Contributions to Algebra and Geometry Volume 34 (1993), No. 2, 157-161.

Is Whaples' Theorem a Group Theoretical Result?

Arne Ledet

Mathematical Institute, University of Copenhagen Universitetsparken 5, DK - 2100 Copenhagen

A theorem by Whaples (see [2] or [3]) states, that if a field admits a cyclic extension of degree p, where p is an odd prime, it admits a pro-cyclic extension of degree p^{∞} . Similarly, the existence of a cyclic extension of degree 4 implies the existence of a procyclic extension of degree 2^{∞} .

This can be formulated as a statement about the absolute Galois group G of the field: If G has the cyclic group $\mathbf{Z}/p\mathbf{Z}$ as a factor, it has the pro-cyclic group $\mathbf{\hat{Z}}_p$ of p-adic integers as a factor, and similarly for $\mathbf{Z}/4\mathbf{Z}$ and the 2-adic integers $\mathbf{\hat{Z}}_2$.

This property does not hold for pro-finite groups in general. (With $\mathbf{Z}/p\mathbf{Z}$ and $\mathbf{Z}/4\mathbf{Z}$ as obvious counter-examples.) But unless the field is formally real the absolute Galois group is torsion free, and it is therefore natural to ask whether Whaples' result generalizes to torsion free pro-finite groups.

It does not.

Let p be a prime. For $h \ge 0$, k, m > 0, $h + k \ge m$, we define

$$\mathfrak{M}_{h,k,m} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\widehat{\mathbf{Z}}_p) \middle| \begin{array}{c} ad - bc = 1, \ d \equiv 1 \pmod{p^m}, \\ b \equiv 0 \pmod{p^h}, \ c \equiv 0 \pmod{p^k} \end{array} \right\}.$$

It is easily seen that $\mathfrak{M}_{h,k,m}$ is a closed p-subgroup of

$$\mathrm{SL}_2(\widehat{\mathbf{Z}}_p) = \varprojlim \mathrm{SL}_2(\mathbf{Z}/p^n\mathbf{Z}).$$

For odd primes p these groups are investigated in [1, III.§17], where the following theorems are proved:

Theorem 1. Let

$$B(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \quad C(x) = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}, \quad D(x) = \begin{pmatrix} x^{-1} & 0 \\ 0 & x \end{pmatrix},$$

0138-4821/93 \$ 2.50 © 1993 Heldermann Verlag, Berlin

and consider the following subgroups of $\mathfrak{M}_{h,k,m}$:

$$\mathfrak{B}_h = \{ B(x) \mid x \equiv 0 \pmod{p^h} \},$$

$$\mathfrak{C}_k = \{ C(x) \mid x \equiv 0 \pmod{p^k} \},$$

$$\mathfrak{D}_m = \{ D(x) \mid x \equiv 1 \pmod{p^m} \}.$$

Every element $x \in \mathfrak{M}_{h,k,m}$ can be written in one and only one way as x = bcd, $b \in \mathfrak{B}_h$, $c \in \mathfrak{C}_k$, $d \in \mathfrak{D}_m$.

$$[\mathfrak{M}_{h,k,m} : \mathfrak{M}_{h+h',k+k',m+m'}] = p^{h'+k'+m'}.$$

An easy consequence of the decomposition $\mathfrak{M}_{h,k,m} = \mathfrak{B}_h \mathfrak{C}_k \mathfrak{D}_m$ is the following: $\mathfrak{M}_{h+h',k+k',m+m'} \triangleleft \mathfrak{M}_{h,k,m}$, if $h' \leq m+m' \leq h+k+k'$ and $k' \leq m+m' \leq k+h+h'$.

Theorem 2. $\mathfrak{M}'_{h,k,m} = \mathfrak{M}_{h+m,k+m,h+k}$.

Theorem 1 is also valid for p=2, whereas Theorem 2 holds for odd primes only. The analogue of Theorem 2 for p=2 (and m>1) is Theorem 4 below.

Lemma 3. Let p = 2 and m > 1. Then

$$egin{aligned} [\mathfrak{B}_h,\mathfrak{D}_m] &= \mathfrak{B}_{h+m+1} \quad ext{and} \ [\mathfrak{C}_k,\mathfrak{D}_m] &= \mathfrak{C}_{k+m+1}. \end{aligned}$$

Also
$$[B(b), C(c)] = B(b)C(c)B(-b)C(-c) = B(-b^2ce^{-1})C(bc^2e)D(e)$$
, where $e = 1 - bc$.

