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Abstract. Starting from a known case of generic polynomials for
dihedral groups, we get a family of generic polynomials for cyclic
groups of order divisible by four over suitable base fields.

1. Introduction

If K is a field, and G is a finite group, a generic polynomial is a way
giving a ‘general’ description of Galois extensions over K with Galois
group G. More precisely:

Definition. A monic separable polynomial P (t, X) ∈ K(t)[X], with
t = (t1, . . . , tn) being indeterminates, is generic for G over K, if

(a) Gal(P (t, X)/K(t)) ' G; and
(b) for any Galois extension M/L with Galois group G and L ⊇ K,

M is the splitting field over L of a specialisation P (a1, . . . , an, X)
of P (t, X), with a1, . . . , an ∈ L.

Over an infinite field, the existence of a generic polynomial is equiv-
alent to existence of a generic extension in the sense of [Sa], as proved
in [Ke2].

We refer to [JL&Y] for further results and references.
In this paper, we show

Theorem. Let K be an infinite field of characteristic not dividing 2n,

and assume that ζ +1/ζ ∈ K for a primitive 4nth root of unity, n ≥ 1.
If

q(X) = X4n +
2n−1
∑

i=1

aiX
2i ∈ Z[X]

is given by

q(X + 1/X) = X4n + 1/X4n − 2,

then the polynomial

P (s, t, X) = X4n +

2n−1
∑

i=1

ais
2n−iX2i +

4s2n

t2 + 1

1991 Mathematics Subject Classification. 12F12, 12E10.
1



2 ARNE LEDET

is generic over K for the cyclic group C4n of order 4n.

The element ζ + 1/ζ is the algebraic equivalent of 2 cos 2π
4n

.

Examples. Over a field K of characteristic 6= 2, the polynomial

X4 − 4sX2 +
4s2

t2 + 1

is generic for C4. If additionally we assume
√

2 ∈ K, we get a generic
polynomial

X8 − 8sX6 + 20s2X4 − 16s3X2 +
4s4

t2 + 1

for C8 over K.

Remarks. (1) A generic description of C8-extensions over fields of

characteristic 6= 2 containing
√

2 was given by Schneps in [Sc]. On the
other hand, in [Sa], Saltman proves that there is no generic extension
(and hence no generic polynomial) for Cn over Q, if 8 | n.

(2) For a cyclic group of odd order n, and a field K containing ζ+1/ζ
for a primitive nth root of unity ζ, Miyake constructed a one-parameter
generic polynomial in [Mi]. And of course, if n is odd, the cyclic group
of order 2n is just C2×Cn, and can be considered using Miyake’s result.

(3) Generic descriptions of cyclic Galois extensions of odd degree in
general are given by Saltman in [Sa].

2. Proof of the Theorem

In [Le], it is shown that

Q(s, w, X) = X4n +

2n−1
∑

i=1

ais
2n−iX2i + w

is generic for the dihedral group D4n of degree 4n (and order 8n),
when ζ + 1/ζ ∈ K. This is done by considering the two-dimensional
representation of D4n given by

σ 7→

(

C −S
S C

)

, τ 7→

(

1 0
0 −1

)

,

where D4n = 〈σ, τ | σ4n = τ 2 = 1, τσ = σ−1τ〉, and C = 1
2
(ζ + 1/ζ),

S = 1
2
i(1/ζ−ζ) (and i =

√

−1 = ζn). The corresponding action of D4n

on the rational function field K(u, v), given by

σ : u 7→ Cu + Sv, v 7→ −Su + Cv

and
τ : u 7→ u, v 7→ −v
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then has a rational fixed field, namely K(s, w), where

s = u2 + v2, w = 24n ·
4n−1
∏

j=0

σju,

and Q(s, w, X) is the minimal polynomial for 2u over K(s, w).
Here, we will describe instead the fixed field for the subgroup C4n =

〈σ〉 of D4n: It has the form K(s, t), where

t =
(u + iv)2n + (u − iv)2n

22n ·
∏2n−1

j=0 σju
.

Proof. It is clear that t ∈ K(u, v), and that it is homogeneous of de-
gree 0. The subfield of homogeneous elements of degree 0 is K(u/v),
and since t has numerator and denominator of degree 2n, t generates
a subfield of K(u/v) of co-dimension at most 2n. (t is not a constant,
since v = σnu divides the denominator, but not the numerator.)

Now, C4n acts on K(u/v) in a non-faithful way, with kernel C2, and t
is σ-invariant: Both numerator and denominator changes sign under σ.
Consequently, since t is in the fixed field, and the fixed field has co-
dimension 2n, the fixed field is K(t).

By [Ke1, Prop.1.1(a)], K(u, v)C4n is rational over K(u/v)C4n, gener-
ated by a homogeneous invariant element of minimal degree, with this
degree being equal to the order of the kernel of the group action, i.e., 2.
We can pick s, and then have K(u, v)C4n = K(s, t). �

By [K&Mt, Thm. 7], the minimal polynomial for 2u over K(s, t) is
generic for C4n over K. As a polynomial over K(u, v), this is obviously
the same as the Q(s, w, X) given above. Thus, the only thing that
needs proving is that the constant term is 4s2n/(t2 + 1), i.e., that

w =
4s2n

t2 + 1
.

Proof. The denominator in t is a square root of w. We show that the
numerator is a square root of 4s2n − w. This will prove the claim.

For convenience, we will work over C, where the equation 4s2n−w =
[(u + iv)2n + (u − iv)2n]2 takes the form

(1) 4(u2 + v2)2n −
4n−1
∏

j=0

(2 cos 2πj

4n
· u + 2 sin 2πj

4n
· v) =

[(u + iv)2n + (u − iv)2n]2.
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Since the left and right hand sides are both homogeneous polynomials
in u and v of degree 4n, we can show them equal by finding 4n + 1 ray
classes on which they coincide.

On the ray classes through (cos 2πk
4n

, sin 2πk
4n

), 0 ≤ k < 2n, it is trivial
to see that (1) holds.

In the points (cos 2π(2`+1)
8n

, sin 2π(2`+1)
4n

), 0 ≤ ` < 2n, s evaluates to 1,
and the right hand side of (1) evaluates to 0. It is therefore necessary
that w evaluates to 4. However, it is easily seen (and shown in [Le])

that the polynomial r(X) with roots 2 cos 2π(2j+1)
8n

, 0 ≤ j < 4n, is
given by r(X + 1/X) = X4n + X−4n + 2, and so it has constant term
r(0) = r(i + 1/i) = 4. Thus, (1) is satisfied on the ray classes through
these points.

Finally, we take the ray class through (1, i). In (1, i), s evaluates
to 0, w evaluates to −24n, and the right hand side in (1) evaluates
to 24n.

This gives us the required 4n+1 ray classes, and we conclude that (1)
holds. �
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