
GreedyAlgorithms for solving PDEs
Jasen Lai (presenter) 1 ChunmeiWang 2 Haizhao Yang 3

1The Ohio State University 2University of Florida 3Purdue University

Introduction

Solving PDEs with neural networks is a recent topic of interest. While deep

learning methods have had empirical success in solving PDEs, there are still

lingering theoretical questions regarding its approximation, generalization,

and optimization in totality. Instead of using the traditional method of us-

ing stochastic gradient descent(SGD) to train a neural network, we use a

greedy algorithm. Practical feasibility of solving PDEs with greedy algo-

rithms was only shown very recently so not all the details are known about

the implementation. Here, we describe an example implementation of the

greedy algorithm and demonstrate how to solve PDEs with it using exam-

ples.

Model problem

We first describe a general problem with linear PDEs of order 2m.{
Lu = f in Ω,
Bk

N(u) = 0 on ∂Ω (0 ≤ k ≤ m − 1),
(1)

where Bk
N(u) denotes the Neumann boundary conditions and Ω ⊂ Rd is a

bounded domain with a sufficiently smooth boundary ∂Ω. L is the partial
differential operator defined as:

Lu =
∑

|α|=m

(−1)m∂α(aα(x)∂αu) + a0(x)u, (2)

where α denotes a n-dimensional multi-index α = (α1, · · · , αn) with

|α| =
n∑

i=1

αi, ∂α = ∂|α|

∂xα1
1 · · · ∂xαn

n
. (3)

We denote the inner product on the Ω and ∂Ω as

〈u, v〉Ω =
∫

Ω
u(x)v(x)dx, 〈u, v〉∂Ω =

∫
∂Ω

u(x)v(x)dx. (4)

and for Dirichlet boundary conditions, we replace Bk
N with Bk

D where it is

defined as the directional derivative

Bk
D(u)∂ku

∂vk

∣∣∣∣
∂Ω

(0 ≤ k ≤ m − 1), (5)

Loss function

We define the loss function as

J(u) = 1
2N

N∑
i=1

∑
|α|=m

aα(xi)(∂αu(xi))2+ 1
2N

N∑
i=1

a0(xi)u(xi)2− 1
N

N∑
i=1

f (xi)u(xi)

(6)

for pure Nuemann boundary conditions, and

Jδ(u) = J(u) + δ−1

2N0

N0∑
i=1

m−1∑
k=0

(
∂k

∂vk
u(yi)

)2

(7)

for Dirichlet boundary conditions. Here, we sample x1, ..., xN ∈ Ω and

y1, ..., yN0 ∈ ∂Ω uniformly at random.

Greedy algorithm

The ultimate goal is to construct our solution u as a finite linear combination
of functions g,

un =
n∑

i=1

aigi, (8)

where gi ∈ D. Here, D is called a dictionary, and can represent any family
of functions. For the examples, we use

D = {±σ(xw + b) : w ∈ Rd, b ∈ R}, (9)

where w and b are bounded over some finite interval. D is analogous to
activation functions used in neural networks and the structure of un can

be interpreted as a single layer neural network. There are several versions

of the greedy algorithm, but we use the relaxed greedy algorithm (RGA). In

RGA, we recursively define uk as

u0 = 0, gk = argmax
g∈D

〈∇J(uk−1), g〉, uk = (1 − αk)uk−1 − Mαkgk (10)

where αk = min(1, 2
k) ”relaxes” new additions of g andM is a regularization

parameter that controls the magnitude of g. Here, 〈∇J(uk−1), g〉 is the
functional derivative of J(uk−1) with respect to u where we treat g as the
test function.

Functional derivative

If J(u) is defined the same as equation 7, then

〈∇J(uk−1), g〉 = lim
t→0

J(u + tg) − J(u)
t

= 1
N

N∑
i=1

∑
|α|=m

aα(xi)(∂αu(xi))(∂αg(xi)) + 1
N

N∑
i=1

a0(xi)u(xi)g(xi)

− 1
N

N∑
i=1

f (xi)g(xi) + δ−1

N0

N0∑
i=1

m−1∑
k=0

(
∂k

∂vk
u(yi)

)(
∂k

∂vk
g(yi)

)
.

(11)

The sub-optimization problem of finding the g that maximizes 〈∇J(uk−1), g〉
has many potential solutions. One method is to first sample n random
guesses of w and b, then use the best guess as the initial guess in Newton’s
method. Since w and b are bounded over a finite interval, we must use a
bounded minimization method such as the BFGS algorithm.

Generalization

The greedy algorithm has only been shown for linear PDEs; however, we

can generalize it to handle non-linear PDEs. First, we derive the PDE’s

weak formulation. Second, we construct the loss function by moving all

of terms in the weak formulation to the left hand side and add cancella-

tion coefficients. And finally, we calculate the functional derivative of the

loss. Once we have the formula for the functional derivative, we can solve

for the maximum each iteration of training and incrementally add g to our
approximation u.

Example 1

The following is a second-order linear elliptic equation with Neumann

boundary conditions in one dimension:

− d

dx
((1 + x2)du

dx
) + x2u(x) = f (x) for 0 < x < 1,

u′(0) = u′(1) = 0
(12)

where the true solution is u(x) = cos(2πx) and f (x) is chosen to satisfy
the true solution. In the results below, we obtain a mean absolute error of

0.01027.

(a) True solution (b) Greedy approximation

Figure 1. Example 1 comparison

Example 2

The following is a second-order semi-linear elliptic equation with Dirichlet

boundary conditions in two dimensions:

− 4u − (u(x, y) − 1)3 + (u(x, y) + 2)2 = f (x, y) for (x, y) ∈ (0, 1) × (0, 1),
u = 0 for x = (0 or 1) or y = (0 or 1)

(13)

where the true solution is u(x) = sin(2πx)sin(2πy) and f(x,y) is chosen to
satisfy the true solution. In the results below, we obtain a mean absolute

error of 0.07496.

(a) True solution (b) Greedy approximation

Figure 2. Example 2 comparison

References

[1] Wenrui Hao, Xianlin Jin, Jonathan W Siegel, and Jinchao Xu. An efficient greedy training algorithm for

neural networks and applications in pdes, 2021.

[2] Qingguo Hong, Jonathan W. Siegel, and Jinchao Xu. A priori analysis of stable neural network solutions

to numerical pdes, 2021.

[3] Jinchao Xu. Finite neuron method and convergence analysis. Communications in Computational Physics,

28(5):1707–1745, Jun 2020.

TTU REU

