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Abstract

A precise definition of the basic reproduction number, R0, is presented for a general compartmental

disease transmission model based on a system of ordinary differential equations. It is shown that, if R0 < 1,

then the disease free equilibrium is locally asymptotically stable; whereas if R0 > 1, then it is unstable.
Thus, R0 is a threshold parameter for the model. An analysis of the local centre manifold yields a simple

criterion for the existence and stability of super- and sub-threshold endemic equilibria forR0 near one. This

criterion, together with the definition of R0, is illustrated by treatment, multigroup, staged progression,

multistrain and vector–host models and can be applied to more complex models. The results are significant

for disease control.

� 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

One of the most important concerns about any infectious disease is its ability to invade a
population. Many epidemiological models have a disease free equilibrium (DFE) at which the
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population remains in the absence of disease. These models usually have a threshold parameter,
known as the basic reproduction number, R0, such that if R0 < 1, then the DFE is locally as-
ymptotically stable, and the disease cannot invade the population, but if R0 > 1, then the DFE is
unstable and invasion is always possible (see the survey paper by Hethcote [1]). Diekmann et al.
[2] defineR0 as the spectral radius of the next generation matrix. We write down in detail a general
compartmental disease transmission model suited to heterogeneous populations that can be
modelled by a system of ordinary differential equations. We derive an expression for the next
generation matrix for this model and examine the threshold R0 ¼ 1 in detail.

The model is suited to a heterogeneous population in which the vital and epidemiological
parameters for an individual may depend on such factors as the stage of the disease, spatial
position, age or behaviour. However, we assume that the population can be broken into homo-
geneous subpopulations, or compartments, such that individuals in a given compartment are
indistinguishable from one another. That is, the parameters may vary from compartment to
compartment, but are identical for all individuals within a given compartment. We also assume
that the parameters do not depend on the length of time an individual has spent in a compart-
ment. The model is based on a system of ordinary equations describing the evolution of the
number of individuals in each compartment.

In addition to showing that R0 is a threshold parameter for the local stability of the DFE,
we apply centre manifold theory to determine the existence and stability of endemic equilib-
ria near the threshold. We show that some models may have unstable endemic equilibria near
the DFE for R0 < 1. This suggests that even though the DFE is locally stable, the disease may
persist.

The model is developed in Section 2. The basic reproduction number is defined and shown to be
a threshold parameter in Section 3, and the definition is illustrated by several examples in Section
4. The analysis of the centre manifold is presented in Section 5. The epidemiological ramifications
of the results are presented in Section 6.

2. A general compartmental epidemic model for a heterogeneous population

Consider a heterogeneous population whose individuals are distinguishable by age, behaviour,
spatial position and/or stage of disease, but can be grouped into n homogeneous compartments. A
general epidemic model for such a population is developed in this section. Let x ¼ ðx1; . . . ; xnÞt,
with each xi P 0, be the number of individuals in each compartment. For clarity we sort the
compartments so that the first m compartments correspond to infected individuals. The distinc-
tion between infected and uninfected compartments must be determined from the epidemiological
interpretation of the model and cannot be deduced from the structure of the equations alone, as
we shall discuss below. It is plausible that more than one interpretation is possible for some
models. A simple epidemic model illustrating this is given in Section 4.1. The basic reproduction
number can not be determined from the structure of the mathematical model alone, but depends
on the definition of infected and uninfected compartments. We define Xs to be the set of all disease
free states. That is

Xs ¼ fxP 0jxi ¼ 0; i ¼ 1; . . . ;mg:
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In order to compute R0, it is important to distinguish new infections from all other changes in
population. Let FiðxÞ be the rate of appearance of new infections in compartment i, Vþ

i ðxÞ be the
rate of transfer of individuals into compartment i by all other means, and V	

i ðxÞ be the rate of
transfer of individuals out of compartment i. It is assumed that each function is continuously
differentiable at least twice in each variable. The disease transmission model consists of non-
negative initial conditions together with the following system of equations:

_xxi ¼ fiðxÞ ¼ FiðxÞ 	ViðxÞ; i ¼ 1; . . . ; n; ð1Þ
where Vi ¼ V	

i 	Vþ
i and the functions satisfy assumptions (A1)–(A5) described below. Since

each function represents a directed transfer of individuals, they are all non-negative. Thus,

(A1) if xP 0, then Fi;V
þ
i ;V

	
i P 0 for i ¼ 1; . . . ; n.

If a compartment is empty, then there can be no transfer of individuals out of the compartment
by death, infection, nor any other means. Thus,

(A2) if xi ¼ 0 then V	
i ¼ 0. In particular, if x 2 Xs then V	

i ¼ 0 for i ¼ 1; . . . ;m.

Consider the disease transmission model given by (1) with fiðxÞ, i ¼ 1; . . . ; n, satisfying con-
ditions (A1) and (A2). If xi ¼ 0, then fiðxÞP 0 and hence, the non-negative cone (xi P 0,
i ¼ 1; . . . ; n) is forward invariant. By Theorems 1.1.8 and 1.1.9 of Wiggins [3, p. 37] for each non-
negative initial condition there is a unique, non-negative solution.

The next condition arises from the simple fact that the incidence of infection for uninfected
compartments is zero.

(A3) Fi ¼ 0 if i > m.

To ensure that the disease free subspace is invariant, we assume that if the population is free of
disease then the population will remain free of disease. That is, there is no (density independent)
immigration of infectives. This condition is stated as follows:

(A4) if x 2 Xs then FiðxÞ ¼ 0 and Vþ
i ðxÞ ¼ 0 for i ¼ 1; . . . ;m.

