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Abstract. Let K be a differential field with algebraically closed
field of constants C and G a linear algebraic group over C. We
provide a characterization of the K-irreducible G-torsors for non-
connected groups G in terms of the first Galois cohomology H1(K, G)
and use it to construct Picard-Vessiot extensions which correspond
to non-trivial torsors for the infinite quaternion group, the infi-
nite multiplicative and additive dihedral groups and the orthog-
onal groups. The extensions so constructed are generic for those
groups.

1. Introduction

Let C denote an algebraically closed field with trivial derivation. We
are concerned with the following generic form of the inverse problem
in differential Galois theory: Given a linear group G over C, are there
a differential field K with field of constants C and a Picard-Vessiot ex-
tension (PVE) E ⊃ K, with differential Galois group isomorphic to
G, such that E is generated over K by elements satisfying universal
relations, i.e., such that every PVE with differential Galois group iso-
morphic to G of a differential field with field of constants C is generated
by elements satisfying at least those relations?

We will address this problem for some instances of non-connected
groups. Our approach relies on the following well known facts: If K
is a differential field with field of constants C then a PVE of K with
differential Galois group G is the function field of a K-irreducible G-
torsor [13, Theorem 5.12], [14, Theorem 1.28]. In turn, the isomorphism
classes of (not necessarily irreducible) G-torsors are in one-to-one cor-
respondence with the equivalence classes of crossed homomorphisms in
the first Galois cohomology set H1(K,G) [15, Proposition 33]. Thus,
to each PVE of K with differential Galois group G one can associate
an element of H1(K,G). Furthermore, a crossed homomorphism splits
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on a Galois extension of K and the coordinate ring of the correspond-
ing G-torsor is given by R = K[XP, 1/ det(XP )] where X is a generic
point of G and P is a splitting matrix. As a consequence, a PVE of
K with group G is completely determined by P and our problem of
finding universal generators reduces to finding the most general form
of P .

The case of connected groups has been studied in [4, 5, 8, 9]. In
particular, in [8] we address the case G = SOn, n ≥ 3, and in [9], the
case G = PGL3. A broader discussion of generic extensions is also
included in [8]. In [5] only PVE’s that are the function fields of the
trivial G-torsor are considered. We point out that when G is connected
all the G-torsors are automatically K-irreducible.

For non-connected G there are reducible torsors. So, our first step
is to provide a characterization of K-irreducible G-torsors (Theorem
1) in terms of H1(K,G). We then proceed to a discussion of the co-
ordinate rings and twisted Lie algebras and analyze the cases of the
infinite quaternion Q∞, the infinite dihedral groups Dm and Da, and
the orthogonal groups On. Finally, we show how these constructions
yield solutions to the generic inverse problem for those groups, that is,
we produce generic extensions (Definition 1 below) for those groups.

The case when G is a split extension H n G0 of its finite group H
of connected components, and the adjoint H-action on the Lie algebra
of G0 is faithful, has been partially studied in [6]. The extensions
considered there are generic relative to split G-torsors, which means
that they describe the Picard-Vessiot extensions E ⊃ K corresponding
to G-torsors of the form G0 ×W , for some K-irreducible H-torsor W .
In this paper we can completely remove those restrictions for the groups
we study. Furthermore, we show that the stronger notion of descent
generic extension (see comments below Definition 1) holds for these
groups. We note, however, that the groups discussed in [6] cover many
more cases than the ones for which the first Galois cohomology is well
understood.

The notion of generic PVE is closely related to that of generic linear
differential operator (equation) with group G. For more on those the
reader is referred to [1, 3, 8, 10].

Throughout this paper, all fields will be standard differential fields,
i.e., they will have characterstic zero and contain an algebraically closed
subfield of constants denoted by C as before. Our base field will be K.
We keep the notation G introduced above.



GENERIC PICARD-VESSIOT EXTENSIONS 3

2. Preliminaries

For a field L, the coordinate ring for G over L is denoted L[G]. It
has the form L[X, 1/ detX], where X is a generic element in G. For
A ∈ G(L), we let ρA : L[G] → L[G] denote the L-algebra automorphism
given by X 7→ XA. Also, we let λA : L[G] → L[G] denote the L-algebra
automorphism X 7→ A−1X.