Proof. We have

$$\begin{split} [B(b),D(d)] &= B(b)D(d)B(b)^{-1}D(d)^{-1} \\ &= \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d^{-1} & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & -b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d & 0 \\ 0 & d^{-1} \end{pmatrix} \\ &= \begin{pmatrix} 1 & b(1-d^{-2}) \\ 0 & 1 \end{pmatrix} = B(b(1-d^{-2})). \end{split}$$

If $d \equiv 1 \pmod{2^m}$, we have $1 - d^{-2} = (1 + d^{-1})(1 - d^{-1}) \equiv 0 \pmod{2^{m+1}}$. Hence $[\mathfrak{B}_h, \mathfrak{D}_m] = \mathfrak{B}_{h+m+1}$. $[\mathfrak{C}_k, \mathfrak{D}_m] = \mathfrak{C}_{k+m+1}$ is proved similarly.

Theorem 4. Let p = 2 and m > 1. If h + k > m,

$$\mathfrak{M}'_{h,k,m} = \mathfrak{M}_{h+m+1,k+m+1,h+k}.$$

If h + k = m,

$$\mathfrak{M}'_{h,k,m} = \mathfrak{M}_{h+m+1,k+m+1,m+1} \langle B(2^{h+m})C(2^{k+m})D(1+2^m) \rangle.$$

Proof. h+k>m: If $b\equiv 0\pmod{2^h}$ and $c\equiv 0\pmod{2^k}$, we have $-b^2ce^{-1}\equiv 0\pmod{2^{2h+k}}$ and $bc^2e\equiv 0\pmod{2^{h+2k}}$. Since $2h+k\geq h+m+1$ and $h+2k\geq k+m+1$, we have $D(e)\in \mathfrak{M}'_{h,k,m}$ by Lemma 3. \mathfrak{D}_{h+k} is generated by these elements D(e), and we conclude, that $\mathfrak{D}_{h+k}\subseteq \mathfrak{M}'_{h,k,m}$. Hence

$$\mathfrak{M}_{h+m+1,k+m+1,h+k} \subseteq \mathfrak{M}'_{h,k,m}$$
.

Since $\mathfrak{M}_{h+m+1,k+m+1,h+k} \triangleleft \mathfrak{M}_{h,k,m}$ and $\mathfrak{M}_{h,k,m}/\mathfrak{M}_{h+m+1,k+m+1,h+k}$ is abelian, we have

$$\mathfrak{M}'_{h,k,m} = \mathfrak{M}_{h+m+1,k+m+1,h+k}.$$

h+k=m: We still have $\mathfrak{B}_{h+m+1}\subseteq\mathfrak{M}'_{h,k,m}$ and $\mathfrak{C}_{k+m+1}\subseteq\mathfrak{M}'_{h,k,m}$. If $b\equiv 0\pmod{2^{h+1}}$ and $c\equiv 0\pmod{2^k}$, we get $D(e)\in\mathfrak{M}'_{h,k,m}$ and $e\equiv 1\pmod{2^{m+1}}$. Hence

$$\mathfrak{M}_{h+m+1,k+m+1,m+1} \subseteq \mathfrak{M}'_{h,k,m}$$

These subgroups are both normal.

We know that $B(-2^{2h}2^k(1-2^m)^{-1})C(2^h2^{2k}(1-2^m))D(1-2^m) \in \mathfrak{M}'_{h,k,m}$, and $B(2^{h+m})C(2^{k+m})D(1+2^m) \equiv B(-2^{2h}2^k(1-2^m)^{-1})C(2^h2^{2k}(1-2^m))D(1-2^m)$ (mod $\mathfrak{M}_{h+m+1,k+m+1,m+1}$). If we let $B=B(2^{h+m})$, $C=C(2^{k+m})$ and $D=D(1+2^m)$ this gives

$$\mathfrak{M}_{h+m+1,k+m+1,m+1} \langle BCD \rangle \subseteq \mathfrak{M}'_{h,k,m}.$$

 $\mathfrak{M}_{h,k,m}$ is generated by $b=B(2^h)$, $c=C(2^k)$ and d=D, so to prove normality of $\mathfrak{M}_{h+m+1,k+m+1,m+1}\langle BCD\rangle$ one directly verifies that $[x,BCD]\in \mathfrak{M}_{h+m+1,k+m+1,m+1}$ for x=b,c,d. This is easily done, and we conclude

$$\mathfrak{M}_{h+m+1,k+m+1,m+1}\left\langle BCD\right\rangle \lhd \mathfrak{M}_{h,k,m}.$$

