ESSENTIAL DIMENSION
ARNE LEDET

ABSTRACT. We give a brief survey of the theory of essential di-
mension for a finite group over a field.

INTRODUCTION

Let K be an infinite field,' and let G be a finite group. A G-estension
over K is then a Galois extension M/L with Gal(M/L) ~ G and
L O K. For example, K can be the prime field in some characteristic p,
and M/L is then simply a G-extension in characteristic p.

The question that motivates the concept of essential dimension is
then the following: How ‘complex’ is the extension M/L really? That
is, how large a G-extension do we need to capture the structure of M/L?
After all, if we take an intermediate field F', K C F C M, on which G
acts faithfully, and let £ = FY, we have a diagram

p N\
GE/L

\

K

and M/ L is simply the scalar extension to L of F'/E. Thus, everything
about the Galois structure of M/L is given by F/E.

As our measure of how large an extension field of K is, we take
the transcendence degree. Thus, the question is: What is the minimal
transcendence degree trdeg; I’ of an intermediate field /' as above?

Certainly, this minimum is less that the order |G| of the group G,
since we can let F' = K({00},eq), where {00},c5 is a normal basis
for M/L with ) _ .00 = 1.

1t is not necessary for the definition that K be infinite, but as some of the proofs
depend on it, it is easier to assume it once and for all.
1
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We define the essential dimension of M /L over K, edg(M/L), to be
this minimal transcendence degree.

This concept was introduced by Buhler and Recihstein in [B&RI,
1997].

Example. The trivial group 1 has essential dimension 0, since we can
pick F'= K. 1t is also the only group with essential dimension 0, since
edx G = 0 means that every G-extension over K is in fact induced by
a G-extension that is algebraic over K.

Example. The cyclic group C5 of order 2 has essential dimension 1,
since any Cs-extension is the splitting field of a polynomial of the
form X? —a or X? — X — a, and we can let £ = K(a).

Example. The cyclic group C5 of order 3 and the symmetric group S3
on three letters both have essential dimension 1: An extension with
Galosi group Cj or Ss is the splitting field of a cubic polynomial X? +
aX? +bX + c. By a standard transformation, we can get a = 0, and
if b # 0 we can rescale to get a polynomial X? + bX + b. Thus, the
extension is the splitting field of a polynomial X? —a or X3+ aX + a.

For the groups in the above examples, computing the essential di-
mension directly is easy. However, in general this is an impractical
approach.

Definition. Let G — GLg (V) be a faithful linear representation of G
over K.

We denote the commutative tensor algebra for V over K by K|[V|.
(Thus, K[V] is a polynomial ring in dimg V' variables, in which the
space of homogeneous first-order polynomials has been identified with V.)
The field of fractions for K[V] is denoted by K(v).

The G-action on V' extends to an action on K (V'), and we will refer
to a G-extension over K of the form K(V)/K(V)% as a linear Noether
extension.

Theorem. Let K(V)/K (V)Y be a linear Nocther extension. Then
edg G = edg(K(V)/K(V)9).
For a proof, see [B&R1] or [JL&Y].

In particular: If G has a faithful representation of degree n, then
edg G < n. And if the image of G has trivial intersection with the
scalars, then edg G < n — 1.

Example. If char K # 2, then C5 has a one-dimensional representa-
tion. If char K = 2, the matrix (} 1) has order 2, and gives a represen-
tation without scalars. Thus, edg Cy = 1.
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The matrix (% 1) has order 3 over any field, and gives a represen-
tation with no scalars. Therefore, edg C3 = 1.

Example. If char K = p, then matrices of the form (}7) provide a
two-dimensional scalar-free representation of the elementary Abelian
group C}'. Therefore,

Example. If Fon C K, then PSL(2,2") — GlLy(K) is a two-dimensional
scalar-free representation, and so
edg PSL(2,2") = 1.
For instance, the alternating group As = PSL(2,4) has essential di-
mension 1 over K D [Fy.
Another consequence of the Theorem is

Corollary. If H is a subgroup of G, then edg H < edi G.

The reason is simply that any representation of G restricts to a
representation of H.
Also, we get

Corollary. edg (G x H) < edx G+ edg H.

This is clear, since a representation of GG X H is just a representation
of G and a representation of H.

