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The next generation matrix approach for calculating the basic reproduction number R0 is
summarized for discrete-time epidemic models. This approach is applied to six disease
models developed for the study of two emerging wildlife diseases: hantavirus in rodents and
chytridiomycosis in amphibians. Two of the models include discrete spatial patches. For each
model, R0 is calculated in terms of the model parameters. For R0 , 1, if a small number of
infectives is introduced, then the wildlife disease dies out. Global stability of the disease-free
equilibrium is verified for a special case of the SI hantavirus model when R0 , 1. In addition,
a numerical example indicates that there is a transcritical bifurcation at R0 ¼ 1, with the
disease dying out if R0 , 1 but tending to an endemic level if R0 . 1.

Keywords: basic reproduction number; chytridiomycosis; discrete-time epidemic model;
epidemic model on patches; hantavirus; next generation matrix

AMS Subject Classification: 39A11; 92D30

1. Introduction

The basic reproduction number, generally denoted as R0, is one of the most important

parameters in the study of mathematical epidemiology. The basic reproduction number can be

used to assess whether a newly infectious disease can invade a population and to estimate the

final size of an SIR-type epidemic [21,33,39]. For example, when R0 , 1, the disease-free

equilibrium (DFE) is locally asymptotically stable and when R0 . 1, it is unstable [21,39].

The next generation matrix approach has been very useful in determining a biologically

meaningful formula for the basic reproduction number in the case of continuous-time epidemic

models, i.e., systems of differential equations [21,39]. However, the next generation matrix

approach is not well known in the study of discrete-time epidemic models. Although calculation

of R0 via the next generation matrix approach has been applied infrequently in the study of

discrete-time epidemic models [20,29,40], this approach has been applied frequently in the study

of discrete-time population models. In population models, the basic reproduction number

determines local stability or instability of the extinction equilibrium [17,18,31].

In this investigation, we describe briefly the next generation matrix approach for calculating

R0 in discrete-time epidemic models. Then, we apply this approach to several discrete-time

epidemic models, developed for the study of two emerging diseases of wildlife, hantavirus and

chytridiomycosis. Hantaviruses, carried by wild rodents, do not affect their rodent hosts but

result in serious, life-threatening diseases in humans, either hantavirus pulmonary syndrome
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or hemorrhagic fever with renal syndrome [37]. Chydriomycosis is a fungal pathogen that infects

the skin of amphibians, causing it to slough off and very often resulting in death of the infected

animal [38]. The chytrid fungus does not infect humans. For these discrete-time epidemic

models, the calculation of R0 is new.

2. Next generation matrix approach

Let X ¼ (x1, x2, . . . , xn)
T denote the n states of a population with regard to their disease status,

i.e., healthy and susceptible, infectious, recovered, etc. Let

Xðt þ 1Þ ¼ GðXðtÞÞ; t ¼ 0; 1; . . . ; ð1Þ

describe the dynamics of the states of the population over discrete time intervals, where

G : Rn
þ ! Rn

þ and G [ C 1ðRn
þÞ for Rn

þ ¼ {Y ¼ ðy1; y2; . . . ; ynÞjyj $ 0; j ¼ 1; 2; . . . ; n}.

Suppose the states are ordered so that the first m states, m , n, denoted as

X0 ¼ (x1, . . . , xm)T, are the infected (e.g., exposed, infectious) states and the remaining

n 2 m states are the uninfected states denoted as X1 ¼ (xmþ1, . . . , xn)
T. Hence, (1) can be

expressed as

X0ðt þ 1Þ

X1ðt þ 1Þ

 !
¼

G0ðXðtÞÞ

G1ðXðtÞÞ

 !
:

For example, consider an SEIR epidemic model, where S, E, I and R represent the number of

susceptible, exposed (latent), infectious and recovered individuals, respectively. Then, the

vector X ¼ (E, I, S, R)T, where X0 ¼ (E, I)T and X1 ¼ (S, R)T.

We assume there exists a unique disease-free equilibrium (DFE) of system (1), where X0 ¼ 0

and X1 . 0. In addition, we assume that linearizing the discrete system (1) about the DFE yields

the linearized system

Yðt þ 1Þ ¼ JYðtÞ; ð2Þ

where J is the n £ n Jacobian matrix evaluated at the DFE. Matrix J has the following form:

J ¼
F þ T O

A C

 !
; ð3Þ

where the m £ m submatrices F and T are non-negative, O is the zero matrix, and F þ T is

irreducible. Matrices F and T are obtained from differentiation with respect to states X0 and

evaluation at the DFE. The important step here is to identify the terms in G0 that correspond to

those in F and those in T. Letting G0ðXðtÞÞ ¼ F ðtÞ þ T ðtÞ, where F is the vector of new

infections that survive the time interval and T is the vector of all other transitions (e.g., recovery,

disease-related deaths), these vectors lead to F and T, respectively. The notation for F and T

comes from the literature on matrix population models [15,17,18], where F is known as the

fertility matrix and T as the transition matrix.

We assume, in the absence of disease, that the DFE is locally asymptotically stable. That is,

the spectral radius of C is less than one, i.e., r(C) , 1. In addition, we require that r(T) , 1, but

this assumption generally follows from the form of T. Therefore, we assume

rðCÞ; rðTÞ , 1: ð4Þ

L.J.S. Allen and P. van den Driessche1128
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Since J is block triangular and r(C) , 1, stability of the linearized system, Y(t þ 1) ¼ JY(t),

depends on the eigenvalues of the matrix F þ T, and is independent of matrix A. We can apply

theory developed from matrix population dynamics to provide a definition of the basic

reproduction number [17,18,31]. Matrix Q ¼ FðI2 TÞ21 is known as the next generation

matrix, where I is the m £ m identity matrix. Since r(T) , 1,

Q ¼ FðIþ T þ T 2 þ · · ·Þ:

Let I0 be the vector of initial number or density of infectious individuals, then

QI0 ¼ FðI0 þ TI0 þ T 2I0 þ · · · Þ;

represents the distribution of all infections accumulated during the lifespan of the population

[31]. The basic reproduction number R0 is defined as the spectral radius of matrix Q, that is,

R0 ¼ rðF½I2 T�21Þ ¼ rðQÞ: ð5Þ

In the discrete-population dynamics literature, R0 is also referred to as the net reproductive

rate or inherent net reproductive number [17,18,31] and in the mathematical epidemiology

literature, R0 is also referred to as the basic reproduction ratio or basic reproductive rate [9,27].

It follows from Theorem 3.3 in Li and Schneider ([31], p. 455) and from Theorem 3 in

Cushing and Yicang ([18], p. 115) that r(F þ T) ¼ r , 1 if and only if R0 , 1. In fact, the

relationship between r and R0 satisfies one of the three inequalities [31]:

r ¼ R0 ¼ 1; 1 , r # R0; or 0 # R0 # r , 1:

These results are summarized in the following theorem.

