ON GENERIC POLYNOMIALS FOR CYCLIC GROUPS

ARNE LEDET

ABSTRACT. Starting from a known case of generic polynomials for dihedral groups, we get a family of generic polynomials for cyclic groups of order divisible by four over suitable base fields.

1. INTRODUCTION

If K is a field, and G is a finite group, a generic polynomial is a way giving a 'general' description of Galois extensions over K with Galois group G. More precisely:

Definition. A monic separable polynomial $P(\mathbf{t}, X) \in K(\mathbf{t})[X]$, with $\mathbf{t} = (t_1, \ldots, t_n)$ being indeterminates, is *generic* for G over K, if

- (a) $\operatorname{Gal}(P(\mathbf{t}, X)/K(\mathbf{t})) \simeq G$; and
- (b) for any Galois extension M/L with Galois group G and $L \supseteq K$, M is the splitting field over L of a specialisation $P(a_1, \ldots, a_n, X)$ of $P(\mathbf{t}, X)$, with $a_1, \ldots, a_n \in L$.

Over an infinite field, the existence of a generic polynomial is equivalent to existence of a generic extension in the sense of [Sa], as proved in [Ke2].

We refer to [JL&Y] for further results and references.

In this paper, we show

Theorem. Let K be an infinite field of characteristic not dividing 2n, and assume that $\zeta + 1/\zeta \in K$ for a primitive $4n^{\text{th}}$ root of unity, $n \ge 1$. If

$$q(X) = X^{4n} + \sum_{i=1}^{2n-1} a_i X^{2i} \in \mathbb{Z}[X]$$

is given by

$$q(X+1/X) = X^{4n} + 1/X^{4n} - 2,$$

then the polynomial

$$P(s,t,X) = X^{4n} + \sum_{i=1}^{2n-1} a_i s^{2n-i} X^{2i} + \frac{4s^{2n}}{t^2 + 1}$$

 $1991\ Mathematics\ Subject\ Classification.\ 12F12,\ 12E10.$

is generic over K for the cyclic group C_{4n} of order 4n.

The element $\zeta + 1/\zeta$ is the algebraic equivalent of $2\cos\frac{2\pi}{4n}$.

Examples. Over a field K of characteristic $\neq 2$, the polynomial

$$X^4 - 4sX^2 + \frac{4s^2}{t^2 + 1}$$

is generic for C_4 . If additionally we assume $\sqrt{2} \in K$, we get a generic polynomial

$$X^8 - 8sX^6 + 20s^2X^4 - 16s^3X^2 + \frac{4s^4}{t^2 + 1}$$

for C_8 over K.

Remarks. (1) A generic description of C_8 -extensions over fields of characteristic $\neq 2$ containing $\sqrt{2}$ was given by Schneps in [Sc]. On the other hand, in [Sa], Saltman proves that there is no generic extension (and hence no generic polynomial) for C_n over \mathbb{Q} , if $8 \mid n$.

(2) For a cyclic group of odd order n, and a field K containing $\zeta + 1/\zeta$ for a primitive n^{th} root of unity ζ , Miyake constructed a one-parameter generic polynomial in [Mi]. And of course, if n is odd, the cyclic group of order 2n is just $C_2 \times C_n$, and can be considered using Miyake's result.

(3) Generic descriptions of cyclic Galois extensions of odd degree in general are given by Saltman in [Sa].

2. Proof of the Theorem

In [Le], it is shown that

$$Q(s, w, X) = X^{4n} + \sum_{i=1}^{2n-1} a_i s^{2n-i} X^{2i} + w$$

is generic for the dihedral group D_{4n} of degree 4n (and order 8n), when $\zeta + 1/\zeta \in K$. This is done by considering the two-dimensional representation of D_{4n} given by

$$\sigma \mapsto \begin{pmatrix} C & -S \\ S & C \end{pmatrix}, \quad \tau \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

where $D_{4n} = \langle \sigma, \tau \mid \sigma^{4n} = \tau^2 = 1, \ \tau \sigma = \sigma^{-1} \tau \rangle$, and $C = \frac{1}{2}(\zeta + 1/\zeta)$, $S = \frac{1}{2}i(1/\zeta - \zeta)$ (and $i = \sqrt{-1} = \zeta^n$). The corresponding action of D_{4n} on the rational function field K(u, v), given by

$$\sigma \colon u \mapsto Cu + Sv, \quad v \mapsto -Su + Cv$$

and

$$\tau \colon u \mapsto u, \quad v \mapsto -v$$

then has a rational fixed field, namely K(s, w), where

$$s = u^2 + v^2$$
, $w = 2^{4n} \cdot \prod_{j=0}^{4n-1} \sigma^j u$,

and Q(s, w, X) is the minimal polynomial for 2u over K(s, w).

