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Abstract. We provide an explicit method for constructing generic
polynomials for dihedral groups of degree divisible by four over
fields containing the appropriate cosines.

1. Introduction

Given a field K and a finite group G, it is natural to ask what a
Galois extension over K with Galois group G looks like. One way of
formulating an answer is by means of generic polynomials:

Definition. A monic separable polynomial P (t, X) ∈ K(t)[X], where
t = (t1, . . . , tn) are indeterminates, is generic for G over K, if it satsifies
the following conditions:

(a) Gal(P (t, X)/K(t)) ' G; and
(b) whenever M/L is a Galois extension with Galois group G and

L ⊇ K, there exists a1, . . . , an ∈ L) such that M is the splitting
field over L of the specialised polynomial P (a1, . . . , an, X) ∈
L[X].

The indeterminates t are the parameters.

Thus, if P (t, X) is generic for G over K, every G-extension of fields
containing K ‘looks just like’ the splitting field of P (t, X) itself over
K(t).

This concept of a generic polynomial was shown by Kemper [Ke2] to
be equivalent (over infinite fields) to the concept of a generic extension,
as introduced by Saltman in [Sa].

For examples and further references, we refer to [JL&Y].
The inspiration for this paper came from [H&M], in which Hashimoto

and Miyake describe a one-parameter generic polynomial for the dihe-
dral group Dn of degree n (and order 2n), provided that n is odd, that
char K - n, and that K contains the nth cosines, i.e., ζ + 1/ζ ∈ K for
a primitive nth root of unity ζ.
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A more general—but considerably less elegant—construction of generic
polynomials for odd-degree dihedral groups in characteristic 0 was given
in [Le1].

Also, a construction of generic polynomials for dihedral groups of
even degree, assuming the appropriate roots of unity to be in the base
field, is given by Rikuna in [Ri].

Remark. In this paper, the dihedral group of degree n, n ≥ 3, is
the group Dn of symmetries of a regular n-sided polygon. Thus, it
has order 2n, and is generated by elements σ and τ , with relations
σn = τ 2 = 1 and τσ = σ−1τ .

For dihedral groups of even degree, it is not possible to construct a
one-parameter generic polynomial, since the essential dimension is at
least 2, cf. [B&R]. However, assuming the appropriate cosines are in
the base field, it is possible to produce a two-parameter polynomial.

We will consider the case where the degree is a multiple of four,
showing:

Theorem. Let K be a field of characteristic not dividing 2n, and as-

sume that K contains the 4nth cosines, n ≥ 1. Also, let

q(X) = X4n +

2n−1
∑

i=1

aiX
2i ∈ Z[X]

be given by

q(X + 1/X) = X4n + 1/X4n − 2.

Then the polynomial

P (s, t, X) = X4n +

2n−1
∑

i=1

ais
2n−iX2i + t

is generic for D4n over K, with parameters s and t.

Remark. It is a well-known ‘folklore’ result from algebra that Xm +
1/Xm is an integral polynomial in X +1/X for all natural numbers m.
Also, expressing Xm +1/Xm in terms of X +1/X is a simple recursive
procedure. Thus, finding q(X) for any given n is straightforward.

That q(X) has no terms of odd degree follows directly from the
procedure for producing it: If m is even, the expression for Xm +1/Xm

will involve only even powers of X+1/X, and if m id odd, it will involve
only odd power of X + 1/X.

That q(X) has no constant term is clear, since q(0) = q(i+1/i) = 0.
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Example. If char K 6= 2, the polynomial

X4 − 4sX2 + t

is generic for D4 over K. This is also easily seen directly.

Example. If char K 6= 2 and
√

2 ∈ K, the polynomial

X8 − 8sX6 + 20s2X4 − 16s3X2 + t

is generic for D8 over K.

Remark. The dihedral group D8 has a generic polynomial over any
field of characteristic 6= 2, cf. [Bl] and [Le2]. In the general case, how-
ever, the polynomial is considerably more complicated.

Example. If char K 6= 2, 3 and
√

3 ∈ K, the polynomial

X12 − 12sX10 + 54s2X8 − 112s3X6 + 105s4X4 − 36s5X2 + t

is generic for D12 over K.

Example. If char K 6= 2 and
√

2 +
√

2 ∈ K, the polynomial

X16 − 16sX14 + 104s2X12 − 352s3X10+

660s4X8 − 672s5X6 + 336s6X4 − 64s7X2 + t

is generic for D16 over K.

Remark. If n is odd, the dihedral group D2n is isomorphic to Dn×C2,
and can thus be described using the result by Hashimoto and Miyake.

2. The proof

We let K be a field of characteristic not dividing 2n containing the
4nth cosines for an n ≥ 1. For convenience, we let ζ denote a primitive
4nth root of unity, and define

C = 1
2
(ζ + 1/ζ), S = 1

2
i(1/ζ − ζ),

where i =
√

−1 = ζn.
C and S are then elements in K, and we get a two-dimensional

faithful representation of D4n over K by

σ 7→

(

C −S
S C

)

, τ 7→

(

1 0
0 −1

)

.

Correspondingly, we get a linear action of D4n on the rational function
field K(u, v) by

σ : u 7→ Cu + Sv, v 7→ −Su + Cv
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and
τ : u 7→ u, v 7→ −v.

The Galois extension K(u, v)/K(u, v)D4n is an example of a linear

Noether extension, and by a general result (which we will recapitulate
below), the fixed field K(u, v)D4n is rational: K(u, v)D4n = K(s, t).
Theorem 7 in [K&Mt] then gives us that any polynomial over K(s, t)
with splitting field K(u, v) will be generic.