Theorem 2.1. Suppose the system of difference equation (1) has a unique DFE and that

linearization of the system about the DFE yields system (2), where matrix J is given by (3) with

matrices F and T non-negative, F þ T is irreducible, and matrices C and T satisfying (4).

Then, the basic reproduction number for system (1) as defined in (5). In addition, the DFE of

system (1) is locally asymptotically stable if R0 , 1 and unstable if R0 . 1.

The local stability of the DFE can also be characterized by applying the Schur–Cohn (Jury)

criteria to the Jacobian matrix F þ T in (3), see, for example, [23]. However, the criteria are

usually algebraically difficult to apply and require that several inequalities be satisfied.

In addition, the criteria do not provide biological insight into the disease dynamics. On the other

hand, the basic reproduction number, as given by (5), provides a single biological meaningful

threshold value for the disease to die out when an infectious individual is introduced into an

entirely susceptible population (R0 , 1).

We present six discrete-time models developed for the study of disease in wildlife

populations, four models for hantavirus in rodents and two models for chytridiomycosis in

amphibians. For each of these models, the conditions of Theorem 2.1 are shown to be satisfied

and the basic reproduction number is calculated.

3. Hantavirus models

Hantaviruses are zoonotic pathogens, carried by wild rodents. There are approximately 30

different hantaviruses recognized throughout the world [34,37]. Each hantavirus is generally

carried by a single rodent species known as the reservoir population [16]. Human infection

Journal of Difference Equations and Applications 1129
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occurs primarily through the inhalation of aerosolized saliva or excreta of infectious rodents.

Infection in humans results in either hemorrhagic fever with renal syndrome or hantavirus

pulmonary syndrome [37].

A variety of different models has been developed to study the spread of hantavirus in rodent

populations. They have taken the form of differential equations [1–3,6,7,35,36], some of which

are stochastic [3,7], difference equations, and discrete-time Markov chains [40]. The model of

Wesley et al. [40] is the first discrete-time model to be applied to hantavirus that includes stages

for juveniles, subadults, and adults. In the present investigation, we do not consider the

developmental stages; only adults are modelled. As in many of the previous models, we make

the following assumptions regarding the biology of the rodents and the epizoology of the

infection. The infection and persistence of hantavirus in its rodent host has little or no effect on

rodent survival, i.e., there are no disease-related deaths [1–3,7,26,35,36,40]. There is no vertical

transmission from mother to offspring [1–3,7,35,36,40]. Male aggressiveness results in greater

contact among males than between males and females or among females [3,7,40]. There are

equal numbers of males and females, mating is random and rodents become reproductive soon

after birth [3,7]. Therefore, non-reproductive stages are not included. We formulate SI, SIR and

SEIR models and an SI patch model and show that Theorem 2.1 can be applied. In addition, for

the SI, SIR and SEIR models, we prove that the total population size approaches a positive

constant.

3.1 SI model

Let Sm, Sf, Im, If, Nm ¼ Sm þ Im, and Nf ¼ Sf þ If be the number of susceptible males,

susceptible females, infectious males, infectious females, total number of males and total

number of females, respectively. Then N ¼ Sm þ Im þ Sf þ If is the total population size. Let B

denote a harmonic mean birth function

B ; BðNm;NfÞ ¼
2bNmNf

N
; ð6Þ

where b . 0 is the average litter size ([15], p. 574) and N . 0. The harmonic mean birth

function is one of the most commonly used birth functions in demography because of its

biologically reasonable properties, e.g., B(0, Nf) ¼ 0 ¼ B(Nm, 0) and B(N/2, N/2) ¼ bN/2.

We assume the sex ratio at birth is approximately 1:1. The time interval [t, t þ 1] is

approximately the gestation period plus the time until sexual maturity, which is on the order of

two to three months.

The probability of infection is based on the Poisson probability distribution. Let

pðkÞ ¼
expð2lÞl k

k!
; k ¼ 0; 1; 2; . . . ;

where k is the number of encounters that result in infection and l is the average number of

encounters per susceptible individual during the time interval [t,t þ 1] [40]. Since, it takes at

least one effective encounter to become infectious, the probability that a susceptible rodent

becomes infectious is 1 2 p(0). If the average number of encounters by susceptible males with

infectious males or females satisfies the law of mass action, then lSm ¼ (bmIm þ bIf)Sm, where

the spread of infection depends on whether contact is with an infectious male or infectious

female, bm versus b, respectively. This assumption leads to density-dependent transmission for

L.J.S. Allen and P. van den Driessche1130
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susceptible males

pð0Þ ¼ expð2bmIm 2 bIfÞ:

Due to male aggressiveness, it is assumed that contact between males is much greater than

between males and females or between females; hence,

bm .. b . 0; ð7Þ

and for susceptible females

pð0Þ ¼ expð2bIm 2 bIfÞ:

Density-dependent transmission is often assumed for wildlife models because of the highly

fluctuating population densities. The exponential form for p(0) appears in other discrete-time

epidemic models (e.g., [24,25,28,40]).

We assume that the birth and infection process is followed by density-dependent survival.

It is reasonable to assume that density-dependent survival is logistic. Logistic growth is

modelled by including a factor, which has a Beverton–Holt form ([15], p. 506):

DðNÞ ¼
K

K þ ðb=2ÞN
; ð8Þ

where K is the carrying capacity and 1 þ (b/2) is the exponential of the intrinsic growth rate,

1 þ (b/2) ¼ er, or equivalently ln(1 þ b/2) ¼ r. All individuals are subject to the same

density-dependent survival. This is a realistic assumption for our hantavirus models because no

disease-related deaths and no developmental stages are included.

Based on the preceding assumptions, the discrete-time SI hantavirus model takes the

following form:

Smðt þ 1Þ ¼
B

2
þ expð2bmImðtÞ2 bIfðtÞÞSmðtÞ

� �
DðNÞ

Imðt þ 1Þ ¼ ð1 2 expð2bmImðtÞ2 bIfðtÞÞÞSmðtÞ þ ImðtÞ
� �

DðNÞ

Sfðt þ 1Þ ¼
B

2
þ expð2bImðtÞ2 bIfðtÞÞSfðtÞ

� �
DðNÞ

Ifðt þ 1Þ ¼ ð1 2 expð2bImðtÞ2 bIfðtÞÞÞSfðtÞ þ IfðtÞ
� �

DðNÞ:

ð9Þ

The initial conditions are non-negative, Sj (0) $ 0, Ij (0) $ 0 for j ¼ m, f, and the parameters are

positive. It is clear that a unique non-negative solution exists to (9) with Nj(t) $ 0 for j ¼ m, f

and t $ 0. Written in vector form, X(t þ 1) ¼ G(X((t)), where the states are reordered so that the

male and female infectious states are the first two components, X ¼ (Im, If, Sm, Sf)
T. Model (9) is

known as an SI epidemic model; susceptible individuals become infectious but do not recover.