Here, we will describe instead the fixed field for the subgroup $C_{4n} = \langle \sigma \rangle$ of D_{4n} : It has the form K(s,t), where

$$t = \frac{(u+iv)^{2n} + (u-iv)^{2n}}{2^{2n} \cdot \prod_{j=0}^{2n-1} \sigma^j u}$$

Proof. It is clear that $t \in K(u, v)$, and that it is homogeneous of degree 0. The subfield of homogeneous elements of degree 0 is K(u/v), and since t has numerator and denominator of degree 2n, t generates a subfield of K(u/v) of co-dimension at most 2n. (t is not a constant, since $v = \sigma^n u$ divides the denominator, but not the numerator.)

Now, C_{4n} acts on K(u/v) in a non-faithful way, with kernel C_2 , and t is σ -invariant: Both numerator and denominator changes sign under σ . Consequently, since t is in the fixed field, and the fixed field has codimension 2n, the fixed field is K(t).

By [Ke1, Prop.1.1(a)], $K(u, v)^{C_{4n}}$ is rational over $K(u/v)^{C_{4n}}$, generated by a homogeneous invariant element of minimal degree, with this degree being equal to the order of the kernel of the group action, i.e., 2. We can pick s, and then have $K(u, v)^{C_{4n}} = K(s, t)$.

By [K&Mt, Thm. 7], the minimal polynomial for 2u over K(s,t) is generic for C_{4n} over K. As a polynomial over K(u, v), this is obviously the same as the Q(s, w, X) given above. Thus, the only thing that needs proving is that the constant term is $4s^{2n}/(t^2+1)$, i.e., that

$$w = \frac{4s^{2n}}{t^2 + 1}.$$

Proof. The denominator in t is a square root of w. We show that the numerator is a square root of $4s^{2n} - w$. This will prove the claim.

For convenience, we will work over \mathbb{C} , where the equation $4s^{2n} - w = [(u + iv)^{2n} + (u - iv)^{2n}]^2$ takes the form

(1)
$$4(u^2 + v^2)^{2n} - \prod_{j=0}^{4n-1} (2\cos\frac{2\pi j}{4n} \cdot u + 2\sin\frac{2\pi j}{4n} \cdot v) = [(u+iv)^{2n} + (u-iv)^{2n}]^2.$$

Since the left and right hand sides are both homogeneous polynomials in u and v of degree 4n, we can show them equal by finding 4n + 1 ray classes on which they coincide.

On the ray classes through $(\cos \frac{2\pi k}{4n}, \sin \frac{2\pi k}{4n}), 0 \le k < 2n$, it is trivial to see that (1) holds.

In the points $\left(\cos \frac{2\pi(2\ell+1)}{8n}, \sin \frac{2\pi(2\ell+1)}{4n}\right), 0 \leq \ell < 2n, s$ evaluates to 1, and the right hand side of (1) evaluates to 0. It is therefore necessary that w evaluates to 4. However, it is easily seen (and shown in [Le]) that the polynomial r(X) with roots $2\cos \frac{2\pi(2j+1)}{8n}, 0 \leq j < 4n$, is given by $r(X + 1/X) = X^{4n} + X^{-4n} + 2$, and so it has constant term r(0) = r(i+1/i) = 4. Thus, (1) is satisfied on the ray classes through these points.

Finally, we take the ray class through (1, i). In (1, i), s evaluates to 0, w evaluates to -2^{4n} , and the right hand side in (1) evaluates to 2^{4n} .

This gives us the required 4n+1 ray classes, and we conclude that (1) holds.

References

- [JL&Y] C. U. Jensen, A. Ledet & N. Yui, Generic Polynomials: Constructive Aspects of the Inverse Galois Problem, MSRI Publication Series 45, Cambridge University Press, 2002.
- [Ke1] G. Kemper, A constructive approach to Noether's Problem, Manuscripta Math. 90 (1996), 343–363.
- [Ke2] _____, Generic polynomials are descent-generic, Manuscripta Math. 105 (2001), 139–141.
- [K&Mt] G. Kemper & E. Mattig, Generic polynomials with few parameters, J. Symbolic Computation 30 (2000), 843–857.
- [Le] A. Ledet, On generic polynomials for dihedral groups, preprint, 2006.
- [Mi] K. Miyake, Linear fractional transformations and cyclic polynomials, Adv. Stud. Contemp. Math. (Pusan) 1 (1999), 137–142.
- [Sa] D. J. Saltman, Generic Galois extensions and problems in field theory, Adv. Math. 43 (1982), 250–283.
- [Sc] L. Schneps, On cyclic field extensions of degree 8, Math. Scand. 71 (1992), 24–30.

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX $79409{-}1042$

E-mail address: arne.ledet@ttu.edu