The isomorphism classes of G-torsors over K are classified by the
elements in H1(K,G) in the usual way, cf. [7]: Let f : Gal(K) → G(K̄)
be a crossed homomorphism. Then the corresponding twisted Galois
action on K̄[G] is

σx = ρfσ
(σ(x)), σ ∈ Gal(K), x ∈ K̄[G],

meaning that it is the usual Galois action on the scalar field K̄, with

σX = Xfσ.

If we split the crossed homomorphism using Speiser’s Theorem, i.e.,
write

fσ = Pσ(P )−1

for some P ∈ GLn(K̄), we have that the fixed ring—the coordinate
ring for the torsor associated with f—is

R = K[Y, 1/ detY ],

where Y = XP .
The G(K)-action on R is the one induced by left multiplication, i.e.,

through λ.

3. Irreducible torsors

For our purposes—the construction of Picard-Vessiot extensions—we
must have that the torsors are irreducible, i.e., that the coordinate
ring R is a domain. This is automatically the case if G is connected,
since K̄[G] is then a domain. However, we are interested in non-
connected groups:

Let N / G be the connected component of G, and let H = G/N be
the (finite) factor group.

In the coordinate ring K[G], we have a prime ideal p defining N , i.e.,
the coordinate ring for N is K[G]/p. If NA is another irreducible com-
ponent of G, it is then given by the prime ideal ρA−1(p). In particular,
we have an induced isomorphism ρA−1 : K[N ] ' K[NA].

The prime ideals defining the cosets of N in G (i.e., the irreducible
components of G) are pair-wise co-maximal and have trivial intersec-
tion. By the Chinese Remainder Theorem [12, p. 94], we therefore
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have

K[G] '
⊕

h∈H

K[NAh]eh,

where the eh’s are orthogonal idempotents, introduced for convenience,
and Ah is a pre-image of h in G(K), with A1 = I. The isomorphism is

X 7→
∑

h∈H

Xheh,

with Xh denoting the generic element for NAh, i.e., the image of X
in K[NAh]. The G(K)-actions on K[G] of course carry over to this
decomposition. We will not need to describe them in detail, but just
observe the following: Let e ∈ K[G] be an element such that e ≡ 1
(mod p), whereas e ∈ ρA−1

h
(p) = ph for all h ∈ H \1. Then e 7→ e1. For

B ∈ G(K), we let h ∈ H be the image of B, and get that ρB−1(e) 7→ eh.
Thus,

ρB : eh 7→ e1.

It follows immediately that

ρB : eg 7→ egh−1, g ∈ H :

Write B = C−1D, where D ∈ G(K) is a pre-image of g, and C ∈ G(K)
is a pre-image of gh−1. Then ρD takes eg to e1, and ρC−1 takes e1

to egh−1.
In a similar manner, we see that

λB : eg 7→ ehg, g ∈ H.

Now, let once again f : Gal(K) → G(K̄) be a crossed homomor-
phism, and let P , Y and R be as in the previous section.

We then have a homomorphism ϕ : Gal(K) → H, given by compos-
ing f with G � H. Let M be the fixed field of kerϕ inside K̄. Then
M/K is a Galois extension, and the Galois group Gal(M/K) can be
canonically identified with a subgroup H ′ of H. Moreover, we have M
embedded in R by

α 7→ α′ =
∑

g∈H′

g−1(α)eg.

If H ′ ( H, we can find an h ∈ H \ H ′, and would then have that
α′ ·λAh

(α′) = 0 for α ∈M , meaning that R would not be a domain. It
is therefore necessary that ϕ be onto.

Remark. ϕ is a crossed homomorphism Gal(K) → H, and conse-
quently represents a Galois algebra over K with Galois group H, cf. [2,
p.10]. The Galois twist producing this algebra happens automatically
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when we take Galois twist to produce R, meaning that the Galois alge-
bra sits inside R. Since a Galois algebra is only a domain if it is a field,
and since the Galois algebra is a direct sum of [H : H ′] copies of M ,
this means that R cannot be a domain unless H = H ′. The argument
above simply establishes this directly.