We show that the total population size of model (9) follows closely logistic growth

(Beverton–Holt growth). That is, asymptotically,

Nðt þ 1Þ <
ð1 þ b=2ÞKNðtÞ

K þ ðb=2ÞNðtÞ
;

so that limt!1N(t) ¼ K. Solutions approach the carrying capacity.

Theorem 3.1. In the SI model (9), limt!1Nm(t) ¼ K/2 ¼ limt!1Nf (t).

Journal of Difference Equations and Applications 1131
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Proof. Let u(t) ¼ Nm(t) 2 Nf(t) so that N(t) þ u(t) ¼ 2Nm(t) and N(t) 2 u(t) ¼ 2Nf(t). Then

uðt þ 1Þ ¼
uðtÞK

K þ ðb=2ÞNðtÞ
: ð10Þ

Hence, u(t þ 1) # u(t). Either Nm(0) ¼ Nf(0) or Nm(0) – Nf(0). For the case Nm(0) ¼ Nf(0),

u(t) ¼ 0 ¼ u(t)/N(t) for t $ 0. For the case Nm(0) – Nf(0), we assume without loss of generality

that Nm(0) . Nf(0). The sequence {uðtÞ}1t¼0 is decreasing and bounded below by zero. Hence,

this sequence has a limit, which we denote as u*. Also note that

Nðt þ 1Þ .
NðtÞK

K þ ðb=2ÞNðtÞ
: ð11Þ

Thus, dividing u(t þ 1) by N(t þ 1) and applying (10) and (11) yield

uðt þ 1Þ

Nðt þ 1Þ
,

uðtÞ

NðtÞ
, 1 ð12Þ

for t $ 0. The sequence {uðtÞ=NðtÞ}1t¼0 is decreasing and bounded below by zero. Denote the

limit of this sequence by L. Inequality (12), u(t) . 0, and N(t) . 0 imply 0 , L # 1.

We have already shown L ¼ 0 and u* ¼ 0 for the case Nm(0) ¼ Nf(0). Now, we show L ¼ 0

and u* ¼ 0 for the case Nm(0) . Nf(0). Let e . 0 and choose T such that for t $ T,
uðtÞ

NðtÞ

� �2

,

L2 þ e , 1: Summing the equations in (9),

Nðt þ 1Þ ¼ BðNmðtÞ;NfðtÞÞ þ NðtÞ
� � K

K þ ðb=2ÞNðtÞ

¼
b½N 2ðtÞ2 u2ðtÞ�

2NðtÞ
þ NðtÞ

� �
K

K þ ðb=2ÞNðtÞ ð13Þ

.
b

2
½1 2 L2 2 e� þ 1

� �
KNðtÞ

K þ ðb=2ÞNðtÞ
¼ He ðNðtÞÞ: ð14Þ

Consider the difference equation sðt þ 1Þ ¼ He ðsðtÞÞ. The function He(s) is monotone increasing

in s and has a unique positive fixed point s* ¼ K(1 2 L 2 2 e) . 0. It follows for s(0) ¼ N(0)

that limt!1s(t) ¼ s*. By comparison with the inequality in (14), it follows that lim inft!1-

N(t) $ s*. In addition, it follows from (10) that u(t þ 1) # u(t)c, where

c ¼ K/(K þ (b/2)s*) , 1 which implies limt!1uðtÞ ¼ 0 ¼ u*. Consequently, u* ¼ 0 and

N(t) $ s* . 0 imply lim t!1

uðtÞ

NðtÞ
¼ 0 ¼ L:

Let e . 0 and choose T such that t $ T implies
uðtÞ

NðtÞ

� �2

, e . Then applying (13) and (14),

the following inequalities are obtained:

b

2
½1 2 e� þ 1

� �
KNðtÞ

K þ ðb=2ÞNðtÞ
# Nðt þ 1Þ #

b

2
þ 1

� �
KNðtÞ

K þ ðb=2ÞNðtÞ
: ð15Þ

L.J.S. Allen and P. van den Driessche1132
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The left and right sides of (15) are monotone increasing functions of N, N $ 0. It follows by a

comparison result from [8] (Lemma 1, p. 201) that

½1 2 e�K # lim inf
t!1

NðtÞ # lim sup
t!1

NðtÞ # K:

Since e is arbitrary, limt!1N(t) ¼ K and since limt!1u(t) ¼ 0, the conclusion of the theorem

follows. A

For model (9), we apply the next generation matrix approach to calculate the basic

reproduction number R0 and show that the conditions of Theorem 2.1 are satisfied. The unique

DFE is given by �Sm ¼ K=2 ¼ �Sf ; where �Im ¼ 0 ¼ �If : Calculating the Jacobian matrix J

evaluated at the DFE, as in (3), leads to the following submatrices:

F ¼
K=2

1 þ ðb=2Þ

bm b

b b

 !
; ð16Þ

T ¼
1

1 þ ðb=2Þ
I, O is the 2 £ 2 zero matrix, and C ¼ T, where I is the 2 £ 2 identity matrix.

It is straightforward to see that the conditions of Theorem 2.1 are satisfied, namely that matrices

F and T are non-negative, F þ T is irreducible, and r(T), r(C) , 1. It follows that

R0 ¼ rðFðI2 TÞ21Þ, where

R0 ¼
bm þ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbm 2 bÞ2 þ 4b2

p
2b

K: ð17Þ

Note that R0 depends on the litter size, carrying capacity and transmission coefficients.

The basic reproduction number for an SI stage-structured hantavirus model studied in [40] has a

form similar to (17). In their model, given that the density-independent survival is the same for

all stages and that the transmission coefficients are distinguished only by males and females, bm

and b, then R0 in the model of Wesley et al. (equation (6) in [40]) reduces to (17). In addition,

note that R0 is an increasing function of the transmission parameters, b and bm, a decreasing

function of the litter size b and an increasing function of the carrying capacity K. This latter

result is due to the assumption of density-dependent transmission. If the carrying capacity is kept

fixed but births increase, the infectious population is decreased (and hence, R0 is decreased)

because newborns are not infectious. Under the alternate assumption of frequency-dependent

transmission, namely lS ¼ (bmIm þ bIf)S/N for S ¼ Sm and S ¼ Sf, then the basic reproduction

number is R0=K, where R0 is defined in (17).

The following corollary is a direct consequence of Theorem 2.1.

Corollary 3.2. Let R0 be defined as in (17). If R0 , 1, then the DFE of (9) is locally

asymptotically stable and if R0 . 1, it is unstable.

