
Another PDE example, parabolic equation(5.2):

𝑓 𝑥 is specified appropriately so that the exact solution is:

Results:

Compatibility

Error Sampling is also compatible with some recent frame-
works, namely WAN, DRM, DGM[1][2][3].

* denotes being equipped with error sampling 
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Illustration of Sampling

Numerical Results
In this work, error sampling is tested on two PDEs examples, 

elliptic and parabolic equations. Testing includes various 
dimensions. First, elliptic equation(5.1):

, where 𝑔 𝑥 = 0 and 𝑓 𝑥 is specified appropriately so that the 
exact solution is: 

Results:

Motivation
Most deep-learning-based solvers are computationally 

expensive; the convergence is usually slow and not guaranteed. In 
this paper, the main aim in is to address this issue by active-
learning-based adaptive sampling techniques to sample the most 
informative training examples.

The Residual Model
Consider the following general form of PDE:

PDEs are solved via deep neural networks by directly 
minimizing the degree to which the network approximation 
violates the PDE and boundary/initial conditions:

, where λ is a positive hyper-parameter that weights the 
boundary loss, the last step is a Monte-Carlo approximation, and 
xi∈Ω, xj∈∂Ω are N1 and N2 allocation points, respectively.

Error Sampling
It is natural to wonder how to sample these points and whether 

each point is of the same importance for the model to minimize 
the empirical loss function. Therefore, error sampling is proposed 
in this work to preferentially choose allocation points with larger 
absolute residual errors. Intuitively, one can think of high 
residual error at a point as a proxy of the model being wrong to a 
greater extent at this point. 

The fundamental methodology of error sampling is to 

choose from a biased importance distribution 𝑞 𝑥 ∝ ℛ𝑎𝑏𝑠
𝑝

𝑥 that 

attaches higher priority to important volumes/regions of the 
domain: 

, where 𝑁𝐶 = Ωℛ𝑎𝑏𝑠׬
𝑝

𝑥 𝑑𝑥 is the normalizing constant that is 

unknown, p is a non-negative constant hyper-parameter that 
controls the effect of error sampling.

Sampling Techniques
It is impossible to directly sample points from 𝑞 𝑥 . A few 
algorithms to simulate observations from 𝑞 𝑥 are presented in 
the paper. Also, a variant of error sampling that still has all the 
advantages of error sampling is also introduced in the paper; this 
variant might be a better fit for some PDEs.
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Approach Number of Points inside Ellipse

No Error Sampling 138

Error Sampling 348