Assuming ϕ to be onto, we then have theH-extension M/K inside R,
by

α 7→
∑

g∈H

g−1(α)eg ∈ R, α ∈M.

Additionally, the left action of G(K) on R then restricts to the Galois
action:

λB(
∑

g∈H

g−1(α)eg) =
∑

g∈H

g−1(α)ehg =
∑

g∈H

g−1(h(α))eg,

when B ∈ G(K) is a pre-image of h ∈ H.
We have a restricted crossed homomorphism f : Gal(M) → N(M̄),

and accordingly the coordinate ring for an N -torsor S = M [Z, 1/ detZ]
over M , where Z = X1P . We also have a K-algebra homomorphism
ψ : R → S, given by ψ(Y ) = Z, obtained by restricting the canonical
map K̄[G] → K̄[N ] = M̄ [N ]. Clearly, ψ is onto.

The kernel of ψ is (p ⊗K K̄) ∩ R. For every h ∈ H, we can find a
σ ∈ Gal(K) with ϕ(σ) = h−1, and hence σ(p⊗K K̄) = ph ⊗K K̄. Thus,
an element in kerψ must be in all the ph ⊗K K̄’s, i.e., it must be 0.
Therefore, ψ is injective.

All in all: ψ : R →M [Z, 1/ detZ] is an isomorphism. Since a torsor
for a connected group is irreducible, it follows that R is a domain.
Thus, we have

Theorem 1. The torsor given by f is irreducible if and only if ϕ is
onto.

The isomorphism R ' M [Z, 1/ detZ] also tells us how to construct
the coordinate ring: Given f : Gal(K) → G(K̄) as above, with ϕ onto,
we let M/K be an associated H-extension, and P ∈ GLn(K̄) a matrix
splitting f : fσ = Pσ(P )−1. If X1 is a generic point for N , the coordi-
nate ring R is M [Z, 1/ detZ], where Z = X1P , and the G-action on R
is given by

Z 7→ B−1Z, ∀α ∈M : α 7→ h(α)

for B ∈ G(C) with image h ∈ H.
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4. Derivations

Given R = M [Z, 1/ detZ] as above, we impose a derivation on R by

Z ′ = ZA

for some n× n matrix A over M . To see what the possible A’s are, we
basically recapitulate the general argument in [7]:

On R̄ = M̄ ⊗M R, we have a generic N -point X = ZP−1, and an
induced derivation

X ′ = (ZP−1)′ = X(PAP−1 − P ′P−1),

and it is therefore necessary that PAP−1 − P ′P−1 is in the Lie alge-
bra n(M̄) for N over M̄ , i.e., that

A ∈ P−1n(M̄)P + P−1P ′.

To ensure that G(C) acts as differential automorphisms, it is also
necessary that

λB(Z ′) = B−1Zh(A) = λB(Z)′ = (B−1Z)′ = B−1ZA

for B ∈ G(C), i.e., that A has coefficients in K.
From fσ = Pσ(P )−1 we get that

σ(P−1n(M̄ )P ) = P−1fσn(M̄)f−1
σ P = P−1n(M̄ )P,

so P−1n(M̄)P is closed under the action of Gal(K). By the Invariant
Basis Lemma it is therefore a K-vector space of dimension dimG.

Also, on M [G] = M [X̂, 1/ det X̂] we can of course define X̂ ′ = O, or

more generally (X̂fσ)′ = O since X̂fσ is also a generic point, and get
that −f ′

σf
−1
σ ∈ n(M̄), meaning that

σ(P−1P ′) − P−1P ′ = P−1(−f ′
σf

−1
σ )P ∈ P−1n(M̄)P.

Thus, σ 7→ σ(P−1P ′) − P−1P ′ is an additive crossed homomorphism
Gal(K) → P−1n(M̄)P , and it follows that it is principal:

σ(P−1P ′) − P−1P ′ = σC − C

for some C ∈ P−1n(M̄)P . But then

(P−1n(M̄)P + P−1P ′)Gal(K) =

(P−1n(M̄ )P + P−1P ′ − C)Gal(K) =

(P−1n(M̄ )P )Gal(K) + P−1P ′ − C.