Since $\mathfrak{M}_{h,k,m}/\mathfrak{M}_{h+m+1,k+m+1,m+1}\langle BCD\rangle$ is abelian, we have

$$\mathfrak{M}_{h+m+1,k+m+1,m+1} \langle BCD \rangle = \mathfrak{M}'_{h,k,m}.$$

Proposition 5. Let p be an odd prime. Then

$$\mathfrak{M}_{h,k,m}/\mathfrak{M}'_{h,k,m} \simeq \mathbf{Z}/p^m\mathbf{Z} \times \mathbf{Z}/p^m\mathbf{Z} \times \mathbf{Z}/p^{h+k-m}\mathbf{Z}.$$

Let p = 2 and m > 1. Then

$$\mathfrak{M}_{h,k,m}/\mathfrak{M}'_{h,k,m} \simeq \mathbf{Z}/2^{m+1}\mathbf{Z} \times \mathbf{Z}/2^{m+1}\mathbf{Z} \times \mathbf{Z}/2^{h+k-m}\mathbf{Z}.$$

Proof. p odd: $\mathfrak{M}_{h,k,m}$ is generated by $B(p^h)$, $C(p^k)$ and $D(1+p^m)$. It follows that $\mathfrak{M}_{h,k,m}/\mathfrak{M}'_{h,k,m}$ is the direct product of the subgroups generated by $B(p^k)\mathfrak{M}'_{h,k,m}$, $C(p^h)\mathfrak{M}'_{h,k,m}$ and $D(1+p^m)\mathfrak{M}'_{h,k,m}$.

 \mathfrak{D}_m are pro-cyclic with generators $B(2^h)$, $C(2^k)$ and $D(1+2^m)$.

p=2 and h+k>m: The structure of $\mathfrak{M}_{h,k,m}/\mathfrak{M}'_{h,k,m}$ is obvious, since \mathfrak{B}_h , \mathfrak{C}_k and

p=2 and h+k=m: Let the notation be as in the proof of Theorem 4. From $BCd, d^2 \in \mathfrak{M}'_{h,k,m}$ we get $d \equiv BC \pmod{\mathfrak{M}'_{h,k,m}}$, so $\mathfrak{M}_{h,k,m}/\mathfrak{M}'_{h,k,m}$ is generated by b and c. This gives

$$\mathfrak{M}_{h,k,m}/\mathfrak{M}'_{h,k,m} \simeq \mathbf{Z}/2^{m+1}\mathbf{Z} \times \mathbf{Z}/2^{m+1}\mathbf{Z}.$$

Proposition 6. i) $\mathfrak{M}_{h,k,m}$ is torsion free for p > 3.

ii) For p = 3, $\mathfrak{M}_{h,k,m}$ is torsion free unless (h,k,m) = (0,1,1). If (h,k,m) = (0,1,1), every torsion element has order 3 and is of the form

$$\begin{pmatrix} (x-1)/2 & b \\ c & -(x+1)/2 \end{pmatrix}$$
, where $x^2 = 1 - 4(1 + bc)$.

iii) For p = 2, $\mathfrak{M}_{h,k,m}$ is torsion free unless m = 1, in which case $-\mathbf{E}$ is a torsion element. If m = 1 and h + k > 1, $-\mathbf{E}$ is the only torsion element. If m = 1 and h + k = 1, there are in addition torsion elements of order 4, and any such torsion element is of the form

$$\begin{pmatrix} x & b \\ c & -x \end{pmatrix}$$
, where $bc \equiv 6 \pmod{8}$ and $x^2 = -(1 + bc)$.

Proof. Let $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\widehat{\mathbf{Z}}_p)$, and assume that $\mathbf{A}^{p^k} = \mathbf{E}$ for some $k \in \mathbf{N}$. The eigenvalues of \mathbf{A} must be $p^{k \, \text{th}}$ roots of unity, and also roots of the characteristic polynomial $\lambda^2 - (a+d)\lambda + 1$.