The remaining condition is based on the derivatives of f near a DFE. For our purposes, we
define a DFE of (1) to be a (locally asymptotically) stable equilibrium solution of the disease free
model, i.e., (1) restricted to Xs. Note that we need not assume that the model has a unique DFE.
Consider a population near the DFE x0. If the population remains near the DFE (i.e., if the
introduction of a few infective individuals does not result in an epidemic) then the population will
return to the DFE according to the linearized system

_xx ¼ Df ðx0Þðx	 x0Þ; ð2Þ

where Df ðx0Þ is the derivative ½ofi=oxj� evaluated at the DFE, x0 (i.e., the Jacobian matrix). Here,
and in what follows, some derivatives are one sided, since x0 is on the domain boundary.We restrict
our attention to systems in which the DFE is stable in the absence of new infection. That is,

(A5) If FðxÞ is set to zero, then all eigenvalues of Df ðx0Þ have negative real parts.

P. van den Driessche, J. Watmough / Mathematical Biosciences 180 (2002) 29–48 31



The conditions listed above allow us to partition the matrix Df ðx0Þ as shown by the following
lemma.

Lemma 1. If x0 is a DFE of (1) and fiðxÞ satisfies (A1)–(A5), then the derivatives DFðx0Þ and
DVðx0Þ are partitioned as

DFðx0Þ ¼
F 0

0 0

� �
; DVðx0Þ ¼

V 0

J3 J4

� �
;

where F and V are the m m matrices defined by

F ¼ oFi

oxj
ðx0Þ

� �
and V ¼ oVi

oxj
ðx0Þ

� �
with 16 i; j6m:

Further, F is non-negative, V is a non-singular M-matrix and all eigenvalues of J4 have positive real
part.

Proof. Let x0 2 Xs be a DFE. By (A3) and (A4), ðoFi=oxjÞðx0Þ ¼ 0 if either i > m or j > m.
Similarly, by (A2) and (A4), if x 2 Xs thenViðxÞ ¼ 0 for i6m. Hence, ðoVi=oxjÞðx0Þ ¼ 0 for i6m
and j > m. This shows the stated partition and zero blocks. The non-negativity of F follows from
(A1) and (A4).

Let fejg be the Euclidean basis vectors. That is, ej is the jth column of the n n identity matrix.
Then, for j ¼ 1; . . . ;m,

oVi

oxj

� �
ðx0Þ ¼ lim

h!0þ

Viðx0 þ hejÞ 	Viðx0Þ
h

� �
:

To show that V is a non-singular M-matrix, note that if x0 is a DFE, then by (A2) and (A4),
Viðx0Þ ¼ 0 for i ¼ 1; . . . ;m, and if i 6¼ j, then the ith component of x0 þ hej ¼ 0 and
Viðx0 þ hejÞ6 0, by (A1) and (A2). Hence, oVi=oxj � 0 for i � m and j 6¼ i and V has the Z sign
pattern (see Appendix A). Additionally, by (A5), all eigenvalues of V have positive real parts.
These two conditions imply that V is a non-singular M-matrix [4, p. 135 (G20)]. Condition
(A5) also implies that the eigenvalues of J4 have positive real part. �

3. The basic reproduction number

The basic reproduction number, denoted R0, is ‘the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual’ [2]; see also [5,
p. 17]. If R0 < 1, then on average an infected individual produces less than one new infected
individual over the course of its infectious period, and the infection cannot grow. Conversely, if
R0 > 1, then each infected individual produces, on average, more than one new infection, and the
disease can invade the population. For the case of a single infected compartment, R0 is simply
the product of the infection rate and the mean duration of the infection. However, for more
complicated models with several infected compartments this simple heuristic definition of R0 is
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insufficient. A more general basic reproduction number can be defined as the number of new
infections produced by a typical infective individual in a population at a DFE.

To determine the fate of a ‘typical’ infective individual introduced into the population, we
consider the dynamics of the linearized system (2) with reinfection turned off. That is, the system

_xx ¼ 	DVðx0Þðx	 x0Þ: ð3Þ

By (A5), the DFE is locally asymptotically stable in this system. Thus, (3) can be used to de-
termine the fate of a small number of infected individuals introduced to a disease free population.
Let wið0Þ be the number of infected individuals initially in compartment i and let
wðtÞ ¼ w1ðtÞ; . . . ;wmðtÞð Þt be the number of these initially infected individuals remaining in the
infected compartments after t time units. That is the vector w is the first m components of x. The
partitioning of DVðx0Þ implies that wðtÞ satisfies w0ðtÞ ¼ 	V wðtÞ, which has the unique solution
wðtÞ ¼ e	Vtwð0Þ. By Lemma 1, V is a non-singular M-matrix and is, therefore, invertible and all of
its eigenvalues have positive real parts. Thus, integrating FwðtÞ from zero to infinity gives the
expected number of new infections produced by the initially infected individuals as the vector
FV 	1wð0Þ. Since F is non-negative and V is a non-singular M-matrix, V 	1 is non-negative [4, p. 137
(N38)], as is FV 	1.

To interpret the entries of FV 	1 and develop a meaningful definition of R0, consider the fate of
an infected individual introduced into compartment k of a disease free population. The (j; k) entry
of V 	1 is the average length of time this individual spends in compartment j during its lifetime,
assuming that the population remains near the DFE and barring reinfection. The (i; j) entry of F is
the rate at which infected individuals in compartment j produce new infections in compartment i.
Hence, the (i; k) entry of the product FV 	1 is the expected number of new infections in com-
partment i produced by the infected individual originally introduced into compartment k. Fol-
lowing Diekmann et al. [2], we call FV 	1 the next generation matrix for the model and set

R0 ¼ qðFV 	1Þ; ð4Þ

where qðAÞ denotes the spectral radius of a matrix A.
The DFE, x0, is locally asymptotically stable if all the eigenvalues of the matrix Df ðx0Þ have

negative real parts and unstable if any eigenvalue of Df ðx0Þ has a positive real part. By Lemma 1,
the eigenvalues of Df ðx0Þ can be partitioned into two sets corresponding to the infected and
uninfected compartments. These two sets are the eigenvalues of F 	 V and those of 	J4. Again by
Lemma 1, the eigenvalues of 	J4 all have negative real part, thus the stability of the DFE is
determined by the eigenvalues of F 	 V . The following theorem states that R0 is a threshold
parameter for the stability of the DFE.