For the SI hantavirus model (9) we can show the results in Corollary 3.2 are equivalent to the

Schur–Cohn criteria for stability of the DFE. Linearizing system (9) about the DFE yields the

Jacobian matrix (3). The eigenvalues of F þ T are the solutions to z 2 þ a1z þ a2 ¼ 0, where

a1 ¼2½ðbm þ bÞK=2 þ 2�=ð1 þ b=2Þ , 0 and a2 ¼ ½ðbm 2 bÞbK 2=4 þ ðbm þ bÞK=2 þ 1�=
ð1 þ b=2Þ2 . 0. All roots of this polynomial equation lie inside the unit circle iff the three

inequalities are satisfied: 1 þ a1 þ a2 . 0, 1 2 a1 þ a2 . 0 and 1 2 a2 . 0 ([15], p. 522).

Journal of Difference Equations and Applications 1133
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The third inequality is required if the roots are complex conjugates. Since, all roots are real

(a2
1 . 4a2), only the first two inequalities need to be satisfied. The second inequality is true.

The first is true iff R0 , 1. At R0 ¼ 1 a root crosses the unit circle at z ¼ 1, thus we expect a

transcritical bifurcation ([15], p. 528). The bifurcation diagram in Figure 1 illustrates this

bifurcation by showing the stable solutions Im and If as a function of R0ðbmÞ, where b ¼ bm=10

and all other parameter values are fixed. The disease persists when R0 . 1.

The particular form of R0 in (17) depends on how the disease is transmitted between the

sexes. The first two terms in the numerator of R0 represent transmission between the same sex.

The terms in the square root involve same sex transmission and heterosexual transmission. For

example, suppose we identify the transmission coefficient by the sex of the infectious individual

and the sex of the susceptible individual, e.g., bmfImSf. Then for general D(N), the matrix F in

(16) has the form

F ¼ DðKÞK=2
bmm bfm

bmf bff

 !
;

and T ¼ DðKÞI. The basic reproduction number is

R0 ¼
bmm=2 þ bff=2 þ ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbmm 2 bffÞ

2 þ 4bmfbfm

p
1 2 DðKÞ

DðKÞK=2:

If there is only heterosexual transmission, then the preceding expression for R0 reduces to

the geometric mean of bmfD(K)K/2/[1 2 D(K)] and bfmD(K)K/2/[1 2 D(K)]. That is,

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bmfDðKÞK=2bfmDðKÞK=2

p
1 2 DðKÞ

; ð18Þ

which simplifies to R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bmfbfm

p
K=b for D(K) as in (8). Alternately, if the model assumptions

are relaxed so that infectious males have the same transmission coefficient bm, regardless

Figure 1. Bifurcation diagram for the SI hantavirus model, where stable solutions Im and If are graphed as
a function of R0ðbmÞ, b ¼ bm=10, b ¼ 6, and K ¼ 1000.
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of contact with a susceptible male or female, then for general D(N) the matrix F in (16) has the

form

F ¼ DðKÞK=2
bm b

bm b

 !
;

and T ¼ DðKÞI. The basic reproduction number is the sum of a reproduction number for males

and for females,

R0 ¼
bmDðKÞK=2

1 2 DðKÞ
þ

bDðKÞK=2

1 2 DðKÞ
: ð19Þ

Each term in (19) is the product of the virus transmission parameter modified by survival, the

population number, and the lifetime survival of infectious individuals (all evaluated at the DFE).

Lifetime survival is computed from the infinite sum 1=ð1 2 DðKÞÞ ¼
P1

j¼0 ½DðKÞ�
j. In the extreme

case bm ¼ b, where both males and females have the same transmission coefficient, the basic

reproduction number simplifies to R0 ¼ bDðKÞK=ð1 2 DðKÞÞ ¼ bK=ðb=2Þ for D(K) as in (8).

In general, for model (9), because the relationship (7) holds,

R0jb¼0 , R0 , R0jb¼bm
:

Under more restrictive model assumptions, we can show R0 , 1 implies global stability of

the DFE. In the following theorem, we assume the population size is constant, the number of

births is constant and the transmission parameter is the same for males and females.

Theorem 3.3. Let N(0) ¼ K, B ¼ bK/2, D(N) be given by (8), and bm ¼ b in model (9).

If R0 ¼ bK=ðb=2Þ , 1, then the DFE of (9) is globally asymptotically stable.

Proof. Summing all of the difference equations in (9) for t ¼ 0 leads to N(1) ¼ [B þ N(0)]

D(N(0)) ¼ K. Hence, for time t $ 0, it follows that N(t) ¼ K. Let I ¼ Im þ If. Then, summing

the difference equations for Im(t) and If(t) and substituting N(t) ¼ K yields

Iðt þ 1Þ ¼
K 2 e2bIðtÞðK 2 IðtÞÞ

1 þ b=2
¼ f ðIðtÞÞ:

Note that f(0) ¼ 0 and f(I) . 0 for 0 , I # K. If R0 ¼ bK=ðb=2Þ , 1, then

f 0ðIÞ ¼
e2bIðbðK 2 IÞ þ 1Þ

1 þ b=2
, 1:

Thus, 0 , f(I) , I for I . 0. Consequently, the infectious individuals approach zero,

lim t!1ImðtÞ ¼ 0 ¼ lim t!1IfðtÞ.

Let u(t) ¼ Nm(t) 2 Nf(t). The identity (10) and N(t) ¼ K imply u(t þ 1) ¼ u(t)/(1 þ b/2).

Hence, limt!1uðtÞ ¼ 0. Since, the infectious individuals approach zero, Nm(t) and Nf(t)

approach Sm(t) and Sf(t), respectively. It follows that lim t!1SmðtÞ ¼ K=2 ¼ limt!1SfðtÞ;

solutions approach the DFE. A

Another form for the probability of infection is assumed by Lewis et al. [29] in a discrete-

time model for West Nile virus, where mosquito vectors and the bird reservoir population are

Journal of Difference Equations and Applications 1135
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modelled. In their model using subscripts v, r for vector, reservoir, respectively, the probability

that a susceptible mosquito avoids infection arising from a single bite is 1 2 av and the

probability a susceptible mosquito avoids infection from the entire infected bird population in

one time step is

ð1 2 avÞ
br Ir=Nr :

In our infection process, with density-dependent transmission, the probability that the entire

rodent population avoids infection is

exp ð2bmIm 2 bIfÞ:

Comparing these two probabilities under the assumption of density-dependent transmission and

one infectious group, the probability of no infection based on the model of Lewis et al. [29] is

approximately ð1 2 avÞ
brI , whereas this probability, based on our Poisson approximation, is

exp(2bI). These approximations are the same if ð1 2 avÞ
br ¼ expð2bÞ:

3.2 SIR model

We generalize the SI hantavirus model of the previous subsection to an SIR model, where

rodents recover from infection. This assumption may not be realistic for all hantaviruses but may

be a better model in some cases. The hantavirus known as Sin Nombre virus has been shown to

cause a persistent infection in its rodent host, Peromyscus maniculatus [34]. However, for some

hantaviruses it has been noted that the highest viral load often occurs in the first few months after

infection [36]. After this short period of time, rodents shed virus at much lower levels and

transmission of the virus is reduced. Thus, this latter stage may be approximated by a recovered

class. Let Rm and Rf denote the number of male and female rodents that recover from the disease,

respectively. Let gm and gf be the probability of recovery for males and females, respectively,

with

0 # gm; gf # 1:

For this model, Nm ¼ Sm þ Im þ Rm, Nf ¼ Sf þ If þ Rf and N ¼ Nm þ Nf are the total

number of males, total number of females and total population size, respectively. Then, the SIR

system of difference equations takes the following form:

Smðt þ 1Þ ¼
B

2
þ exp ð2bmIm 2 bIfÞSm

� �
DðNÞ

Imðt þ 1Þ ¼ ½1 2 exp ð2bmIm 2 bIfÞ�Sm þ ð1 2 gmÞIm

� �
DðNÞ

Rmðt þ 1Þ ¼ gmIm þ Rm

� �
DðNÞ

Sfðt þ 1Þ ¼
B

2
þ exp ð2bIm 2 bIfÞSf

� �
DðNÞ

Ifðt þ 1Þ ¼ ½1 2 exp ð2bIm 2 bIfÞ�Sf þ ð1 2 gfÞIf

� �
DðNÞ

Rfðt þ 1Þ ¼ gfIf þ Rf

� �
DðNÞ;

ð20Þ

where the birth and survival functions B and D are defined in (6) and (8), respectively.

The t dependence of the variables in the right side of (20) is omitted for simplicity. Initial

conditions are non-negative, Sj(0) $ 0, Ij(0) . 0, Rj(0) $ 0, j ¼ m, f, and parameters are

positive; hence, solutions are non-negative for t $ 0.
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It can be shown in a manner similar to the proof of Theorem 3.1 thatNm and Nf approachK/2 as

t ! 1. Hence, the DFE for the SIR model is �Sm ¼ K=2 ¼ �Sf with other states equal to zero.

Ordering the states as (Im, If, Sm, Sf, Rm, Rf), the submatrices in the Jacobian matrix (3) are

T ¼
1

1 þ ðb=2Þ
diagð1 2 gm; 1 2 gfÞ, F is given by (16), O is the 2 £ 4 zero matrix, and

C ¼
1

1 þ ðb=2Þ
I, where I is the 4 £ 4 identity matrix. Applying the next generation matrix

approach in Theorem 2.1, the basic reproduction number is

R0 ¼
bmK=4

bgf

þ
bK=4

bgf

þ
K=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½bmbgf

þ bbgm
�2 2 4bðbm 2 bÞbgf

bgm

q
bgf

bgm

; ð21Þ

where bgm
¼ ðb=2Þ þ gm and bgf

¼ ðb=2Þ þ gf .

The results for model (20) follow from Theorems 2.1 and 3.1.

Corollary 3.4. Let R0 be defined as in (21). In the SIR model (20),

lim t!1NmðtÞ ¼ K=2 ¼ lim t!1NfðtÞ. In addition, if R0 , 1, then the DFE of model (20) is

locally asymptotically stable and if R0 . 1, it is unstable.

The basic reproduction number (21) is a decreasing function of gm and gf; recovery reduces

the probability of an outbreak. If there is no recovery for males and females, gm ¼ 0 ¼ gf in

(21), then the basic reproduction number for the SI model is obtained.

3.3 SEIR model

Next, we generalize the SIR hantavirus model of the previous subsection to an SEIR model.

The total population size is N ¼ Nm þ Nf, where now Nm ¼ Sm þ Em þ Im þ Rm and Nf ¼ Sf þ

Ef þ If þ Rf are the total number of males and females in the population, respectively, with

individuals that have been exposed to the disease but are not yet infectious denoted as Em (males)

and Ef (females). The length of the latent period is assumed to be the same for males and females,

but the infectious period for males is longer than for females [3,7]. The probability of becoming

infectious in the time interval [t, t þ 1] is d, 0 # d # 1. The same assumptions regarding the other

variables and parameters are taken as in the SIR model of the previous subsection. The discrete-time

SEIR model applies to hantavirus if the latent period is greater than the gestation period plus the

time to sexual maturity. For many hantavirus infections, the latent period may be very short and so,

for the SEIR model to be applicable, the time period [t, t þ 1] may need to be shortened implying

that developmental stages other than adults may need to be included.

The SEIR model for males has the following form:

Smðt þ 1Þ ¼
B

2
þ exp ð2bmIm 2 bIfÞSm

� �
DðNÞ

Emðt þ 1Þ ¼ ½1 2 exp ð2bmIm 2 bIfÞ�Sm þ ð1 2 dÞEm

� �
DðNÞ

Imðt þ 1Þ ¼ dEm þ ð1 2 gmÞIm

� �
DðNÞ

Rmðt þ 1Þ ¼ gmIm þ Rm

� �
DðNÞ:

ð22Þ

A similar set of difference equations applies to the females, where bm and gm are replaced by b

and gf, respectively. Initial conditions are non-negative, Sj(0) $ 0, Ej(0) þ Ij(0) $ 0, Rj(0) $ 0
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for j ¼ m, f, and parameters are positive so that solutions to the SEIR model are non-negative for

t $ 0. It can be shown in a manner similar to the proof of Theorem 2.1 that the total population

size approaches the carrying capacity K.

Next, we compute the basic reproduction number for model (22). At the DFE �Sm ¼ K=2 ¼ �Sf

and all other states are zero. We order the states as follows: (Em, Ef, Im, If, Sm, Sf, Rm, Rf). Then, the

submatrices in the Jacobian matrix J in (3) are C ¼
1

1 þ ðb=2Þ
I, O is the 4 £ 4 zero matrix,

F ¼
K=2

1 þ ðb=2Þ

0 0 bm b

0 0 b b

0 0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA;

and

T ¼
1

1 þ ðb=2Þ

1 2 d 0 0 0

0 1 2 d 0 0

d 0 1 2 gm 0

0 d 0 1 2 gf

0
BBBBB@

1
CCCCCA;

where I is the 4 £ 4 identity matrix. The matrices satisfy the conditions stated in Theorem 2.1.

The basic reproduction number is given by

R0 ¼
bmdK=4

bgm
bd

þ
bdK=4

bgf
bd

þ
dK=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½bmbgf

þ bbgm
�2 2 4bðbm 2 bÞbgf

bgf

q
bgf

bgm
bd

; ð23Þ

where bgf
¼ ðb=2Þ þ gf , bgm

¼ ðb=2Þ þ gm and bd ¼ ðb=2Þ þ d.

The results for the discrete SEIR model (22) are then summarized as in Corollary 3.4, but

with R0 given as in (23). Note that letting d/bd tend to 1 gives the previous R0, defined in (21) for

the SIR model. The delay d introduced through inclusion of an exposed class results in a

decrease of R0.

3.4 SI patch model

In the previous models, we assumed that the spatial environment is homogeneous. Here, we

formulate a new model for animals that move among n spatial regions or patches. The patches

are determined by habitat or environmental requirements for the species. Within each patch,

there are births, deaths, and disease spread as in model (9), but in addition rodents move between

the patches.

