
Demographic and Environmental Variability on Population and Disease Extinction

Many biotic and abiotic factors impact the survival and productivity of plant and animal populations. Pop-
ulation densities vary over time as a result of changes in rainfall, temperature, food availability, presence
of pathogens, pests, competitors or predators [3, 5, 6, 7]. In this project, we formulate predator-prey, com-
petition, and epidemic models to study the impact of both demographic and environmental variability on
population or disease extinction. Ordinary differential equations (ODE) are used as a framework to construct
stochastic models, continuous-time Markov chains (CTMC) that account for the variability. In the stochastic
models, the random variables governing the populations or epidemics are nonnegative and discrete-valued
and changes in populations depend on probabilities. For example, the dynamics of an ODE model and sam-
ple paths of a CTMC model of an epidemic model and predator-prey model are graphed in Fig. 1. In the
predator-prey model, the variability in the sample paths of the populations may result in prey or predator
extinction but the ODE solution exhibits periodic oscillations of prey and predator with no extinction. In the
susceptible-infectious-recovered (SIR) model, the sample paths either result in a major outbreak from spread
of the infection to many others or a few cases with rapid disease extinction but the ODE solution exhibits a
major outbreak with many infectious cases. Whether population or disease extinction occur in the stochastic
models can be addressed through application of generating functions and branching processes [1, 2]. In the
case of the stochastic SIR model, the answer is found by computing the ratio of the transmission rate, β, to the
recovery rate, γ, the well-known basic reproduction number, R0 = β/γ, defined as the number of secondary
infections caused by one infectious individual introduced into an entirely susceptible population. For the ODE
SIR epidemic model, there are many new infectious cases if R0 > 1. But this is not necessarily the case for
the stochastic SIR epidemic model. In particular, an estimate for the probability of disease extinction in the
stochastic epidemic model is

Pext =
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, if R0 > 1

1, if R0 < 1

where i is the number of infectious individuals at the beginning of the epidemic. The probability of a
major outbreak is given by Poutbreak = 1 − Pext [8]. In more complex disease or population settings with
predation or competition, the theory of branching process can be used to obtain estimates for extinction.
These mathematical methods can also be applied to stochastic models with seasonal variability to investigate
the effects of seasonal changes such as temperature, rainfall, or food availability on survival or extinction
of populations [4]. Timeline: Week 1: Background information on biological models, mathematical and
computational methods with problem solving, computer training in Maple/MatLab and discussions. Weeks 2-
3: Identify epidemic or predator-prey or competition from the literature, where seasonality plays an important
role in spread, contacts, transmission, births, or deaths. Identify specific biological questions to address on
population or disease extinction and begin formulating models. Weeks 4-6: Analysis, development of computer
code, and simulation of new stochastic epidemic, predator-prey or competition models. Weeks 7-8: Verify
analytical and numerical results, summarize findings, interpret results, and write paper.
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Figure 1: Two graphs on left: Infectious individuals at the initiation of an epidemic (3 CTMC sample paths
[red,blue,green] with ODE solution [black dashed]). Two graphs on right: Predator-prey model (CTMC
sample path [black] and ODE solution [red]).
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