Thus, we have
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Theorem 2. The possible derivations on M [Z, 1/ detZ] are given by

Z ′ = Z(A+ P−1P ′ − C),

where A ∈ (P−1n(M̄ )P )Gal(K), and C ∈ P−1n(M̄)P satisfies

σ(P−1P ′) − P−1P ′ = σC − C, σ ∈ Gal(K).

Remark. Consider the special case of a finite Galois extension M/K
with Galois group G = Gal(M/K). Here, the crossed homomorphism
f : Gal(K) → G is simply the restriction map, and if we represent G as
a matrix group inside some GLn(C), we have that there exists an invert-
ible n× n matrix P over M , such that M = K(P ) and σ(P ) = σ−1 ·P
for σ ∈ G. (If G happens to be Abelian, it allows a diagonal repre-
sentation, and we recover classical Kummer theory.) The matrix P
is then the generic point Z for the torsor, since after all the generic
point for the connected component is I. The derivation is (of course)
Z ′ = ZP−1P ′, and of necessity P−1P ′ must be a matrix over K.

5. Special Case: Triviality on N

Let f : Gal(K) → G(K̄) be a crossed homomorphism with ϕ surjec-
tive, and assume that the restriction to Gal(M) is principal. For in-
stance, this would be the case if the connected component has trivial
cohomology. We can then assume that fσ = 1 for σ ∈ Gal(M), from
which it follows that f is in fact induced by a crossed homomorphism
Gal(M/K) → G(M), which we will also denote f . In this case, we
then get that ϕ is the identity on H = Gal(M/K).

Now, split f by a matrix P ∈ GLn(M): fh = Ph(P )−1. Then the
coordinate ring for the torsor is

R = M [Z, 1/ detZ] = M [XP, 1/ det(XP )],

where X is a generic point for N , and B ∈ G(C) acts on Z by left
multiplication with B−1 and on M as its image in H = Gal(M/K).

Of course, a more natural generator for R over M is X itself. Here,
we see that

λB : X = ZP−1 7→ B−1Zh(P−1) = B−1ZP−1fh = B−1Xfh.

Our result about derivations takes the following form in this case:

Proposition 1. The possible derivations on R are given by

X ′ = X(B + C),

where C ∈ P (P−1n(M)P )HP−1 ⊆ n(M), and B ∈ n(M) satisfies

fhh(B)f−1
h − B = f ′

hf
−1
h , h ∈ H.
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5.1. The infinite quaternion group, initial discussion. Let Q∞

denote the group generated by Gm and j, subject to the conditions
j2 = −1 ∈ Gm and jxj−1 = x−1 for x ∈ Gm. Then Q∞ is generated by
the matrices

a =

(

1/a 0
0 a

)

, j =

(

0 i
i 0

)

,

where a ∈ Gm. This group contains all the quaternion groups Q4n =
〈ζ, j〉, where ζ is a primitive 2nth root of unity, hence the name Q∞.

Since the connected component Gm has trivial cohomology, we can
take the crossed homomorphism to be of the form f : Gal(M/K) →
Q∞(M), where M/K is a quadratic extension. Let τ be a generator
for Gal(M/K), and let fτ = cj, c ∈ M∗. Since 1 = f1 = fττ(fτ ) =

cjτ(c)j = −c/τ(c), we have τ(c) = −c, and can write M = K(
√

b),

where b = c2 and c =
√

b. Thus,

fτ =

(

0 i/
√

b

i
√

b 0

)

.

The coordinate ring for the torsor is R = M [x, 1/x], where ( x 0
0 1/x ) is

the generic element in Gm. The Q∞(C)-action on R is then given by

a : X 7→
(

a 0
0 1/a

)

X =

(

ax 0
0 1/ax

)

and

j : X 7→ j−1Xfτ =

(
√

b/x 0

0 x/
√

b

)

,

i.e., by

a :
√

b 7→
√

b, x 7→ ax,

j :
√

b 7→ −
√

b, x 7→
√

b/x.

As the matrix P splitting f , we can take

P =

(

i/
√

b −i
1

√

b

)

,

from which we get the derivations

X ′ = X

(

α
√

b + b′/4b 0

0 −α
√

b− b′/4b

)

, α ∈ K,

i.e.,

x′ =
( b′

4b
+ α

√

b
)

x.