Let mji $ 0 and fji $ 0 denote the probabilities that a male and a female rodent, respectively,

move from patch i to patch j, j – i. Let mii < 1 2
P

j–i mji $ 0 and f ii < 1 2
P

j–i f ji $ 0

denote the probabilities that a male and a female rodent, respectively, do not move out of patch i.

Because movement may involve a cost (animals leaving patch i may die before reaching patch j),
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we assume

0 ,
Xn
j¼1

mji # 1 and 0 ,
Xn
j¼1

f ji # 1 ð24Þ

for i ¼ 1, . . . , n. Denote the n £ n dispersal matrices as M ¼ ðmijÞ and F ¼ ðf ijÞ. We assume that

M and F are irreducible, i.e., the patches are connected. Hence, it follows that rðMÞ; rðFÞ # 1.

In the hantavirus model, there are no disease-related deaths, hence, movement of a susceptible

animal is not differentiated from an infectious animal.

To formulate an n-patch model, let the time interval [t, t þ 1] be divided into two steps,

½t; t̂�; ½t̂; t þ 1�, where t , t̂ , t þ 1: Births, deaths and infection occur during the first step

followed by movement during the second step. Discrete-time models with growth followed by

dispersal among two patches have been studied by others [5,13,14,22]. The patch dynamics in

the first time step, ½t; t̂�, as generalized from (9), are given by the system

Simð t̂Þ ¼
Bi

2
þ exp ð2bi

mI
i
mðtÞ2 bIifðtÞÞS

i
mðtÞ

� �
DiðN iÞ

Iimð t̂Þ ¼ ð1 2 exp ð2bi
mI

i
mðtÞ2 b iIifðtÞÞÞS

i
mðtÞ þ IimðtÞ

� �
DiðN iÞ

Sifð t̂Þ ¼
Bi

2
þ exp ð2b iIimðtÞ2 b iIifðtÞÞS

i
fðtÞ

� �
DiðN iÞ

Iifð t̂Þ ¼ ð1 2 exp ð2b iIimðtÞ2 bIifðtÞÞÞS
i
fðtÞ þ IifðtÞ

� �
DiðN iÞ

ð25Þ

for i ¼ 1, . . . n, where

Bi ¼
2biNi

mN
i
f

N i
and DiðN iÞ ¼

K i

K i þ ðbi=2ÞN i
:

The superscript i on the parameter or the disease class means it is associated with patch i.

Movement among the patches occurs during the second time step, ½t̂; t þ 1�. Let Sr ¼

ðS1
r ; . . . ; S

n
r Þ

T and Ir ¼ ðI1
r ; . . . ; I

n
r Þ

T, where r ¼ m, f. Then, the second step of the model is

Smðt þ 1Þ ¼ MSmð t̂Þ; Sfðt þ 1Þ ¼ FSfð t̂Þ; Imðt þ 1Þ ¼ MImð t̂Þ; and Ifðt þ 1Þ ¼ FIfð t̂Þ:

Because of the large number of parameters, it is difficult to verify the existence of a unique

DFE and to determine a simple expression for the basic reproduction number. In the special case

that the demographic parameters are independent of patch, b i ; b and K i ; K, and movement

does not result in any deaths, namely,

Xn
j¼1

mji ¼ 1 and
Xn
j¼1

f ji ¼ 1;

then the unique DFE is independent of patch and is given by

�S
i
m ¼ K=2 ¼ �S

i
f ; i ¼ 1; . . . ; n:

In this case, the assumptions of Theorem 2.1 are satisfied and the basic reproduction number can

be computed. Let X0 ¼ (Im, If) and X1 ¼ (Sm, Sf). We define the following n £ n matrices:

Mbm
¼ ðmijb

i
mÞ; Mb ¼ ðmijb

iÞ, Fb ¼ ðf ijb
iÞ and On is the zero matrix. Then, the submatrices
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in the Jacobian matrix (3) are

F ¼
K=2

1 þ ðb=2Þ

Mbm
Mb

Fb Fb

 !
; ð26Þ

T ¼
1

1 þ ðb=2Þ

M On

On F

 !
; ð27Þ

O is the 2n £ 2n zero matrix, and C ¼ T. The basic reproduction number for this special case of

the n-patch model is given by (5), where F and T are defined in (26) and (27). A simple

expression for R0 cannot be computed unless M and F have a simple form, but R0 can easily be

computed for a given set of parameter values. In the limiting case, where there is no movement,

i.e., M and F approach the n £ n identity matrix, it follows that each patch has its own basic

reproduction number Ri, namely

Ri ¼
bi

m þ b i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbi

m 2 b iÞ2 þ 4ðb iÞ2
q

2b
K:

Dispersal can spread a disease through space in that an outbreak in one patch can be spread to

other patches. On the other hand, if R0 , 1 , Ri for some i, then dispersal can also reduce the

probability of an outbreak for the entire system. Similar complicated dependence of R0 on

movement between patches is found for other discrete-time models (e.g., [13,14]) and

continuous-time models (e.g., [4,10]).

4. Chytridiomycosis model

Chytridiomycosis is a fungal infection of amphibians that has been associated with mass die-offs

in the United States, Australia, Central America and Europe [11,12,19,30,38]. Batrachochytrium

dendrobatidis, the fungal pathogen responsible for chytridiomycosis, was identified in 1998

from dead and dying frogs in Australia and Panama [32]. The fungus attacks the keratin in the

skin of amphibians [19]. Because keratin is present only in the mouthparts of the larval stage of

amphibians, this stage is not as susceptible to infection as the post-metamorphic stages [11].

Discrete-time, deterministic and stochastic models have been developed for amphibian

populations infected by chytridiomycosis [24,25] but the basic reproduction numbers were not

computed for these models. We now consider a simplified model for fungal infection in

amphibians, originally formulated by Emmert and Allen [25], which we describe briefly and

then compute the basic reproduction number.

4.1 SI model

Let AS and AI denote the density of adult amphibians that are either susceptible or infected by the

fungal pathogen. Let F denote the density of the fungal pathogen present in the environment,

either as motile zoospores or on the keratin of dead amphibians. The sex ratio of males and

females is constant, only females are modelled. Because eggs and tadpoles present in a chytrid-

infected pond will become infected, we assume infected adult females give birth to infected

offspring. The egg and tadpole stages experience the highest mortality. Hence, we assume

density-dependent birth and survival functions for the susceptible and infected adults:

BS(N) ¼ bSf(N) and BI(N) ¼ bIf(N), 0 , bI # bS, where N is the adult population size,

L.J.S. Allen and P. van den Driessche1140
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N ¼ AS þ AI (as distinct from our hantavirus models). In addition, f: [0,1) ! (0,1] is a strictly

decreasing function of N satisfying f(0) ¼ 1 and limN!1f(N) ¼ 0. Two reasonable forms for

the density-dependent function f are Beverton–Holt and Ricker forms, namely

fðNÞ ¼
1

1 þ cN
and fðNÞ ¼ exp ð2cNÞ; c . 0; ð28Þ

respectively (see [15], p. 506).