We not necessarily have equality in this last Corollary: Consider the
cyclic groups Cy and Cj over the field C of complex numbers. They
both have essential dimension 1, and so does their product Cy x C3 =
Cs, by Kummer theory.

However, we have the following result, due to Buhler and Reichstein:

Proposition. Let p be a prime, and let K be a field of characteristic #
p containing the primitive p™ roots of unity. Then

edK(G X Cp) = edKG +1
for any p-group G.

In [B&R1], a more general result is proved, assuming char K = 0,
but a closer look at the proof will show that it gives the Proposition
above as well.

Corollary. If char K # 2, then edgx C3 = n.

Conjecture. If G and H are p-groups and char K # p, then
edK(G X H) = edKG+edKH.
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Very little is known about lower bounds for the essential dimension,
and most of it comes from using the above Corollary on a subgroup.
For instance:

Example. Let char K # 2. The largest elementary Abelian 2-subgroup
of the symmetric group S,, n > 2, has order 212! and so

In/2] <edg S,.

For n = 4, this gives us edx Sy = 2, since a quartic polynomial can be
rewritten as X* + aX? + bX + b by suitable transformations.

For n > 5, we get an upper bound of n — 3 by standard methods:
Consider S, as acting on K (z1,...,z,), and take the usual cross-ratios
to get a subfield of transcendence degree n—3 with a faithful S,,-action.
Thus, for n > 5 we get

In/2] <edg S, <n-—3.

In particular, edgx S5 = 2 and edx Sg = 3.
For n > 7, the exact value of edg S,, is not known.

Example. If char K # 2, then edg A5 = 2, since C3 C A5 C S5. In
characteristic 2, this is not necessarily true, as we have seen.

Example. Let ¢ > 2 be a prime power, and assume that F, C K.
Then
edgx GL(n,q) = n.

For: Let p be a prime divisor of ¢ — 1. Then edgx C)' = n by the
above Proposition, and GL(n, q) contains a subgroup isomorphic to C},
namely the diagonal matrices with p* roots of unity in the diagonal.
On the other hand, GL(n, q) clearly has an n-dimensional representa-
tion.

A very rough lower bound is proved in [Le4]:

Result. Let G be a non-trivial finite group. Then edg G = 1 if and
only if G has a faithful two-dimensional scalar-free representation.

Thus, the examples above of groups with essential dimension 1 were
all ‘typical’.

Example. edg Cy = 2, since (4 has a two-dimensional representation
over @, but not one without scalars. (Specifically: If A is a 2 x 2
matrix over Q of order 4, it is a root both of X* —1 = (X2 +1)(X +
1)(X — 1) and its own characteristic polynomial, and therefore also of
the greatest common divisor of these two polynomials. This greatest
common divisor cannot be X —1, X +1 or X2 —1, since A has order 4,
so it must be X% + 1, meaning that A? = —1.)
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Example. edg C5 = 2, since C5 C S5, and GL(Q) has no elements of
order 5.

Example. edg Cs = 2, since a 2 X 2 matrix over QQ of order 6 must have
third power —1, meaning that there is no scalar-free representation.

It is easy to see that GL2(Q) contains no elements of order > 7,
and therefore (using the above examples) that the only groups with
essential dimension 1 over Q are Cy, C3 and Ss.

To complement the result that edgy H < edg G when H C G, we
mention that
edKG S [G . H} edKH,
(provided of course that H # 1,) i.e.,
edK G < edK H
G~ H]
So far, this result has not proved particularly useful. It is also a very
crude bound on edx G: Consider the case G = GL(n,q) and H =

C3 above. Here, the two groups have the same essential dimension,
although

("= 1)(g" ' =1)---(qg—1)g"=b72
on :

G:H|=
which will tend to be quite large.
A related result is: Let L/K be a finite Galois extension. Then
edg G <[L:K|ed, G
for any finite group G.

Example. edg C,, < ¢(n), where ¢ is the Euler ¢-function, since we
can let L be the n' cyclotomic field. We will lower this bound signifi-
cantly below.

On the other hand, we clearly have ed; G < edx G for any field
extension L/K.

CYCLIC GROUPS OVER THE RATIONAL NUMBERS

As a special case, let us look at cyclic groups C,, over the field Q of
rational numbers. By the Chinese Remainder Theorem, we obviously
have

ed@ Cn S ed@ Cp? 4+ ... edQ Cpir,

when n = p{" - - - p¢ is the prime factorisation of n.



