conditional life
expectancy over the stationary distribution p of initial
environments gives

E( h̃ )�E(h̃)(Is�p) (88)

(see (B-9) for an example). This measure of life expectancy
in a variable environment is directly comparable to E(h)
calculated from the same life history in a constant
environment.
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Variance in longevity
In a constant environment, the variance among individuals
in longevity is due to individual stochasticity. In a time-
varying environment, the variance contains an additional
component due to differences among individuals as a
function of their environment at birth. Applying (41) to
Ñ we obtain the variances conditional on the initial
environment:

V[h̃
T
½e0]�E(h̃

T
)(2Ñ�Isq)�E(h̃

T
)(E(h̃

T
) (89)

As indicated by the notation, V[h̃
T
½e0] is a conditional

variance of h̃; given the initial environment e0. The initial
environment is distributed according to the stationary
distribution p, so the unconditional longevity h follows a
finite mixture distribution with mixing distribution p. The
unconditional variance of h, taking account of both sources
of variability, is

V[h̃
T
]�V[E(h̃

T
½e0)]�Ep[V(h̃

T
½e0)] (90)

where Ep denotes the expectation over the stationary
distribution p of initial environments (Rényi 1970, p.
275, theorem 1). This can be rearranged as

V[h̃
T
]�Ep[h̃

T
(
h̃

T
]�Ep[h̃

T
](Ep[h̃

T
]�Ep[V(hT½e0)]

�[E(h̃
T
)(E(h̃

T
)](Is�p)�[E(h̃ )(E(h̃ )]T

�V[h̃
T
½o0](Is�p) (91)

(Frühwirth-Schnatter 2006, p. 10)

A time-varying example: Lomatium bradshawii

Lomatium bradshawii is an endangered herbaceous perennial
plant, found in only a few isolated populations in prairies of
Oregon and Washington. These habitats were, until recent
times, subject to natural and anthropogenic fires, to which
L. bradshawii seems to have adapted. Fall-season fires
increase plant size and seedling recruitment, but the effect
fades within a few years. Populations in burned areas have
higher growth rates and lower probabilities of extinction
than unburned populations (Caswell and Kaye 2001).

A stochastic demographic model for L. bradshawii was
developed by Caswell and Kaye (2001, Kaye et al. 2001,
Kaye and Pyke 2003), based on data from an experimental
study using controlled burning. Individuals were classified
into six stages based on size and reproductive status:
yearlings, small and large vegetative plants, and small,
medium, and large reproductive plants. The environment
was classified into four states defined by fire history: the
year of a fire and 1, 2, and 3� years post-fire. Projection
matrices were estimated in each environment; the example
here is based on one of the two sites (Rose Prairie) in
the original study. The matrices are given in Caswell and
Kaye (2001).

L. bradshawii performs well under recently burned
conditions, but less well in sites that have not been recently
burned. For example, the values of l are

Years since fire: 0 1 2 ]3
Growth rate l : 1:18 1:12 0:48 0:88

Caswell and Kaye (2001) found a minimum frequency of
fire (0.4�0.5) below which the stochastic growth rate was

negative and the population would be unable to persist.
Effects of autocorrelation were small, but positive auto-
correlation reduced the stochastic growth rate.

As an example of a time-varying analysis, let us examine
L. bradshawii in a Markovian environment. Let f be the
long-term frequency of fire, and r the temporal autocorrela-
tion. Then the transition matrix for environmental states is

D�

p q q q
1�p 0 0 0

0 1�q 0 0
0 0 1�q 1�q

0
BB@

1
CCA (92)

where q�f(1�r) and p�r�q.
The matrices involved in the analysis are given in

Supplementary material Appendix B. The first step is to
assemble the block diagonal matrices U and D, which are
shown in (B-1) and (B-2), respectively. Combining these
with the vec-permutation matrix leads to the time-varying
transient matrix given in Ũ (B-3). The time-varying
fundamental matrix Ñ�(I24�Ũ)�1 is given in (B-4).