If 1 is the only eigenvalue, we have $\lambda^2 - (a+d)\lambda + 1 = \lambda^2 - 2\lambda + 1$, i.e., a+d=2 and ad=1+bc. We can assume that

$$a = 1 + \sqrt{-bc}$$
 and $d = 1 - \sqrt{-bc}$

An induction argument gives

$$\mathbf{A^n} = \begin{pmatrix} 1 + n\sqrt{-bc} & nb \\ nc & 1 - n\sqrt{-bc} \end{pmatrix},$$

so b = c = 0 and $\mathbf{A} = \mathbf{E}$.

p>3: The $p^{i\,\text{th}}$ cyclotomic polynomial is irreducible in $\widehat{\mathbf{Z}}_p[X]$ of degree $p^{i-1}(p-1)>2$ for i>0, so the only possible eigenvalue is 1, and we get $\mathbf{A}=\mathbf{E}$ by the above argument.

p=3: If 1 is the only eigenvalue, we get $\mathbf{A}=\mathbf{E}$ as above. If the eigenvalues are ζ and ζ^{-1} , where ζ is a primitive third root of unity, we get $\lambda^2-(a+d)\lambda+1=\lambda^2+\lambda+1$, i.e., a+d=-1 and ad=1+bc. We can assume that

$$a = \frac{-1 + \sqrt{1 - 4(1 + bc)}}{2}$$
 and $d = \frac{-1 - \sqrt{1 - 4(1 + bc)}}{2}$.

Since $a \equiv 1 \pmod{3^m}$ we get $bc \equiv -3 \pmod{3^m}$. $bc \equiv 0 \pmod{3^{h+k}}$ and $h+k \geq m$, so m=1. If h+k>1 we have $1-4(1-bc)\equiv -3 \pmod{9}$, and since -3 is not a square in $\mathbb{Z}/9\mathbb{Z}$, 1-4(1-bc) is not a square in $\widehat{\mathbb{Z}}_3$. Therefore h+k=1, i.e., h=0 and k=1. Now let $x=\sqrt{1-4(1+bc)}$. Then

$$\mathbf{A} = \begin{pmatrix} (x-1)/2 & b \\ c & -(x+1)/2 \end{pmatrix}$$

and direct calculation shows $A^3 = E$.

Example:
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -3 & -2 \end{pmatrix}$$
.

p=2: The eigenvalues are either 1, -1 or primitive fourth roots of unity. If 1 is the only eigenvalue, we have $\mathbf{A}=\mathbf{E}$. If -1 is the only eigenvalue, $-\mathbf{A}\in \mathrm{SL}_2(\widehat{\mathbf{Z}}_2)$ has 1 as its only eigenvalue, hence $-\mathbf{A}=\mathbf{E}$ and $\mathbf{A}=-\mathbf{E}$. This is obviously only possible for m=1.

Assume now, that the eigenvalues are primitive fourth roots of unity. Then $\lambda^2 - (a + d)\lambda + 1 = \lambda^2 + 1$, i.e., a + d = 0. Since $a \equiv d \equiv 1 \pmod{2^m}$, we have m = 1. We can assume

$$a = \sqrt{-(1+bc)}, \quad d = -\sqrt{-(1+bc)},$$

hence $\mathbf{A^2} = -\mathbf{E}$ and \mathbf{A} has order 4.

Since $-(1+bc) \equiv -1 \pmod{2}$, -(1+bc) is a square in $\widehat{\mathbf{Z}}_2$, if and only if $-(1+bc) \equiv 1 \pmod{8}$, if and only if $bc \equiv 6 \pmod{8}$. Since $bc \equiv 0 \pmod{2^{h+k}}$, we get h+k=1.

Example:
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -2 & -1 \end{pmatrix}$$
.

It is now clear, that Whaples' Theorem does not generalize to arbitrary torsion free pro-finite groups: For an odd prime p and a natural number n we get examples of torsion free pro-p-groups with $\mathbf{Z}/p^n\mathbf{Z}$, but not $\mathbf{Z}/p^{n+1}\mathbf{Z}$, as a factor. For p=2 and $n\geq 3$ we get examples of torsion free pro-2-groups with $\mathbf{Z}/2^n\mathbf{Z}$, but not $\mathbf{Z}/2^{n+1}\mathbf{Z}$, as a factor.

Unfortunately, these groups do not give us an example of a torsion free pro-2-group with $\mathbb{Z}/4\mathbb{Z}$, but not $\mathbb{Z}/8\mathbb{Z}$, as a factor.

References

- [1] Huppert, B.: Endliche Gruppen I, Springer 1967.
- [2] Kuyk, W.; Lenstra, H.W. Jr.: Abelian extensions of arbitrary fields. Math. Ann. 216 (1975), 99–104.
- [3] Whaples, G.: Algebraic extensions of arbitrary fields, Duke Math. J. **24** (1957), 201–204.