Theorem 2. Consider the disease transmission model given by (1) with f ðxÞ satisfying conditions
(A1)–(A5). If x0 is a DFE of the model, then x0 is locally asymptotically stable if R0 < 1, but un-
stable if R0 > 1, where R0 is defined by (4).

Proof. Let J1 ¼ F 	 V . Since V is a non-singular M-matrix and F is non-negative, 	J1 ¼ V 	 F
has the Z sign pattern (see Appendix A). Thus,

sðJ1Þ < 0 () 	 J1 is a non-singular M-matrix;
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where sðJ1Þ denotes the maximum real part of all the eigenvalues of the matrix J1 (the spectral
abscissa of J1). Since FV 	1 is non-negative, 	J1V 	1 ¼ I 	 FV 	1 also has the Z sign pattern. Ap-
plying Lemma 5 of Appendix A, with H ¼ V and B ¼ 	J1 ¼ V 	 F , we have

	J1 is a non-singular M-matrix () I 	 FV 	1 is a non-singular M-matrix:

Finally, since FV 	1 is non-negative, all eigenvalues of FV 	1 have magnitude less than or equal to
qðFV 	1Þ. Thus,

I 	 FV 	1 is a non-singular M-matrix; () qðFV 	1Þ < 1:

Hence, sðJ1Þ < 0 if and only if R0 < 1.
Similarly, it follows that

sðJ1Þ ¼ 0 ()	 J1 is a singular M-matrix;

() I 	 FV 	1 is a singular M-matrix;

() qðFV 	1Þ ¼ 1:

The second equivalence follows from Lemma 6 of Appendix A, with H ¼ V and K ¼ F . The
remainder of the equivalences follow as with the non-singular case. Hence, sðJ1Þ ¼ 0 if and only
if R0 ¼ 1. It follows that sðJ1Þ > 0 if and only if R0 > 1. �

A similar result can be found in the recent book by Diekmann and Heesterbeek [6, Theorem
6.13]. This result is known for the special case in which J1 is irreducible and V is a positive di-
agonal matrix [7–10]. The special case in which V has positive diagonal and negative subdiagonal
elements is proven in Hyman et al. [11, Appendix B]; however, our approach is much simpler (see
Section 4.3).

4. Examples

4.1. Treatment model

The decomposition of f ðxÞ into the components F and V is illustrated using a simple treat-
ment model. The model is based on the tuberculosis model of Castillo-Chavez and Feng [12, Eq.
(1.1)], but also includes treatment failure used in their more elaborate two-strain model [12, Eq.
(2.1)]. A similar tuberculosis model with two treated compartments is proposed by Blower et al.
[13]. The population is divided into four compartments, namely, individuals susceptible to tu-
berculosis (S), exposed individuals (E), infectious individuals (I) and treated individuals (T ). The
dynamics are illustrated in Fig. 1. Susceptible and treated individuals enter the exposed com-
partment at rates b1I=N and b2I=N , respectively, where N ¼ E þ I þ S þ T . Exposed individuals
progress to the infectious compartment at the rate m. All newborns are susceptible, and all indi-
viduals die at the rate d > 0. Thus, the core of the model is an SEI model using standard inci-
dence. The treatment rates are r1 for exposed individuals and r2 for infectious individuals.
However, only a fraction q of the treatments of infectious individuals are successful. Unsuc-
cessfully treated infectious individuals re-enter the exposed compartment (p ¼ 1	 q). The disease
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transmission model consists of the following differential equations together with non-negative
initial conditions:

_EE ¼ b1SI=N þ b2TI=N 	 ðd þ m þ r1ÞE þ pr2I; ð5aÞ

_II ¼ mE 	 ðd þ r2ÞI ; ð5bÞ

_SS ¼ bðNÞ 	 dS 	 b1SI=N ; ð5cÞ

_TT ¼ 	dT þ r1E þ qr2I 	 b2TI=N : ð5dÞ
Progression from E to I and failure of treatment are not considered to be new infections, but
rather the progression of an infected individual through the various compartments. Hence,

F ¼

b1SI=N þ b2TI=N
0

0

0

0
BB@

1
CCA and V ¼

ðd þ m þ r1ÞE 	 pr2I
	mE þ ðd þ r2ÞI

	bðNÞ þ dS þ b1SI=N
dT 	 r1E 	 qr2I þ b2TI=N

0
BB@

1
CCA: ð6Þ

The infected compartments are E and I, giving m ¼ 2. An equilibrium solution with E ¼ I ¼ 0 has
the form x0 ¼ ð0; 0; S0; 0Þt, where S0 is any positive solution of bðS0Þ ¼ dS0. This will be a DFE
if and only if b0ðS0Þ < d. Without loss of generality, assume S0 ¼ 1 is a DFE. Then,

F ¼ 0 b1

0 0

� �
; V ¼ d þ m þ r1 	pr2

	m d þ r2

� �
;

giving

V 	1 ¼ 1

ðd þ m þ r1Þðd þ r2Þ 	 mpr2

d þ r2 pr2
m d þ m þ r1

� �

and R0 ¼ b1m=ððd þ m þ r1Þðd þ r2Þ 	 mpr2Þ. A heuristic derivation of the (2; 1) entry of V 	1 and
R0 are as follows: a fraction h1 ¼ m=ðd þ m þ r1Þ of exposed individuals progress to compartment
I, a fraction h2 ¼ pr2=ðd þ r2Þ of infectious individuals re-enter compartment E. Hence, a fraction
h1 of exposed individuals pass through compartment I at least once, a fraction h21h2 pass through

Fig. 1. Progression of infection from susceptible (S) individuals through the exposed (E), infected (I), and treated (T )
compartments for the treatment model of (5a)–(5d).
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at least twice, and a fraction hk1h
k	1
2 pass through at least k times, spending an average of s ¼

1=ðd þ r2Þ time units in compartment I on each pass. Thus, an individual introduced into com-
partment E spends, on average, sðh1 þ h21h2 þ � � �Þ ¼ sh1=ð1	 h1h2Þ ¼ m=ððd þ m þ r1Þðd þ r2Þ	
mpr2Þ time units in compartment I over its expected lifetime. Multiplying this by b1 gives R0.