We will find s and t as follows: D4n acts (non-faithfully) on the
subfield K(u/v), and by Lüroth’s Theorem the fixed field is rational:
K(u/v)D4n = K(w). Additionally, by [Ke1, Prop.1.1(a)], the extension
K(u, v)D4n/K(u/v)D4n is rational, generated by any homogeneous in-
variant element of minimal positive degree, with this degree equal to
the order of the kernel of D4n’s action on K(u/v).

In this case, the kernel has order 2, and as our invariant homogeneous
element we can take s = u2 + v2.

As w, we pick

w =
(u2 + v2)2n

∏4n−1
j=0 σju

:

It is clearly homogeneous of degree 0, i.e., in K(u/v), and it is trivial to
check that numerator and denominator are D4n-invariant. Moreover,
if we write it in terms of u/v, as

w =
[(u/v)2 + 1]2n

∏4n−1
j=0 σju/v

,

it has numerator and denominator of degree ≤ 4n, meaning that the
extension K(u/v)/K(w) has degree ≤ 4n. On the other hand, K(w) ⊆
K(u/v)D4n, and K(u/v)/K(u/v)D4n has degree 4n. If follows that
K(u/v)D4n = K(w).

All in all, we therefore have that

K(u, v)D4n = K(s, w),

and with

t = 24n

4n−1
∏

j=0

σju = 24n s2n

w
,

we also have
K(u, v)D4n = K(s, t).

As our generic polynomial, we take the minimal polynomial for 2u
over K(s, t):

P (s, t, X) =

4n−1
∏

j=0

(X − 2σju).
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It is clear that this polynomial has some of the properties from the
Theorem: It is monic of degree 4n, the constant term is t, and it is a
polynomial having no terms of odd degree. This last part follows from
σ2nu = −u.

To complete the proof, we now need to prove:

Lemma. For 1 ≤ k < 2n, we have

(1) e2k({−2σju}4n−1
j=0 ) = a2n−ks

k,

where a2n−k is the degree-(4n−2k) coefficient in q(X), and e2k denotes

the elementary symmetric symbol of degree 2k.

Proof. For simplicity, we will simply conduct all computations over R.
This is permissible, since the algebraic behaviour of C and S matches
that of cos 2π

4n
and sin 2π

4n
, and since the results here will give integer

coefficients.
First of all, we prove that

q(X) =
4n−1
∏

j=0

(X − 2 cos 2πj
4n

) :

Let q2(X) be the polynomial on the right-hand side. Then

q2(X + 1/X) =
4n−1
∏

j=0

(X + 1/X − 2 cos 2πj
4n

)

= X−4n
4n−1
∏

j=0

(X2 − 2 cos 2πj
4n

X + 1)

= X−4n
4n−1
∏

j=0

[(X − e2πij/4n)(X − e−2πij/4n)]

= X−4n

4n−1
∏

j=0

(X − e2πij/4n)2

= X−4n(X4n − 1)2 = X4n + X−4n − 2

= q(X + 1/X).

This proves q(X) = q2(X).
Now, both the left and right hand sides of (1) are homogeneous

polynomials in u and v of degree 2k. To show that they are equal, it
is therefore enough to show that they coincide on more than 2k ray
classes.
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Note that over R, (1) takes the form

(2) e2k({−2(cos 2πj
4n

u + sin 2πj
4n

v)}4n−1
j=0 ) =

e2k({−2 cos 2πj
4n

}4n−1
j=0 )(u2 + v2)k.

First, consider the ray classes through (cos 2π`
4n

, sin 2π`
4n

), 0 ≤ ` < 2n:
Here, (2) becomes

e2k({−2 cos 2π(j−`)
4n

}4n−1
j=0 ) = e2k({−2 cos 2πj

4n
}4n−1

j=0 ),

which is trivially true. This provides us with 2n ray classes.

Next, consider the ray class through (cos 2π(2`+1)
8n

, sin 2π(2`+1)
8n

), 0 ≤
` < 2n: Here, (2) reduces to

e2k({−2 cos 2π(2(j−`)−1)
8n

}4n−1
j=0 ) = e2k({−2 cos 2πj

4n
}4n−1

j=0 ),

or
e2k({−2 cos 2π(2j−1)

8n
}4n−1

j=0 ) = e2k({−2 cos 2πj
4n

}4n−1
j=0 ).

The claim is then that q(X) and

r(X) =
4n−1
∏

j=0

(X − 2 cos 2π(2j−1)
8n

)

differ only in their constant term. Since

r(X + 1/X) =
4n−1
∏

j=0

(X + 1/X − 2 cos 2π(2j−1)
8n

)

= X−4n
4n−1
∏

j=0

(X2 − 2 cos 2π(2j−1)
8n

X + 1)

= X−4n
4n−1
∏

j=0

[(X − e2πi(2j−1)/8n)(X − e−2πi(2j−1)/8n)]

= X−4n

4n−1
∏

j=0

(X − e2πi(2j−1)/4n)2

= X−4n
(

X4n + 1)2 = X4n + X−4n + 2,

this is in fact true. Thus, we get another 2n ray classes on which (2)
holds, and can conclude that the polynomials are equal. �

Remark. As a consequence of these results, we note that

K[u, v]D4n = K[s, t] :

Clearly, K[u, v] is integral over K[s, t], and K[s, t] is integrally closed.
Therefore, K[u, v]D4n = K(s, t) ∩ K[u, v] = K[s, t]. This is an explicit
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special case of general results by Shephard–Todd and Chevalley about
polynomial invariants for reflection groups, cf. [N&S, Thm. 7.1.4].
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