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Motivation

Most deep-learning-based solvers are computationally
expensive; the convergence is usually slow and not guaranteed. In
this paper, the main aim in is to address this issue by active-
learning-based adaptive sampling techniques to sample the most
informative training examples.

The Residual Model

Consider the following general form of PDE:

[ Du(z) = f(x) inQ
Bu(x) = ¢g(x) on Jf}

PDEs are solved via deep neural networks by directly
minimizing the degree to which the network approximation

violates the PDE and boundary/initial conditions:
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, Where A is a positive hyper-parameter that weights the
boundary loss, the last step is a Monte-Carlo approximation, and
x;€Q}, x;€0() are N, and N, allocation points, respectively.

Error Sampling

It is natural to wonder how to sample these points and whether
each point is of the same importance for the model to minimize
the empirical loss function. Theretfore, error sampling is proposed
in this work to preferentially choose allocation points with larger
absolute residual errors. Intuitively, one can think of high
residual error at a point as a proxy of the model being wrong to a
greater extent at this point.

The fundamental methodology of error sampling is to

choose from a biased importance distribution g(x) « R?, (x)that

abs
attaches higher priority to important volumes/regions of the
domain: | R, ()
1(®) = —N¢
, where NC = [ R}, .(x)dx is the normalizing constant that is

unknown, p is a non-negative constant hyper-parameter that
controls the effect of error sampling.

Sampling Techniques
It is impossible to directly sample points from q(x). A few
algorithms to simulate observations from g(x) are presented in
the paper. Also, a variant of error sampling that still has all the
advantages of error sampling is also introduced in the paper; this
variant might be a better fit for some PDE:s.
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Illustration of Sampling
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Numerical Results

In this work, error sampling is tested on two PDEs examples,
elliptic and parabolic equations. Testing includes various
dimensions. First, elliptic equation(5s.1):

-V ((1 + %|:132)Vu) + (Vu)* = f(z), inQ:={x:|z| <1}

on 0,

Results:

Dimension Error Sampling Basic Model
{5 error 0.121454e-03 2.482386e-02

10D max modulus error 3.369123e-02 1.239435¢e-01
Running Time in Seconds  8844.328335 7528.474081
{5 error 3.193670e-02 7.046980e-02

20D max modulus error 1.083703e-01 2.838619e-01
Running Time in Seconds  12554.326195  10129.247696
U5 error 1.142189e-01 5.174087e-01

100D max modulus error 2.919715e-01 1.755006e+00

Running Time in Seconds  52927.455038  40356.392521
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, where g(x) = 0 and f(x) is specified appropriately so that the
exact solutionis: 1y = gin(Z(1 - |z[)2%)
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Figure 5.3: 5.1 10D (21, 22.0,0, ..., 0)-surface Absolute Difference |u — ¢|
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Figure 5.2: 5.1 10D (21, x2.0,0, ..., 0)-surface of network solutions and the true solution
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Another PDE example, parabolic equation(5.2):

Example 5.1 10d Network w/o Error Sampling

(¢) W/O Error Sampling

Ou(x,t) — V- ((1 - %|1‘|)qu(;z',t)) = f(x,t), InQ:=wxT

H(If t) = g(;’[-', t):

u(x,0) =h(x

), in w,

 where w:={x:|z| <1}, T =(0,1), g(z) = e*IVi-t and h(z) = exp(|z]).

f (x) is specified appropriately so that the exact solution is:

u(x.t) = elrV1-t
Results:

Figure 5.7: 5.2 10D (¢,0,0, x3,0,, ..., 0)-surface of network solutions and the true solution
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Figure 5.8: 5.2 10D (¢, 0,0, x3,0, , ..., 0)-surface Absolute Difference |u — ¢|
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Compatibility
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Error Sampling is also compatible with some recent frame-

works, namely WAN, DRM, DGM[[2113];

Weak Adversarial Network

on J¥) =0w xT

2.6

110 —’ WAN
Framework Mean Standard Deviation Minimum Value Coefficient of Variation ik — WAN with error_sampling
DGM 0.0333  0.0064 0.0244 19.2% - ‘T.’
DGM* 0.0280 0.0079 0.0155 29.2% 5102 [l *%\,‘
o M
DRM 0.0273  0.0097 0.0132 35.5% m ] HI%
DRM* 0.0255 0.0093 0.0122 36.5% N _ \%n
- "'ud
WAN 0.0329  0.0062 0.0245 18.8% i‘,ﬁ"ll,.“ﬁ'.' i
WAN* 0.0282  0.0075 0.0153 26.6% " “*"”w:’,"-‘*“rf'.','m W;,w it
| -rwl ) w‘:w Atk .w.*h.ﬂﬂmm-rﬁmwmmt
* denotes being equipped with error sampling . i
Time in Seconds
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