ON GENERIC POLYNOMIALS FOR CYCLIC GROUPS
ARNE LEDET

ABSTRACT. Starting from a known case of generic polynomials for
dihedral groups, we get a family of generic polynomials for cyclic
groups of order divisible by four over suitable base fields.

1. INTRODUCTION

If K is a field, and G is a finite group, a generic polynomial is a way
giving a ‘general’ description of Galois extensions over K with Galois
group G. More precisely:

Definition. A monic separable polynomial P(t, X) € K(t)[X], with
t = (t1,...,t,) being indeterminates, is generic for G over K, if

(a) Gal(P(t, X)/K(t)) ~ G; and

(b) for any Galois extension M /L with Galois group G and L O K,

M is the splitting field over L of a specialisation P(ay, ..., a,, X)
of P(t, X), with ay,...,a, € L.

Over an infinite field, the existence of a generic polynomial is equiv-
alent to existence of a generic extension in the sense of [Sal, as proved
in [Ke2].

We refer to [JL&Y] for further results and references.

In this paper, we show

Theorem. Let K be an infinite field of characteristic not dividing 2n,
and assume that ( +1/C € K for a primitive 4n'™ root of unity, n > 1.

If

2n—1
g(X)=X"+) @, X* € Z[X]
i=1
18 given by
X +1/X)=X"41/X*" -2,
then the polynomial
2n—1
P(s,t, X) = X"+ > a;s™ X% +

i=1

482n
241
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1s generic over K for the cyclic group Cy, of order 4n.

The element ¢ + 1/ is the algebraic equivalent of 2 cos i_Z‘
Examples. Over a field K of characteristic # 2, the polynomial
452
Xt —4sX?
SAT + 21

is generic for Cy. If additionally we assume \/§ € K, we get a generic
polynomial
45

X® —8sX% +20s2X* — 1653 X2 +
241

for Cg over K.

Remarks. (1) A generic description of Cs-extensions over fields of
characteristic # 2 containing \/5 was given by Schneps in [Sc|. On the
other hand, in [Sa], Saltman proves that there is no generic extension
(and hence no generic polynomial) for C), over Q, if 8 | n.

(2) For a cyclic group of odd order n, and a field K containing (+1/¢
for a primitive n'® root of unity ¢, Miyake constructed a one-parameter
generic polynomial in [Mi]. And of course, if n is odd, the cyclic group
of order 2n is just Cy x C},, and can be considered using Miyake’s result.

(3) Generic descriptions of cyclic Galois extensions of odd degree in
general are given by Saltman in [Sa].

2. PROOF OF THE THEOREM

In [Lel, it is shown that
2n—1
Q(s,w, X) = X" + Z a; "X
i=1
is generic for the dihedral group Dy, of degree 4n (and order 8n),
when ¢ + 1/¢ € K. This is done by considering the two-dimensional
representation of Dy, given by

(¢ S (1 0
77\s ¢) T\ 1)
where Dy, = (0,7 | 0" =72 =1, 70 = 07 '7), and C = 1(¢ + 1/¢),
S =3i(1/¢—¢) (and i = \/—1 = (™). The corresponding action of Dy,
on the rational function field K(u,v), given by

o:ur— Cu+Sv, v— —Su+Cv

and
T: U U, V= —0
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then has a rational fixed field, namely K(s,w), where

4An—1
s:u2—l—v2, w = 24 . HUJU’
7=0

and Q(s,w, X) is the minimal polynomial for 2u over K (s, w).
Here, we will describe instead the fixed field for the subgroup Cy, =
(o) of Dy,: It has the form K (s,t), where

(u+ 1) + (u — v)?"

-1
2 [, odu

Proof. 1t is clear that t € K(u,v), and that it is homogeneous of de-
gree 0. The subfield of homogeneous elements of degree 0 is K (u/v),
and since ¢ has numerator and denominator of degree 2n, t generates
a subfield of K (u/v) of co-dimension at most 2n. (¢ is not a constant,
since v = o™u divides the denominator, but not the numerator.)

Now, Cy,, acts on K (u/v) in a non-faithful way, with kernel Cy, and ¢
is o-invariant: Both numerator and denominator changes sign under o.
Consequently, since t is in the fixed field, and the fixed field has co-
dimension 2n, the fixed field is K ().

By [Kel, Prop.1.1(a)], K (u,v)“" is rational over K (u/v)%"  gener-
ated by a homogeneous invariant element of minimal degree, with this
degree being equal to the order of the kernel of the group action, i.e., 2.
We can pick s, and then have K (u,v)%" = K(s,t). O

By [K&Mt, Thm. 7], the minimal polynomial for 2u over K(s,t) is
generic for Cy, over K. As a polynomial over K (u,v), this is obviously
the same as the Q(s,w, X) given above. Thus, the only thing that
needs proving is that the constant term is 4s**/(t? + 1), i.e., that

482n
w=——7.
2+1
Proof. The denominator in ¢t is a square root of w. We show that the
numerator is a square root of 452" — w. This will prove the claim.

For convenience, we will work over C, where the equation 452" —w =
[(u+)?" + (u — 7v)?"]? takes the form

4n—1
(1) 4(u® + %) — H(ZCOS% u+2sin 2L p) =
=0
[(u+ iv)*" + (u — iv)*"].
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Since the left and right hand sides are both homogeneous polynomials
in v and v of degree 4n, we can show them equal by finding 4n + 1 ray
classes on which they coincide.

On the ray classes through (cos %, sin %), 0 <k < 2n, it is trivial
to see that (1) holds.

In the points (cos 2”(2£+1),sin , 0 <0 < 2n, s evaluates to 1,
and the right hand side of (1) evaluates to 0. It is therefore necessary
that w evaluates to 4. However, it is easily seen (and shown in [Le])
that the polynomial r(X) with roots 2cos %, 0 < j < d4n,is
given by r(X +1/X) = X% 4+ X% + 2. and so it has constant term
r(0) = r(i + 1/i) = 4. Thus, (1) is satisfied on the ray classes through
these points.

Finally, we take the ray class through (1,7). In (1,4), s evaluates
to 0, w evaluates to —2%, and the right hand side in (1) evaluates
to 247

This gives us the required 4n+1 ray classes, and we conclude that (1)
holds. 0

2 (2041
(4n+ ))
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