Of course, we only get a Picard-Vessiot extension if there are no
new constants, i.e., if α is not a rational multiple of a logarithmic
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derivative in K(
√

b). In that case, the extension K(
√

b, x)/K is the
Picard-Vessiot extension for the differential equation

y′′ −
(α′

α
+
b′

b

)

y′ −
(

( b′

4b

)′ −
(α′

α
+

3b′

4b

) b′

4b
+ α2b

)

y = 0,

which has x and
√

b/x as linearly independent solutions.
For instance: Let K = C(t), with t′ = 1, and take b = t. Since

all logarithmic derivatives in C(
√

t) are rational functions in
√

t of
negative degree, we can then take α = 1, and get a Q∞(C)-extension

C(
√

t, x)/C(t),

where t′ = 1 and x′ = (1/4t+
√

t)x.
More ‘generically’, we can let K = C〈α, b〉, where α and b are differ-

ential indeterminates.

Remark. Let K = C((1/t)) be the Laurent series field in 1/t, with the
usual derivation. Then the Ricatti equation v′ +v2 = t has exactly two
solutions in M = K(

√

t) = C((1/
√

t)), and these are conjugate under
the Galois action. We let

a =
√

t +

∞
∑

n=0

ant
−n/2

be one of them.
The differential equation w′−2aw = 1 has a (unique) solution in M ,

which we will simply call w. Then w′/w− a is a solution to the Ricatti
equation, i.e., w′/w−a = τ(a), when τ is the generator for Gal(M/K).
In particular, w′/w = a + τ(a) ∈ K, which means that w and τ(w)
have the same logarithmic derivative, and therefore that they differ by
a constant: τ(w) = cw for some c ∈ C∗. Since w /∈ K and τ 2 = 1, we
get c = −1 and τ(w) = −w.

Consequently, b = w2 ∈ K, and M = K(
√

b), with
√

b = w.

Now, with α = − 1
2
w−1, we get a = b′/4b + α

√

b. A logarithmic
derivative in M has no terms in degree ≥ −1, so a is not a rational
multiple of a logarithmic derivative, and if we let x′ = ax, we get
a Picard-Vessiot extension with differential Galois group Q(C). The
corresponding differential equation is the Airy equation

y′′ − ty = 0.

5.2. Matrix form equation over K. In order to construct a generic
extension we need a description of the coordinate ring over K as well
as the corresponding Q∞-equivariant derivations on it.
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First, we note that a generic point for Q∞ is
(1)

X = e

(

x 0
0 1/x

)

+ (1 − e)

(

x 0
0 1/x

)

j =

(

ex (1 − e)ix
(1 − e)i/x e/x

)

,

where e is a non-trivial idempotent: the generic point for the multiplica-
tive group is ( x 0

0 1/x ), and the other coset in Q∞ has representative j.
Therefore a generic point for the torsor corresponding to the matrix

P is given by

(2) Y = XP =

(

(e/
√

b + 1 − e)ix (−e+ (1 − e)
√

b)ix

(e− (1 − e)/
√

b)/x (1 − e+ e
√

b)/x

)

To get a Q∞-equivariant derivation Y ′ = Y B on the coordinate ring
K[Y, 1/ det(Y )], we must then have

B = P−1AP + P−1P ′ =





− b′

4b
−a

√

b+ b′

4
√

b

− a√
b
+ b′

4b
√

b

b′

4b



 ,

where

A =

(

a 0
0 −a

)

.

For B to be defined over K, we must have

a =
b′

4b
− α

√

b
, α ∈ K,

and hence

(3) B =

(

−b′/4b α
α/b b′/4b

)

.

Thus, the general matrix form equation over K for the quaternion
group is

Y ′ = Y

(

−b′/4b α
α/b b′/4b

)

.

5.3. The multiplicative dihedral group. An easier example is the
dihedral group Dm, generated by Gm and τ , where τ 2 = 1 and τxτ−1 =
x−1 for x ∈ Gm. As a linear algebraic group, it is generated by the
matrices

a =

(

1/a 0
0 a

)

, τ =

(

0 1
1 0

)
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for a ∈ Gm. The computations proceed like for Q∞ above, except that
we get f1 = fττ(fτ ) = 1, and hence τ(c) = c, i.e.,

fτ =

(

0 1/c
c 0

)

.