6 ARNE LEDET

Generalising a unpublished result by Buhler and Reichstein, that in
turn is based on an idea by H. W. Lenstra, the following is proved
in [Lel|:

Theorem. Let ¢ = p™ be a prime power, and let K be a field of char-
acteristic # p. Let K, = K(u,) denote the ¢" cyclotomic extension
of K, and let G, = Gal(K,/K). Then |G,| = dp®, where d | p—1 and
e#n—1, and G, acts in a natural way on the cyclic group C,. In this
case,

edr (Cq x Gy) < p(d)p",
where @ is the Fuler p-function.
Corollary. Let g = p™ be a prime power. Then

edg Cy < p(p—1)p"
Example. edg C; = 2.

The Corollary gives the lowest known bounds for edg C,. Note, how-
ever, that the bound for C; is exactly the one we get from edg C, by
applying the last result in the previous section: If G has order p", then
edg G < @(p — 1)p™~'. Thus, if it is possible to improve the bound
for some C), (or Cpe), it will automatically improve the bounds for all
higher powers of p as well.

Of course, we get the same upper bound for edg D,, where D, is the
dihedral group of degree ¢ (and order 2¢). And since D,,,, — D,, x D,,
we in fact get the same bound for all dihedral groups.

Example. edg Dy = edg D5 = edg Dg = edg D7 = 2.
Conjecture. edg C,, = edg D,
Conjecture. [f char K {2n and n is odd, then edg C,, = edi D,

Note that this last claim is not necessarily true for even n: In that
case, C2 C D,, so edg D, > 2, whereas edg C, can be 1 (if, for
instance, K contains the primitive n'" roots of unity). See [H&M]
and [Mi] for a description of the situation when edg C,, = edg D,, = 1.

p-GROUPS IN CHARACTERISTIC p

Now, let char K = p be a prime, and assume G to be a p-group. In this
situation, edg G turns out to be surprisingly small: We have already
seen that edg C';L =1 for all n.

Example. edyx Cpn < n, since any Cpn-extension M/L over K can be
written as M = L(w), where w is an n-dimensional Witt vector, and



ESSENTITAL DIMENSION 7

ow = w + 1 when ¢ is a chosen generator for Cpn. Therefore, we can
let F'= K(w).

Trivially, edx €}, = 1, and since GLy(K) contains no elements of
order p?, we must have edx Cp2 = 2.

Conjecture. edg Cpn = n.

A proof of this conjecture would provide a valuable lower bound of
the essential dimension of a p-group. It would also demonstrate that
Witt vectors are the ‘most economical’ way of describing C,»-extensions
in characteristic p.

A classical result by Witt (see [Wi]) says that if N is a normal
subgroup of the p-group G, contained in the Frattini subgroup ®(G),
then any G/N-extension L/K in characteristic p can be extended to
a G-extension M /K. It follows in particular that edx (G/N) < edx G
(a result that is conjecturally false in general), and that we can get a
bound on edy G by looking at how many extra parameters we need to
introduce in constructing M on top of L.

In the case where N is elementary Abelian, we only need one param-
eter, and so we get the following result from [Le3]:

Proposition. Let N be an elementary Abelian subgroup of ®(G), and
assume N <G. Then

edK(G/N) <edg G < edK(G/N) + 1.

Since we can certainly always pick NV to be cyclic of order p, we have
in particular:

Corollary. If |®(G)| = p°, then edxg G < e+ 1.
Thus, unconditionally, we have edg G < n when |G| = p™.

Example. Let A be an Abelian p-group of exponent p™. Then edx A <
n.

Example. If char K = 2, then edx Don < n.

It is also possible to obtain low bounds for some groups that are
‘almost p-groups’, namely semi-direct products Cyn x Cy4, where d |
o(p"), and Cy acts in the natural way on Cpn. This is done by means
of Witt vectors again: As is shown in [Le2], a Cyn x Cy-extension M /L
in characteristic p can be written as M = L(w), where w is an n-
dimensional Witt vector, and the Galois action is given by ow = w+ 1
and 7w = aw, with ¢ being a generator for Cpn, 7 a generator for Cy,
and a € Zy, an element of order d. Thus,

edg (Cyn X Cy) < n.
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Example. edg Dyn < n.
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