Figure 7a shows the life expectancy E(h̃½e0) of
L. bradshawii as a function of initial stage and initial
environmental state, from (87). Life expectancy increases
with the stage (size) of a plant. A seedling has its greatest
life expectancy in the year of a fire, less in an environment
three or more years post-fire. A large flowering plant, in
contrast, has its greatest life expectancy in an environment
three or more years post-fire. When the environment-
dependence is averaged over the stationary distribution of
environmental states, there is a smooth increase in life
expectancy from �2.5 years for a seedling to 8 years for a
large flowering plant (Fig. 7b). The standard deviation of
longevity also increases with stage, in a pattern very similar
to that of the expectation.

These patterns in the mean and variance of longevity
(Fig. 7) depend on the stochastic properties of the
environment * in this case, the frequency f and auto-
correlation r of fires. Even with an environmental model
this simple, the effects of f and r can be complicated.
I know of no previous attempts to examine their effects on
longevity. To do so, I calculated life expectancy with f�0.5
for autocorrelation �1BrB1, and with r�0 for fire
frequency 0BfB1.

The life expectancy of early life cycle stages increases
monotonically with fire frequency (Fig. 8a), but the life
expectancy of large reproductive plants is greatest at either
low or high fire frequencies. The standard deviation of
longevity increases with f (Fig. 8b). As f01, the standard
deviation of longevity is approximately twice the mean.

The autocorrelation of fires has little effect on the
life expectancy of seedlings, but a larger effect on that of
large plants. For the latter, life expectancy is maximized as
r0�1 (alternating fire and non-fire years) or as r01
(long periods of fires alternating with long periods without
fire). The standard deviation of longevity also shows a
strong U-shaped response to r for all stages. The generality
of this pattern is unknown.
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Sensitivity analysis and extensions

It will be an enjoyable task to extend the sensitivity analysis
to accommodate variable environments, both in this
approach and in the Tuljapurkar�Horvitz approach, but it
is an open problem at this time. These two approaches are
complementary. The Tuljapurkar�Horvitz approach lends
itself to connections with the theory of random matrix
products (e.g. in deriving asymptotic growth rates of
variances in survivorship; see Horvitz and Tuljapurkar
2008), but my approach does not. On the other hand,
the Tuljapurkar-Horvitz approach requires separate calcula-
tions for each environment. My approach obtains results for
all initial environments in a single matrix multiplication,
albeit using the complicated matrix Ũ constructed using the
vec-permutation matrix. Because Ũ is a transient matrix for
a single Markov chain, it can be extended to calculate other
properties of absorbing chains, including multiple absorb-
ing states, conditional chains, and passage times (Caswell
2001, 2006). The matrix calculus approach makes for easy
computations, but usually does not yield readily interpre-
table formulas. There are many interesting and challenging
open problems.

Discussion

Taking advantage of the Markov chain embedded within a
population projection matrix opens up a wealth of demo-
graphic information. The age-classified information ex-
tracted from a stage-classified model can form a valuable
component of behavioral studies, especially if the model
(like the right whale example) includes reproductive
behavior as part of the life cycle structure. Longevity
provides a powerful way to compare mortality schedules
among species, populations, or environmental conditions,
but it has been inaccessible to stage-classified analysis prior
to the development of Markov chain methods. The
generation time characterizes an important population
time scale, with implications in conservation (IUCN
2001), but there has been no way to compute it from
stage-classified models. Absorbing Markov chains form the
basis of multi-state mark-recapture statistical methods
(Arnason 1973, Brownie et al. 1993, Fujiwara and Caswell
2002, Lebreton and Pradel 2002, Caswell and Fujiwara
2004, Lebreton et al. 2009), and thus provide natural links
to parameter estimation. Thus, although I have not
discussed estimation here, all the results for the right whale
are maximum likelihood estimates. With a little extra effort,
it would be possible to associate confidence intervals with,
say, the elasticities of the variance in longevity to changes in
survival. The Markov chain approach makes many demo-
graphic properties empirically estimable from data.