A generic point is

(4) X =

(

ex (1 − e)x
(1 − e)/x e/x

)

,

and we have

(5) P =

(

1 −
√

b

c c
√

b

)

.

Consequently,

(6) Y = XP =

(

(e+ (1 − e)c)x (−e + (1 − e)c)
√

b x

(1 − e+ ec)/x (ex + e− 1)
√

b/x

)

.

The derivations Y ′ = Y B must have

B = P−1AP + P−1P ′ =





c′

2c

(c′−2ac)
√

b

2c
c′−2ac

2
√

b c

b′

2b
+ c′

2c





for

A =

(

a 0
0 −a

)

and a of the form

a =
c′

2c
− d

√

b
, d ∈ K,

meaning that

(7) B =

(

c′/2c d
d/b b′/2b+ c′/2c

)

.

The equation for Dm is therefore

Y ′ = Y

(

c′/2c d
d/b b′/2b+ c′/2c

)

.
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5.4. The additive dihedral group. An even easier example is the
dihedral group Da, generated by Ga and τ , with relations τ 2 = 0 and
τaτ−1 = −a for a ∈ Ga. As a matrix group, it is generated by

a =

(

1 −a
0 1

)

, τ =

(

1 0
0 −1

)

.

The crossed homomorphism can then be taken to be fτ = τ .
A generic point for Da is

X =

(

1 (2e− 1)x
0 2e− 1

)

,

and

(8) P =

(

1 0

0
√

b

)

.

Therefore, a generic point for the torsor corresponding to P is

(9) Y = Y P =

(

1 (2e− 1)
√

b x

0 (2e− 1)
√

b

)

.

The Da-equivariant derivations on the coordinate ring are then Y ′ =
Y B with

B = P−1AP + P−1P ′ =

(

0 a
√

b
0 b′/2b

)

,

where

A =

(

0 a
0 0

)

.

Clearly, we must have a = c/
√

b, and hence

(10) B =

(

0 c
0 b′/2b

)

.

The equation for Da is thus

Y ′ = Y

(

0 c
0 b′/2b

)

.

5.5. The orthogonal group. For n ∈ N, the orthogonal group is the
subgroup

On = {X ∈ GLn | X tX = I}
of GLn. Its connected component is the special orthogonal group

SOn = On ∩ SLn .

The associated Lie algebra son consists of all anti-symmetric n × n
matrices. It follows easily that dim On = 1

2
n(n− 1).



GENERIC PICARD-VESSIOT EXTENSIONS 13

The cohomology H1(Gal(K),On(K̄)) can be interpreted as classify-
ing regular quadratic spaces of dimension n over K: Given a regular
quadratic form

q = a1x
2
1 + · · · + anx

2
n

with a1, . . . , an ∈ K∗, we let

(11) P =











√

a1
√

a2

. . .
√

an











and

Q =









a1

a2

. . .
an









.

Then P tP = Q, and we have a crossed homomorphism f : Gal(K) →
On(K̄) given by fσ = Pσ(P )−1 for σ ∈ Gal(K). In this way, isomor-
phism classes of regular n-dimensional quadratic spaces over K corre-
spond bijectively to cohomology classes of crossed homomorphisms.

Thus, the quadratic form q gives rise to a torsor, and this torsor will
be irreducible if ϕ = det(f) : Gal(K) → C2 = {±1} is onto, i.e., if
d(q) = a1 · · ·an is not a square in K.

So, assume that d(q) is not a square. Then the coordinate ring for
the torsor is R = K[Z, 1/ det(Z)], where

(12) Z = XP

for a generic On-point X. The defining relation for Z is

ZtZ = Q,

and in R, det(Z) is a square root of d(q).
A matrix U ∈ On(C) acts on R by U : Z 7→ U−1Z.
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To find the derivations on R, we note that

P−1













0 b12 b13 . . . b1n

−b12 0 b23 . . . b2n

−b13 −b23 0 . . . b3n
...

...
...

. . .
...

−b1n −b2n −b3n . . . 0













P =



























0

√
a2√
a1

b12

√
a3√
a1

b13 . . .