The model without treatment (r1 ¼ r2 ¼ 0) is an SEI model with R0 ¼ b1m=ðdðd þ mÞÞ. The
interpretation of R0 for this case is simpler. Only a fraction m=ðd þ mÞ of exposed individuals
progress from compartment E to compartment I, and individuals entering compartment I spend,
on average, 1=d time units there.

Although conditions (A1)–(A5) do not restrict the decomposition of fiðxÞ to a single choice for
Fi, only one such choice is epidemiologically correct. Different choices for the function F lead to
different values for the spectral radius of FV 	1, as shown in Table 1. In column (a), treatment
failure is considered to be a new infection and in column (b), both treatment failure and pro-
gression to infectiousness are considered new infections. In each case the condition qðFV 	1Þ < 1
yields the same portion of parameter space. Thus, qðFV 	1Þ is a threshold parameter in both cases.
The difference between the numbers lies in the epidemiological interpretation rather than the
mathematical analysis. For example, in column (a), the infection rate is b1 þ pr2 and an exposed
individual is expected to spend m=ððd þ m þ r1Þðd þ r2ÞÞ time units in compartment I. However,
this reasoning is biologically flawed since treatment failure does not give rise to a newly infected
individual.

Table 1

Decomposition of f leading to alternative thresholds

(a) (b)

F b1SI=N þ b2TI=N þ pr2I
0
0

0

0
BB@

1
CCA

b1SI=N þ b2TI=N þ pr2I
mE
0

0

0
BB@

1
CCA

V ðd þ m þ r1ÞE
	mE þ ðd þ r2ÞI

	bðNÞ þ dS þ b1SI=N
dT 	 r1E 	 qr2I þ b2TI=N

0
BB@

1
CCA

ðd þ m þ r1ÞE
ðd þ r2ÞI

	bðNÞ þ dS þ b1SI=N
dT 	 r1E 	 qr2I þ b2TI=N

0
BB@

1
CCA

F 0 b1 þ pr2
0 0

� �
0 b1 þ pr2
m 0

� �

V d þ m þ r1 0

	m d þ r2

� �
d þ m þ r1 0

0 d þ r2

� �

q(FV 	1) b1m þ pr2m
ðd þ m þ r1Þðd þ r2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1m þ pr2m

ðd þ m þ r1Þðd þ r2Þ

s
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4.2. Multigroup model

In the epidemiological literature, the term ‘multigroup’ usually refers to the division of a het-
erogeneous population into several homogeneous groups based on individual behaviour (e.g.,
[14]). Each group is then subdivided into epidemiological compartments. The majority of mul-
tigroup models in the literature are used for sexually transmitted diseases, such as HIV/AIDS or
gonorrhea, where behaviour is an important factor in the probability of contracting the disease
[7,8,14,15]. As an example, we use an m-group SIRS-vaccination model of Hethcote [7,14] with a
generalized incidence term. The sample model includes several SI multigroup models of HIV/
AIDS as special cases [8,15]. The model equations are as follows:

_IiIi ¼
Xm
j¼1

bijðxÞSiIj 	 ðdi þ ci þ �iÞIi; ð7aÞ

_SiSi ¼ ð1	 piÞbi 	 ðdi þ hiÞSi þ riRi 	
Xm
j¼1

bijðxÞSiIj; ð7bÞ

_RiRi ¼ pibi þ ciIi þ hiSi 	 ðdi þ riÞRi; ð7cÞ
for i ¼ 1; . . . ;m, where x ¼ ðI1; . . . ; Im; S1; . . . ; Sm;R1; . . . ;RmÞt. Susceptible and removed individu-
als die at the rate di > 0, whereas infected individuals die at the faster rate di þ �i. Infected in-
dividuals recover with temporary immunity from re-infection at the rate ci, and immunity lasts an
expected 1=ri time units. All newborns are susceptible, and a constant fraction bi are born into
each group. A fraction pi of newborns are vaccinated at birth. Thereafter, susceptible individuals
are vaccinated at the rate hi. The incidence, bijðxÞ depends on individual behaviour, which
determines the amount of mixing between the different groups (see, e.g., Jacquez et al. [16]).

The DFE for this model is

x0 ¼ ð0; . . . ; 0; S0
1 ; . . . ; S

0
m;R

0
1; . . . ;R

0
mÞ

t
;

where

S0
i ¼

bi dið1	 piÞ þ rið Þ
diðdi þ hi þ riÞ

;

R0
i ¼

biðhi þ dipiÞ
diðdi þ hi þ riÞ

:

Linearizing (7a) about x ¼ x0 gives

F ¼ S0
i bijðx0Þ

� �
and

V ¼ ½ðdi þ ci þ �iÞdij�;
where dij is one if i ¼ j, but zero otherwise. Thus,

FV 	1 ¼ S0
i bijðx0Þ=ðdi

�
þ ci þ �iÞ

�
:
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For the special case with bij separable, that is, bijðxÞ ¼ aiðxÞkjðxÞ, F has rank one, and the basic
reproduction number is

R0 ¼
Xm
i¼1

S0
i aiðx0Þkiðx0Þ
di þ ci þ �i

: ð8Þ

That is, the basic reproduction number of the disease is the sum of the ‘reproduction numbers’ for
each group.