A Markov chain naturally treats individual trajectories
(i.e. individual lives) as stochastic realizations of an under-
lying stochastic process. This individual stochasticity is a
neglected component of demography. It complements
environmental stochasticity (externally imposed random
changes in vital rates) and demographic stochasticity
(randomness in the number of survivors when applying a
rate to a population). Individual stochasticity reflects
randomness in the pathways that individuals take through

the life cycle. It expresses itself in inter-individual variation
in such quantities as the number of visits to states or
longevity.

Individual stochasticity must be distinguished from
individual heterogeneity, which results from differences
among individuals in their inherent properties (e.g. frailty).
Heterogeneity has important consequences for demography
(Vaupel et al. 1979, Vaupel and Yashin 1985, Vaupel and
Carey 1993) and evolution (where it determines the
opportunity for selection). However, simply documenting
inter-individual variance does not demonstrate the existence
of heterogeneity. A standard of comparison is needed, and
the calculation of individual stochasticity provides such a
standard (Tuljapurkar et al. 2009).

Stage-classified life cycles may have consequences that
are not yet appreciated, but must be considered when
interpreting the results. For example, any stage-classified
model eventually leads to an age-independent mortality rate
(Horvitz and Tuljapurkar 2008), and so is of limited use in
the study of senescence. This fact has consequences for life
expectancy and variance in longevity that are not well
understood (at least by me). For the right whale, expected
longevity at birth is 32 years with a standard deviation of 34
years. It is unlikely that there are appreciable numbers of
whales alive at even one standard deviation above this mean.
The high survival probability and the assumption of age-
independence lead to the high standard deviation. Those of
us who work with stage-classified models are accustomed to
this. We discount its importance because it (often) has little
effect on l, but it will be important to determine the
consequences of the simplifying assumptions represented by
the self-loops on the life cycle graph.

The elasticity results shown here reveal an interesting
pattern. For the right whale, the elasticities of the mean and
of the variance of longevity and the number of reproductive
events show a surprisingly similar pattern (Fig. 2, 3). A
possible explanation can be found by examining the
elasticity of absorbtion time in a simple unstructured
model, with one transient state (alive) and one absorbing
state (dead). Let s be the survival probability. The time to
absorbtion in this model has a geometric distribution with
mean E and variance V given by

E�
1

1 � s
(93)

V�
s

(1 � s)2 (94)

Differentiating E and V, and a bit of algebra, suffices to
show that, for any parameter u,

E

V

�
dV=du
dE=du

	
�

1 � s
s

(95)

That is, the ratio of the elasticities of the mean and of the
variance is a constant over all parameters. Perhaps the near-
proportionality of the elasticities in Fig. 2 and 3 is because,
as far as survival is concerned, the right whale is similar to
the simple one-stage life cycle. The differences in survival
among the stages are small (0.855si51).

This paper does not begin to exhaust the information
that can be extracted from the Markov chain formulation of
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a stage-classified model. Two examples of particular interest
are competing risks and passage times. If more than one
absorbing state exists (e.g. death at different stages, or from
different causes), then the risks of absorbtion compete,
because an individual can only be absorbed (i.e. die) once. It
is possible to calculate the probability of absorbtion in each
state, and to explore the effects of changing one risk on the
probability of experiencing another (Feichtinger 1971,
Caswell 2001, 2006). Passage times refer to the time
required to get from one stage to another in the life cycle.
An important passage time is the birth interval: the time
from one birth to the next. This can only be calculated for
individuals that do reproduce a second time (otherwise the
interval is infinite), and so it requires developing a chain
that is conditional on successfully reaching the reproductive
state (Caswell 2001 unpubl.). In species that produce only
one or a few offspring, reproduction cannot be adjusted in
response to the environment by changing offspring number,
and so changes in the birth interval are particularly
important in such species.

There has been an explosion of new demographic
analyses in the last two decades. Both theoretical and
empirical research has benefited, and our ability to explore
the environmental and evolutionary determinants of the
‘distribution and abundance of animals’ (and plants!) has
never been greater. The theoretical part needs no extra
justification: these are interesting questions in themselves
(by the most basic of criteria: they lead to more, interesting,
questions). But it is always even more exciting when
theoretical research connects with, and enlightens, empirical
investigation. I have a personal fondness for that kind of
research, and I hope that this paper contributes to it.
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