The probability of infection is based on the Poisson distribution with density-dependent

transmission (as for our hantavirus models). The probability that adults do not become infected

is

exp ð2b½vAAI þ vFF�Þ ¼ exp ð2bv · IÞ;

where v · I ¼ vAAI þ vFF, vA,vF $ 0 and vA þ vF . 0. The fungus will not persist in the

environment unless there is a source of keratin from infected amphibians.

The parameters pS, pI and pF are probabilities of survival during the time interval [t, t þ 1]

for susceptible and infected adult amphibians and for free-living fungi, respectively

0 , pI , pS , 1; 0 , pF , 1:

The number of new fungal zoospores coming from infected animals is bF AI, bF . 0.

The adult model has the following form [25]:

ASðt þ 1Þ ¼ ½BSðNðtÞÞ þ pS exp ð2bv · IÞ�ASðtÞ

AIðt þ 1Þ ¼ ½BIðNðtÞÞ þ pI�AIðtÞ þ pSð1 2 exp ð2bv ·IÞÞASðtÞ

Fðt þ 1Þ ¼ bFAIðtÞ þ pFFðtÞ:

ð29Þ

Initial conditions are non-negative, AS(0) . 0, AI(0) . 0, F(0) $ 0, and all parameters are

positive. Hence, solutions are non-negative for t $ 0 The time interval [t, t þ 1] is the time

between reproductive episodes. For amphibians that breed only once per year the time interval is

one year. In the model of Emmert and Allen [25], the interval [t, t þ 1] was subdivided further

into a birth interval [t, t1] and a survival interval [t1, t þ 1] during which time no births occur,

BS ; 0 ; BI. Here, we assume only one time interval [t, t þ 1].

It is straightforward to verify conditions for existence of a unique DFE for system (29).

A positive unique DFE �A exists if and only if bS . 1 2 pS (maximal number of births/adult

during the interval [t, t þ 1] is greater than the probability of dying). The DFE is given by

�A ¼ f21 1 2 pS

bS

� �
. 0: ð30Þ

If bS # 1 2 pS, then bI , 1 2 pI. Extinction is a consequence of the following inequalities:

ASðt þ 1Þ # ½bSfðASðtÞÞ þ pS�ASðtÞ

AIðt þ 1Þ , ½bI þ pI�AIðtÞ:

If bI , 1 2 pI then limt!1 AI(t) ¼ 0. It follows from system (29) that limt!1F(t) ¼ 0

In addition, {ASðtÞ}
1
t¼0 is a monotone decreasing sequence. The sequence must converge

to a fixed point of AS ¼ ðbSfðASÞ þ pSÞAS. But the only fixed point of this equation is AS ¼ 0.
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We summarize these results in the following theorem.

Theorem 4.1. Consider system (29).

(a) If bS # 1 2 pS, then limt!1(AS(t), AI(t), F(t)) ¼ (0, 0, 0).

(b) If bS . 1 2 pS, then a unique DFE ð �A; 0; 0Þ exists, where �A is given by (30).

To compute the basic reproduction number for system (29), the variables are ordered as

(AI, F, AS), because AI and F give rise to new infections. Computing the Jacobian matrix J in (3),

F ¼
bvApS

�Aþ BIð �AÞ bvFpS
�A

bF 0

 !
;

T ¼ diag( pI, pF), O is the 2 £ 1 zero matrix, and

C ¼ pS þ BSð �AÞ þ �AB
0

Sð
�AÞ:

Note that r(T) , 1 is automatic here. For the conditions of Theorem 2.1 to be satisfied, the

scalar C must lie in the interval (21,1), the condition for stability in the absence of disease.

Assuming this restriction holds, the basic reproduction number for system (29) is

R0 ¼ rðFðI2 TÞ21Þ, which gives

R0 ¼
bvApS

�Aþ BIð �AÞ

2ð1 2 pIÞ
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbvApS

�Aþ BIð �AÞÞ
2

ð1 2 pIÞ
2

þ
4bFbvFpS

�A

ð1 2 pIÞð1 2 pFÞ

s
: ð31Þ

The stability results for system (29) are a direct consequence of Theorem 2.1.

Corollary 4.2. Let R0 be defined by (31). Assume bS . 1 2 pS and

jpS þ BSð �AÞ þ �AB
0

Sð
�AÞj , 1: ð32Þ

Then the unique DFE ð �A; 0; 0Þ of system (29), where �A is defined in (30), is locally asymptotically

stable if R0 , 1 and is unstable if R0 . 1.

In the case of a Beverton–Holt functional form BSð �AÞ þ �AB
0

Sð
�AÞ ¼ bS=ð1 þ c �AÞ2. Then,

condition (32) holds if and only ifbS . 1 2 pS showing that the restriction on the birth function (32)

is not required for the Beverton–Holt functional form. However, in the case of a Ricker functional

form (28), the additional restriction (32) must be imposed (for stability in the absence of disease).

We now consider two special cases of transmission, where the basic reproduction number

has a simple form that can easily be interpreted. In the first case, suppose vA ¼ 0, vF . 0 and

BI ; 0. That is, infection occurs only through contact with free-living fungi. In this case, the

basic reproduction number simplifies to

R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bFbvFpS

�A

ð1 2 pIÞð1 2 pFÞ

s
;

the geometric mean of two reproduction numbers bF/(1 2 pF) and bvFpS
�A=ð1 2 pIÞ. The fungus

acts as a vector and for the infection to persist, it must survive in the vector population and in the

host population. The fractions 1/(1 2 pF) and 1/(1 2 pI) can be expressed as infinite sums,
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e.g., 1=ð1 2 pIÞ ¼
P1

k¼0 p
k
I , the lifetime survival of the infected animals. Thus, the two

reproduction numbers have a simple recognizable form.

In the second special case, suppose vF ¼ 0 and vA . 0, where infection occurs only through

contact with infected animals AI. Then F has rank one, and the basic reproduction number

simplifies to

R0 ¼
bvApS

�A

1 2 pI

þ
BIð �AÞ

1 2 pI

:

The basic reproduction number is the sum of horizontal transmission (first term) and vertical

transmission (second term) numbers.