4.3. Staged progression model

The staged progression model [11, Section 3 and Appendix B] has a single uninfected com-
partment, and infected individuals progress through several stages of the disease with changing
infectivity. The model is applicable to many diseases, particularly HIV/AIDS, where transmission
probabilities vary as the viral load in an infected individual changes. The model equations are as
follows (see Fig. 2):

_I1I1 ¼
Xm	1

k¼1

bkSIk=N 	 ðm1 þ d1ÞI1; ð9aÞ

_IiIi ¼ mi	1Ii	1 	 ðmi þ diÞIi; i ¼ 2; . . . ;m	 1; ð9bÞ

_ImIm ¼ mm	1Im	1 	 dmIm; ð9cÞ

_SS ¼ b	 bS 	
Xm	1

k¼1

bkSIk=N : ð9dÞ

The model assumes standard incidence, death rates di > 0 in each infectious stage, and the final
stage has a zero infectivity due to morbidity. Infected individuals spend, on average, 1=mi time
units in stage i. The unique DFE has Ii ¼ 0, i ¼ 1; . . . ;m and S ¼ 1. For simplicity, define mm ¼ 0.
Then F ¼ ½Fij� and V ¼ ½Vij�, where

Fij ¼
bj i ¼ 1; j6m	 1;
0 otherwise;

�
ð10Þ

Vij ¼
mi þ di j ¼ i;
	mj i ¼ 1þ j;
0 otherwise:

8<
: ð11Þ

Fig. 2. Progression diagram for the staged progression model of (9a)–(9d).
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Let aij be the (i; j) entry of V 	1. Then

aij ¼

0 i < j;
1=ðmi þ diÞ i ¼ j;Qi	1

k¼j mkQi
k¼jðmk þ dkÞ

j < i:

8>>><
>>>:

ð12Þ

Thus,

R0 ¼
b1

m1 þ d1
þ b2m1
ðm1 þ d1Þðm2 þ d2Þ

þ b3m1m2
ðm1 þ d1Þðm2 þ d2Þðm3 þ d3Þ

þ � � �

þ bm	1m1 . . . mm	2

ðm1 þ d1Þ . . . ðmm	1 þ dm	1Þ
: ð13Þ

The ith term in R0 represents the number of new infections produced by a typical individual
during the time it spends in the ith infectious stage. More specifically, mi	1=ðmi	1 þ di	1Þ is the
fraction of individuals reaching stage i	 1 that progress to stage i, and 1=ðmi þ diÞ is the average
time an individual entering stage i spends in stage i. Hence, the ith term in R0 is the product of the
infectivity of individuals in stage i, the fraction of initially infected individuals surviving at least to
stage i, and the average infectious period of an individual in stage i.

4.4. Multistrain model

The recent emergence of resistant viral and bacterial strains, and the effect of treatment on their
proliferation is becoming increasingly important [12,13]. One framework for studying such sys-
tems is the multistrain model shown in Fig. 3, which is a caricature of the more detailed treatment
model of Castillo-Chavez and Feng [12, Section 2] for tuberculosis and the coupled two-strain
vector–host model of Feng and Velasco-Hern�aandez [17] for Dengue fever. The model has only a
single susceptible compartment, but has two infectious compartments corresponding to the
two infectious agents. Each strain is modelled as a simple SIS system. However, strain one may
‘super-infect’ an individual infected with strain two, giving rise to a new infection in compartment

Fig. 3. Progression diagram for the multistrain model of (14a)–(14c).
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I1. The parameter m > 0 is the contact rate for the super-infection. The model equations are as
follows:

_I1I1 ¼ b1I1S 	 ðbþ c1ÞI1 þ mI1I2; ð14aÞ

_I2I2 ¼ b2I2S 	 ðbþ c2ÞI2 	 mI1I2; ð14bÞ

_SS ¼ b	 bS þ c1I1 þ c2I2 	 ðb1I1 þ b2I2ÞS: ð14cÞ

For simplicity we have scaled the birth and death rates to b > 0. Hence, the DFE is x0 ¼ ð0; 0; 1Þt,
and

F ¼ b1 0

0 b2

� �
; V ¼ bþ c1 0

0 bþ c2

� �
; ð15Þ

with V non-singular as required. The next generation matrix, FV 	1, has the two eigenvalues

Ri ¼
bi

bþ ci
; i ¼ 1; 2: ð16Þ

In this example, J1 ¼ F 	 V is reducible and (14a) and (14b) decouple near the DFE. The two
eigenvalues correspond to the reproduction numbers for each strain. The basic reproduction
number for the system is the maximum of the two. That is,

R0 ¼ max
i2f1;2g

Ri: ð17Þ

An alternate interpretation of this model is that I1 is the sole infected compartment and that I2 is
an uninfected compartment. The strain two equilibrium is ð0; 1	 ðbþ c2Þ=b2; ðbþ c2Þ=b2Þ. Lin-
earizing about this equilibrium gives F ¼ b1ðbþ c2Þ=b2 þ mð1	 ðbþ c2Þ=b2Þ, and V ¼ bþ c1.
Thus,

R12 ¼
R1

R2

þ m
bþ c1

1

�
	 1

R2

�
ð18Þ

is the reproduction number for strain one near the strain two equilibrium. The interesting case is,
of course, if R2 > 1 > R1, but R12 > 1. That is, strain two can invade the DFE, but strain one
cannot, and yet strain one can invade the strain two equilibrium. This can occur if m is sufficiently
large.

4.5. Vector–host model

The general framework developed in Section 2 includes vector–host models. As an example,
consider the following simplification of the two-strain, vector–host model proposed by Feng and
Velasco-Hern�aandez [17] for Dengue fever. The model couples a simple SIS model for the hosts
with an SI model for the vectors. The four compartments correspond to infected hosts (I), infected
vectors (V ), susceptible hosts (S) and susceptible vectors (M). Hosts are infected by contacts with
infected vectors, and vectors are in turn infected by contacts with infected hosts. These infection
rates are given by the two terms bsSV and bmMI . The model is written as follows (see Fig. 4):
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_II ¼ bsSV 	 ðbþ cÞI; ð19aÞ

_VV ¼ bmMI 	 cV ; ð19bÞ

_SS ¼ b	 bS þ cI 	 bsSV ; ð19cÞ

_MM ¼ c	 cM 	 bmMI: ð19dÞ

The birth and death rates have been scaled to b > 0 for the host and c > 0 for the vector. Thus,
the DFE is x0 ¼ ð0; 0; 1; 1Þt,

F ¼ 0 bs

bm 0

� �
; V ¼ bþ c 0

0 c

� �
; ð20Þ

with V non-singular, and the basic reproduction number is

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bsbm

cðbþ cÞ

s
: ð21Þ

Near the DFE, each infected host produces bm=c new infected vectors over its expected infectious
period, and each infected vector produces bs=ðbþ cÞ new infected hosts over its expected infec-
tious period. The square root arises from the two ‘generations’ required for an infected vector or
host to ‘reproduce’ itself.