√
an√
a1

b1n

−
√

a1√
a2

b12 0

√
a3√
a2

b23 . . .

√
an√
a2

b2n

−
√

a1√
a3

b13 −
√

a2√
a3

b23 0 . . .

√
an√
a3

b3n

...
...

...
. . .

...

−
√

a1√
an

b1n −
√

a2√
an

b2n −
√

a3√
an

b3n . . . 0



























,

and that this matrix has coefficients in K if and only if bij =
√

ai/
√

aj ·
cij for some cij ∈ K.

The On-equivariant derivations are then

Z ′ = ZB,

where

(13) B =

















a′

1

2a1

c12 c13 . . . c1n

−a1

a2

c12
a′

2

2a2

c23 . . . c2n

−a1

a3

c13 −a2

a3

c23
a′

3

2a3

. . . c3n

...
...

...
. . .

...

− a1

an
c1n − a2

an
c2n − a3

an
c3n . . . a′

n

2an

















and cij ∈ K.
Over K̄[Z] = K̄[On], this means that

X ′ = XA
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for

(14) A =



























0

√
a1√
a2

c12

√
a1√
a3

c13 . . .

√
a1√
an

c1n

−
√

a1√
a2

c12 0

√
a2√
a3

c23 . . .

√
a2√
an

c2n

−
√

a1√
a3

c13 −
√

a2√
a3

c23 0 . . .

√
a3√
an

c3n

...
...

...
. . .

...

−
√

a1√
an

c1n −
√

a2√
an

c2n −
√

a3√
an

c3n . . . 0



























.

6. Generic extensions

Next, we set up the machinery to show that the above calculations
yield solutions to the generic inverse differential Galois problem for
those groups.

Let glm(·) denote the Lie algebra of m × m matrices with coeffi-
cients in some specified field and consider the differential rational field
K = C〈Z1, . . . , Zk〉, where the Zi are differentially independent inde-
terminates over C.

We will use the terminology ‘Picard-Vessiot G-extension’ with the
obvious meaning ‘PVE with differential Galois group isomorphic to
G’.

Definition 1. A Picard-Vessiot G-extension E ⊃ K for the equation
X ′ = XA(Zi), with A(Zi) ∈ glm(K) for some m, is said to be a generic
extension for G when the following condition holds: for any differential
field K with field of constants C there is a PVE E ⊃ K with differential
Galois group H ≤ G if and only if there are ki ∈ K, i = 1, . . . , n, such
that the matrix A(ki) is well defined, the equation X ′ = XA(ki) gives
rise to the extension E ⊃ K, and any fundamental solution matrix
maps to one for the specialized equation.

In our earlier papers [8, 9] generic extensions as in Definition 1 were
called descent generic and discussed separately. In those papers and
in [6] the term generic extension was used in a weaker sense, that is,
not requiring specialization to H-extensions for proper subgroups H of
G. That distinction is especially important in [6]: the PVE’s studied
there are restricted to function fields of split G-torsors, limiting the
class of subgroups H for which PVE’s with group H can be obtained
by specialization. In [8, 9] and here the description of the torsors that
we provide makes possible the specialization to all PVE’s corresponding
to proper subgroups.
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We proceed now to the construction of generic extensions. The first
step is to produce a suitable PVE for each of the groups.

For Q∞ we put K = C〈α, b〉 with α and b differentially indepen-
dent indeterminates over C, and let E be the differential field K(Y ),
Y ′ = Y B, where Y and B are given by (2)-(3) in Section 5.1. Since
α is obviously not a rational multiple of a logarithmic derivative in
K(

√
b) the discussion in Section 5.1 shows that E ⊃ K is a PVE with

differential Galois group Q∞.
For the multiplicative dihedral Dm we let b, c, and d be differentially

independent indeterminates over C and put K = C〈b, c, d〉. Then

a =
c′

2c
− d

√

b

is differentially transcendental over C. By abuse of notation, we will
also let

√
b denote the element −

√
be+

√
b(1−e) ∈ K[Y, 1/ det(Y )] and

x the element x( e√
b
+(1−e)). Then [5, Theorem 4.1.2] implies that the

extension K(
√
b)(Z) ⊃ K(

√
b), with Z = ( x 0

0 1/x ) a generic Gm-point
and derivation given by Z ′ = ZA,

A =

(

a 0
0 −a

)