4.2 SI patch model

The SI chytridiomycosis model of the previous subsection can be generalized to an n-patch

model in a manner similar to the SI hantavirus patch model in Section 3.4. For amphibians,

movement occurs between breeding ponds and depends on whether the animal is susceptible or

infected. Let MS ¼ ðmS
ijÞ and MI ¼ ðmI

ijÞ denote the n £ n dispersal matrices for susceptible and

infected amphibians, where 0 # mI
ij # mS

ij # 1, j – i, 0 # mS
ii # mI

ii # 1;

Xn
j¼1

mS
ji # 1 and

Xn
j¼1

mI
ji # 1:

Assume MS and MI are irreducible. We divide the time interval into two steps, ½t; t̂� and ½t̂; t þ 1�,

as in the SI hantavirus patch model, and we assume that births, deaths and infections occur in the

first step. Then, the first step of the n-patch model is a generalization of (29) to patch i:

Ai
Sð t̂Þ ¼ ½Bi

SðN
iðtÞÞ þ piS exp ð2b iv i·I iÞ�Ai

SðtÞ

Ai
Ið t̂Þ ¼ ½Bi

IðN
iðtÞÞ þ piI�A

i
IðtÞ þ piSð1 2 exp ð2b iv i·I iÞÞAi

SðtÞ

F ið t̂Þ ¼ biFA
i
IðtÞ þ piFF

iðtÞ

for i ¼ 1, . . . , n. Let AS ¼ ðA1
S; . . . ;A

n
SÞ

T, AI ¼ ðA1
I ; . . . ;A

n
I Þ

T and F ¼ ðF 1; . . . ;FnÞT: Since there

is no movement of the fungi, the second step of the n-patch model is

ASðt þ 1Þ ¼ MSASð t̂Þ; AIðt þ 1Þ ¼ MIAIð t̂Þ; and Fðt þ 1Þ ¼ Fð t̂Þ:

To verify that a unique DFE exists for this general n-patch model is difficult due to the large

number of parameters. For the special case where demographic parameters for the susceptible

animals are patch independent, then the results from the previous subsection can be applied. That

is, assume Bi
S ; BS and piS ; pS, where BSðNÞ ¼ bSfðNÞ with f satisfying the properties

described in the previous subsection, and

Xn
j¼1

mS
ji ¼ 1:
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Then, it can be shown that a unique DFE is patch independent and has the same form as in (30).

That is,

�Ai ¼ f21 1 2 pS

bS

� �
¼ �A; i ¼ 1; . . . ; n;

provided bS . 1 2 pS. Let matrices F i and C i denote the matrices in the previous subsection,

where the parameters and states may depend on patch i. That is,

F i ¼
b ivi

ApS
�Aþ Bi

Ið
�AÞ b ivi

FpS
�A

biF 0

0
@

1
A ¼

f i11 f i12

biF 0

0
@

1
A

and

C i ¼ pS þ BSð �AÞ þ �AB
0

Sð
�AÞ:

Note that C i is a patch-independent scalar. Define the n £ n matrices MI
f 11

¼ ðmI
ij f

j
11Þ,

MI
f 12

¼ ðmI
ij f

j
12Þ, M

I
pI
¼ ðmI

ij p
j
I Þ, MbF

¼ diagðb1
F; . . . ; b

n
FÞ and MpF

¼ diagðp1
F; . . . ; p

n
FÞ: Then the

submatrices F, T, O and C in the Jacobian matrix (3) for the n-patch model are

F ¼
MI

f 11
MI

f 12

MbF
On

0
@

1
A; T ¼

MI
pI

On

On MpF

0
@

1
A;

O is the 2n £ n zero matrix, and C ¼ C iMS: It is easy to see that r(T) , 1 and F þ T is

irreducible. For the case of Beverton–Holt death rate, r(C) , 1. Hence, Theorem 2.1 applies

and the basic reproduction number can be computed using (5) from the matrices F and T derived

above. This can easily be computed for a set of given parameter values.

5. Conclusion

The next generation matrix approach has been applied extensively to continuous-time epidemic

models to calculate the basic reproduction number, but it is not as well-known in discrete-time

epidemic models. However, this approach has been applied widely in the study of discrete-time

population models, where the basic reproduction number determines local stability of the

extinction equilibrium. This theory allows the next generation matrix approach to be easily

extended to discrete-time epidemic models. In this investigation, we describe briefly the next

generation matrix approach for calculating the basic reproduction number for general discrete-

time epidemic models. Theorem 2.1 summarizes how this approach is used to calculate the basic

reproduction number, and provides sufficient conditions so that R0 , 1 implies local asymptotic

stability of the DFE and R0 . 1 implies instability.

It is interesting to note that the value of R0 given by equation (23) for the discrete-time SEIR

hantavirus model (22) is the same as the basic reproduction number in a continuous-time SEIR

hantavirus model (system of differential equations) [7]. The system of differential equations for

L.J.S. Allen and P. van den Driessche1144

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
l
l
e
n
,
 
L
i
n
d
a
 
S
]
 
A
t
:
 
1
5
:
4
2
 
1
 
O
c
t
o
b
e
r
 
2
0
0
8



the males has the following form:

dSm

dt
¼

BðNm;NfÞ

2
2 SmdðNÞ2 SmðbmIm þ bIfÞ

dEm

dt
¼ 2EmdðNÞ þ SmðbmIm þ bIfÞ2 dEm

dIm

dt
¼ dEm 2 ImdðNÞ2 gmIm

dRm

dt
¼ gmIm 2 RmdðNÞ;

where d(N) ¼ a þ CN is a density-dependent natural death rate, a . 0 is the per capita,

density-independent death rate, and c . 0 is the per capita, density-dependent death rate [7].

The unique DFE is �Sm ¼ K=2 ¼ �Sf , where K ¼ ðb=2 2 aÞ=c; 0 , a , b=2, and b is the

average litter size. Unlike the difference equations, where the survival probability is multiplied

by the population size after infection, in the differential equations, the death rate is subtracted

from the rate of population growth. The basic reproduction number for the preceding system of

differential equations together with analogous equations for the females is found by the next

generation matrix in [39] to be equal to R0 in (23). Analogous continuous-time SI and SIR

hantavirus models, formulated according to the preceding SEIR model, have the same basic

reproduction number as in the discrete-time SI and SIR models studied here, namely formulae

(17) and (21), respectively.

In this investigation, we applied the next generation matrix approach to six different models

that have applications to two emerging wildlife diseases, hantavirus in rodents (SI, SIR, SEIR

models and SI patch model) and chytridiomycosis in amphibians (SI model and SI patch model).

The conditions of Theorem 2.1 were shown to hold for each of the models. This is the first time

that the basic reproduction numbers have been calculated for these discrete-time models.

A numerical example for the SI hantavirus model indicates for the bifurcation parameter bm

(b ¼ bm/10) that a transcritical forward bifurcation occurs at R0 ¼ 1, showing endemic disease

for R0 . 1. We verified for a special case of the SI hantavirus model that R0 , 1 implies global

stability of the DFE.

The functional form of the basic reproduction number is shown to depend on the various

model parameters and the modelling assumptions. The assumptions about births, recovery,

latent period, male versus female transmission, vector transmission, horizontal versus vertical

transmission and dispersal have an impact on the magnitude of R0 and ultimately, on the

likelihood of an outbreak.
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