5. The existence of sub-threshold equilibria

5.1. Analysis of the centre manifold near x ¼ x0, R0 ¼ 1

In this section we consider the nature of the equilibrium solutions of the disease transmission
model near the bifurcation point x ¼ x0, R0 ¼ 1. SinceR0 is often inconvenient to use directly as a

Fig. 4. Progression diagram for the vector–host model of (19a)–(19d).
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bifurcation parameter, we introduce a bifurcation parameter l. Let l be a bifurcation parameter
such that R0 < 1 for l < 0 and R0 > 1 for l > 0 and such that x0 is a DFE for all values of l.
Consider the system

_xx ¼ f ðx;lÞ; ð22Þ

where f is as described in Section 2, with the further restriction that f is continuously differentiable
at least twice in both x and l. The DFE is the line ðx0;lÞ and the local stability of the DFE
changes at the point ðx0; 0Þ. We use results of centre manifold theory (see e.g., [3]) to show that
there are non-trivial (endemic) equilibria near the bifurcation point ðx0; 0Þ. Before stating these
results we introduce some notation and collect a few facts.

We use the notation Dxf ðx0; 0Þ for the partial derivative of f with respect to x evaluated at the
point x ¼ x0, l ¼ 0. Assume that the zero eigenvalue of Dxf ðx0; 0Þ is simple and let v and w be the
corresponding left and right nullvectors chosen such that vw ¼ 1. By Lemma 1 and Theorem 2, all
other eigenvalues of Dxf ðx0; 0Þ have negative real parts. Let

a ¼ v
2
Dxxf ðx0; 0Þw2 ¼ 1

2

Xn
i;j;k¼1

viwjwk
o2fi

oxjoxk
ðx0; 0Þ; ð23Þ

b ¼ vDxlf ðx0; 0Þw ¼
Xn
i;j¼1

viwj
o2fi
oxjol

ðx0; 0Þ: ð24Þ

We show below that the sign of a determines the nature of the endemic equilibria near the bi-
furcation point. First, however, we note that the expression for a can be written in a different form
using results of the previous sections.

Lemma 3. If f ðx; lÞ is continuously dierentiable at least twice in both x and l and conditions (A1)–
(A5) are satisfied, and 0 is a simple eigenvalue of Dxf ðx0; 0Þ, then in the nullvectors of Dxf ðx0; 0Þ,
vi P 0 and wi P 0 for i ¼ 1; . . . ;m, vi ¼ 0 for i ¼ mþ 1; . . . ; n, and

a ¼
Xm
i;j;k¼1

viwjwk
1

2

o2fi
oxjoxk

ðx0; 0Þ
 

þ
Xn
l¼mþ1

alk
o2fi
oxjoxl

ðx0; 0Þ
!
; ð25Þ

with ½alk�, l ¼ mþ 1; . . . ; n, k ¼ 1; . . . ;m, denoting the ðl	 m; kÞ entry of 	J	1
4 J3 where J3 and J4 are

the lower blocks of Dxf ðx0; 0Þ ¼ DðFðx0Þ 	Vðx0ÞÞjR0¼1 defined in Lemma 1.

Proof. By Lemma 1 and Theorem 2, the first m components of v and w are the left and right null
vectors of J1. Since J1 is essentially non-negative (i.e., 	J1 has the Z sign pattern), v and w can be
chosen such that vi P 0 and wi P 0 for i ¼ 1; . . . ;m [4]. Further, since the eigenvalues of J4 all have
positive real parts, J	1

4 exists and the remaining components of v must be zero. Hence, from the
definition of alk,

wl ¼
Xm
k¼1

alkwk; l ¼ mþ 1; . . . ; n: ð26Þ

With these facts, (23) leads to (25) as follows:
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a ¼ 1

2

Xm
i¼1

vi
Xn
j;k¼1

wjwk
o2fi

oxjoxk
ðx0; 0Þ

¼ 1

2

Xm
i¼1

vi
Xm
j;k¼1

wjwk
o2fi

oxjoxk

 
þ 2

Xm
j¼1

Xn
l¼mþ1

wjwl
o2fi
oxjoxl

!�����
ðx0;0Þ

¼ 1

2

Xm
i¼1

vi
Xm
j;k¼1

wjwk
o2fi

oxjoxk

 
þ 2

Xm
j¼1

Xn
l¼mþ1

wj

Xm
k¼1

alkwk
o2fi
oxjoxl

!�����
ðx0;0Þ

¼
Xm
i;j;k¼1

viwjwk
1

2

o2fi
oxjoxk

 
þ
Xn
l¼mþ1

alk
o2fi
oxjoxl

!�����
ðx0;0Þ

:

For the second step, the second partial derivatives with respect to the uninfected compartments
are zero by (A2)–(A4) (the details are similar to those in the proof of Lemma 1): �

Since the first m components of v and w are non-negative, the sign of a is determined by the
signs of the partial derivatives and of alk. In many applications, the first set of partial derivatives
are negative. Hence the sign of a is determined by the mixed partial derivatives involving both
infected and uninfected compartments and alk.

Theorem 4. Consider the disease transmission model defined by (22) with the function f ðx;lÞ
satisfying the conditions (A1)–(A5) of Section 2 and the parameter l as described above. Assume
that the zero eigenvalue of Dxf ðx0; 0Þ is simple. Let a and b be as defined by (23) and (24) and assume
that b 6¼ 0. Then, there exists d > 0 such that

(i) if a < 0, then there are locally asymptotically stable endemic equilibria near x0 for 0 < l < d and
(ii) if a > 0, then there are unstable endemic equilibria near x0 for 	d < l < 0.