,

is a PVE with differential Galois group the multiplicative group Gm.
Since a generic point for an irreducible Dm-torsor is of the form Y =
XP for X and P as in (4)-(5) we have that K(

√
b)(Y ) = K(

√
b)(Z) ⊃

K(
√
b), with Y ′ = Y B, for B as in (7), is a no new constant extension

and so is K(Y ) ⊃ K, Y ′ = Y B. The discussion in Section 5.3 then
implies that the latter is a PVE with differential Galios group Dm.

In the case of the additive dihedral Da, for the differentially inde-
pendent indeterminates over C we take b and c and put K = C〈c, d〉.
Then K(Y ) ⊃ K, Y ′ = Y B with Y , B as in (9)-(10), is a PVE with
differential Galois group Da corresponding to a non-trivial torsor asso-
ciated to a matrix P of the form (8). The proof is almost identical to
the one for Dm and we will omit the details.

Our last case corresponds to the orthogonal groups On. In [8] we
showed that if a1, . . . , an−1, cij, 1 ≤ i ≤ n − 1, 2 ≤ j ≤ n, i < j, are
differentially independent indeterminates over C and an = 1/a1 · · ·an−1,
then the equation X ′ = XA, with A as in (13), has differential Galois

group SOn over L = C〈ai, Zij〉 where Zij =
√

ai
√

aj
cij, 1 ≤ i ≤ n − 1,

2 ≤ j ≤ n, i < j. Working inside the coordinate ring of the On-
torsor, this immediately implies that the equation Y ′ = Y B where
Y , B are as in (12)-(14) has differential Galois group On over K =
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C〈a1, . . . , an−1, c12, . . . , cn−1,n〉. Furthermore the torsor corresponding
to the PVE arising from this equation has associated matrix P of the
form (11), and thus is non-split over K. In particular, this feature
makes the construction here more general than the one in [6].

Finally we will show that the PVE for the infinite quaternion dis-
cussed above is generic for this group. The proof for the other groups
can be done in a similar way and will be omitted. We proceed as in
[8, 9]: First, we let Z1 = α, Z2 = b and the matrix A(Zi) in Defini-
tion 1 be the matrix B in (3). Assume that E ⊃ K is a PVE with
differential Galois group H ≤ Q∞ and let X (respectively XH) denote
the generic point of Q∞ (respectively of H). We have that E = K(Y ),
where Y = XHP for some invertible matrix P with coefficients in K̄
and there is a K-algebra homomorphism of coordinate rings

K[XP, det(XP )−1] � K[XHP, det(XHP )−1].

Since XHP is a generic point for an H-torsor we have that XP
is a generic point for a Q∞-torsor, and therefore any H-equivariant
derivation on the coordinate ring of the H-torsor arises from a Q∞-
equivariant derivation on the coordinate ring of Q∞. This implies that
the generic point Y satisfies an equation with matrix B̃ = A(Ki) for
some ki ∈ K.

Likewise, a specialization A(ki) of A(Zi) with ki ∈ K, gives a deriva-
tion on the coordinate ring F [XP, det(XP )−1] of a Q∞-torsor, which
may have new constants. We get a PVE of K by taking the quotient
field of the factor ring

K[XP, det(XP )−1]/M,

where M is a maximal differential ideal. The differential Galois group
in this case is the closed subgroup H of Q∞ consisting of those elements
that stabilize M .

Finally, it is clear that a fundamental matrix for the equation η ′ =
ηA(Zi) specializes to one for η′ = ηA(ki) since, on the one hand, a
solution of η′ = ηA(Zi) is given by a generic point XP of the Q∞-
torsor corresponding to the the matrix

P =

(

i/
√

b −i
1

√

b

)

,

and X a generic point of Q∞.
On the other hand, a solution of η′ = ηA(ki) is given by the generic

point XP (ki) of the Q∞-torsor corresponding to the matrix
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P (ki) =

(

i/
√

k
2

−i
1

√

k
2

)

,

Clearly the matrix P allows specialization to any nonzero values of
b.
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