Proof. Centre manifold theory [3, Theorem 2.1.1] states that there exists a local centre manifold
parameterized by u and l of the form

W c ¼ fðx; lÞjx ¼ x0 þ uwþ zðu;lÞg; ð27Þ
where zðu;lÞ is orthogonal to w and is second order in both u and l. Further, the centre manifold,
W c, is invariant under (22). That is,

_uuwþ dz
dt

¼ f ðx0 þ uwþ zðu;lÞ; lÞ: ð28Þ

Premultiplying (28) by v leads to the equation

_uu ¼ vf ðx0 þ uwþ zðu;lÞ; lÞ; ð29Þ

since vz ¼ 0 for all ðu;lÞ. Centre manifold theory further states [3, Theorem 2.1.2] that the be-
haviour of solutions of (22) near the bifurcation point ðx0; 0Þ is governed by (29). The right-hand
side of (29) can be expanded in a Taylor series as follows:
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_uu ¼ vf ðx0; 0Þ þ vDlf ðx0; 0Þl þ vDxf ðx0; 0Þðuwþ zÞ þ v
2
Dllf ðx0; 0Þl2

þ vDxlf ðx0; 0Þlðuwþ zÞ þ v
2
Dxxf ðx0; 0Þðuwþ zÞ2 þ Oð3Þ: ð30Þ

The notation Oð3Þ is used to denote terms of third order and higher in u and l. Since f ðx0;lÞ ¼ 0
for all l, the first, second and fourth terms in the expansion are zero, and since v is a left null
vector of Dxf ðx0; 0Þ, the third term vanishes. Hence, all remaining terms involving z are higher
order, and

_uu ¼ au2 þ bul þ Oð3Þ; ð31Þ

where a and b are defined by (23) and (24).
For d > 0 sufficiently small, there are non-zero, steady state solutions of (31) near the line

u ¼ 	bl=a for jlj < d. Since we have chosen l so that the DFE is stable for l < 0, a local stability
analysis of (31) shows that b must be positive. Further these non-zero solutions are stable if a < 0
and unstable if a > 0. Since the first m components of w are non-negative, it follows that the
endemic solutions of (22) corresponding to these non-zero solutions of (31) are feasible (i.e., the
components of x are non-negative) only if either l > 0 and a < 0 or if l < 0 and a > 0. �

In summary, the nature of the bifurcation at R0 ¼ 1 is given by the sign of a. If either a or b are
zero, then higher order terms in the Taylor series must be considered. If a is negative, then a
branch of super-threshold endemic equilibria exists, and the bifurcation is supercritical. If a > 0,
then there are unstable sub-threshold endemic equilibria, and the bifurcation is subcritical. These
cases are often referred to as a forward bifurcation and a backward bifurcation respectively.

5.2. Examples

5.2.1. Treatment models
The result of Theorem 4 can be applied to the tuberculosis example of Section 4.1, since J1 has a

simple zero eigenvalue when R0 ¼ 1. All second derivatives of fi in (23) are zero at the DFE
except the following:

o2f1
oEoI

¼ 	b1;
o2f1
oI2

¼ 	2b1;
o2f1
oIoT

¼ b2 	 b1:

Hence,

a ¼ 	b1v1w2 w1ð þ w2 þ ð1	 b2=b1Þw4Þ:

Computation shows that the eigenvectors v and w can be chosen so that each component of w is
positive and v1 is also positive. Since biologically b2 < b1, it follows that a < 0. Hence, by The-
orem 4 the DFE is locally asymptotically stable if R0 is slightly less than one (i.e., l < 0), and if
R0 is slightly greater than one then the DFE is unstable and there is a locally asymptotically stable
positive equilibrium near the DFE. The positivity of the endemic equilibrium follows from the
positivity of ‘infected’ components (w1 and w2) of the right null vector. This vector gives the
direction of the invasion when the DFE is unstable.
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Castillo-Chavez et al. [18] propose the addition of a second infection term, b3EI=N , to f2 and
the negative of that term to f1. Thus, progression from the exposed to the infected compartments
is not linear, but is increased by exogenous re-infection. This change does not alter the DFE or
R0. However, with this term

a ¼ 	b1v1w2 w1ð þ w2 þ ð1	 b2=b1Þw4Þ þ b3w1w2ðv2 	 v1Þ:
Calculation shows that v2 	 v1 > 0. Hence, the direction of the bifurcation changes if b3 is suf-
ficiently large. If b3 is such that a > 0, then there exists an unstable sub-threshold endemic
equilibrium near the DFE. The significance of this unstable equilibrium is not trivial. It implies
that, although the DFE is locally stable, perturbations above a small threshold can grow. Further,
if R0 > 1, then the analysis of the centre manifold tells us not only that the DFE is unstable, but
that there is no non-zero stable equilibrium near the DFE, and thus a small invasion will grow
rapidly and to significant proportions even for R0 near one. The importance of this backward
bifurcation for disease control is discussed in Section 6.

5.2.2. Multigroup model

Next, consider the multigroup model of Section 4.2. The 3m 3m Jacobian matrix Dxf ðx0; 0Þ
can be partitioned into blocks corresponding to I, S and R compartments as follows:

Dxf ðx0; 0Þ ¼
S0
i bijðx0Þ 	 ðdi þ ci þ �iÞdij

� �
0 0

	 S0
i bijðx0Þ

� �
	 ðdi þ hiÞdij

� �
ridij

� �
cidij

� �
hidij

� �
	 ðdi þ riÞdij

� �
0
B@

1
CA:

The upper left block is J1 evaluated at R0 ¼ 1, and the four lower right blocks comprise J4. Note
that 	J4 is a non-singular M-matrix, and therefore sðJ4Þ < 0. Let wS

i ¼ wmþi and wR
i ¼ w2mþi, for

i ¼ 1; . . . ;m. Then,

wS
i ¼ 	ðdi þ riÞðdi þ �iÞ þ dici

diðdi þ hi þ riÞ
wi; ð32Þ

wR
i ¼ 	 hiðdi þ �iÞ 	 dici

diðdi þ hi þ riÞ
wi: ð33Þ

Applying (25) with the second partial derivatives for this model leads to

a ¼ a0 þ
Xm
i;j;k¼1

viwjS0
i wk

obij

oIk
ðx0Þ

�
þ wS

k

obij

oSk
ðx0Þ þ wR

k

obij

oRk
ðx0Þ

�
; ð34Þ

where

a0 ¼ 	
Xm
k¼1

vkw2
kðdk þ ck þ �kÞðdkck þ ðdk þ rkÞðdk þ �kÞÞ

bkðdkð1	 pkÞ þ rkÞ
< 0: ð35Þ

Consider now two cases of interest. First, if bij is constant, then a ¼ a0 < 0 and the bifurcation is
in the forward direction. Second, if bijðxÞ ¼ bijðN1; . . . ;NmÞ where Ni ¼ Ii þ Si þ Ri, then wk þ
wS

k þ wR
k ¼ 	�kwk=dk and (34) leads to
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a ¼ a0 	
Xm
i;j;k¼1

viwjwk�kS0
i

dk

obij

oNk
ðx0Þ: ð36Þ

The results of several models [7,8] can be generalized using

bijðxÞ ¼
kij

Ni
þ KijPm

l¼1 rlNl
: ð37Þ

For this model,

a ¼ 	
Xm
k¼1

dkvkw2
kðdk þ ck þ �kÞð�kpk þ ck þ dk þ rkÞ

bkðdkð1	 pkÞ þ rkÞ

þ
Xm
i;k¼1

Pm
j¼1 Kkjwj

� �
S0
k vkrið�iwibk 	 �kwkbiÞ

bkdi
Pm

j¼1 rjbj=dj
� �2 : ð38Þ

In the case studied by Hethcote and Van Ark [7], bijðxÞ ¼ kij=Ni. That is, Kij ¼ 0 in (37), and, by
(38), a < 0 and the bifurcation is always in the forward direction. Huang et al. [8] used this model
with pi ¼ hi ¼ ci ¼ ri ¼ 0, ½kij� diagonal and ½Kij� irreducible and found that backward bifurcation
is possible. Our results remove these restrictions.

6. Discussion

The analysis presented herein can be applied to a large class of compartmental epidemic models
that possess a DFE. The basic reproduction number, R0 (given by (4)), is a threshold parameter
for these models. Moreover, the local analysis of the centre manifold yields a second parameter, a
(given by (23) or (25)), whose sign indicates the existence and stability of a branch of endemic
equilibria near the threshold R0 ¼ 1. The stability of these equilibria is important for disease
control, as there are large differences in the solutions of the system between the two cases a < 0
and a > 0. For the forward bifurcation (a < 0), there are stable super-threshold endemic equi-
libria near the DFE. Thus, reducing R0 through one lowers the incidence of the disease until it is
eliminated as R0 passes below one. For a backward bifurcation (a > 0), there are unstable sub-
threshold endemic equilibria near the DFE. The unstable sub-threshold endemic equilibria in-
dicate that the DFE is stable only to very small perturbations, and that even a small perturbation
can result in an epidemic. Further, as R0 increases through the threshold, there is a catastrophic
increase in disease incidence. The lack of a local super-threshold endemic equilibrium suggests the
existence of a non-local endemic equilibrium with a relatively large fraction of infected individ-
uals, or a periodic solution. Backward bifurcations have been studied in models for HIV/AIDS
[8,15], tuberculosis [18] and for BRSV [19].

Throughout the analysis, we have assumed that a well defined DFE exists. However, some
models may be cast in terms of fractions so that there is an equilibrium distribution of individuals
over the compartments even though the total population size is not constant. In this case the
analysis can be applied to the fractions of individuals in each compartment to yield a threshold
parameter (see, e.g., [20,21]). This threshold is not the basic reproduction number, since it is a

46 P. van den Driessche, J. Watmough / Mathematical Biosciences 180 (2002) 29–48



threshold for the fraction rather than the number of infected individuals, but the analysis for both
the threshold condition and the direction of the bifurcation is similar.
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Appendix A

Let sðAÞ be the maximum real part of the eigenvalues of A (the spectral abscissa), and let qðAÞ
be the maximum modulus of the eigenvalues of A (the spectral radius). In Section 3, we make use
of several results from the theory of M-matrices. A matrix B ¼ ½bij� has the Z sign pattern if bij 6 0
for all i 6¼ j. If B ¼ sI 	 P , where I is the identity matrix, P is non-negative (P P 0 entrywise), and
s > qðPÞ, then B is a non-singular M-matrix; if s ¼ qðPÞ, then B is a singular M-matrix. There are
many definitions of M-matrices equivalent to the above. For example, if a matrix B has the Z sign
pattern and sðBÞ > 0, then B is a non-singular M-matrix [4, p. 135 (G20)].

Lemma 5. Let H be a non-singular M-matrix and suppose B and BH	1 have the Z sign pattern.
Then B is a non-singular M-matrix if and only if BH	1 is a non-singular M-matrix.

The forward implication is stated in a slightly different form as Exercise 6b of Horn and
Johnson [22, p. 127] and the reverse implication is stated in Berman and Plemmons [4, p. 159
(5.2)].

In general, this lemma does not hold if B a singular M-matrix. It can be shown to hold if B is
singular and irreducible. However, this is not sufficient for our needs. More specifically, our proof
of Theorem 4 makes use of the following lemma.

Lemma 6. Let H be a non-singular M-matrix and suppose K P 0. Then,

(i) ðH 	 KÞ is a non-singular M-matrix if and only if ðH 	 KÞH	1 is a non-singular M-matrix.
(ii) ðH 	 KÞ is a singular M-matrix if and only if ðH 	 KÞH	1 is a singular M-matrix.

Proof. Let B ¼ H 	 K. Then both B and BH	1 ¼ I 	 KH	1 have the Z sign pattern. (Recall that
H	1 P 0 since H is a non-singular M-matrix.) Hence, Lemma 5 implies statement (i). A separate
continuity argument can be constructed for each implication in the singular case. �
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