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Abstract
We use the generalization of Einstein’s paradigm of Brownian motion for diffusion

when the parameter of the time interval of free jump degenerates to derive a

system of one dimensional degenerate nonlinear partial differential equations. The

solution of the system represents the number of particles per unit volume during

the diffusion process as the time interval of free jumps degenerates. Specifically,

in these equations, the time interval depends on the solution of the equations.

We will demonstrate the finite speed of propagation of the system by using the

construction of Christov-Hevage-Ibraguimov-Islam and the subsequent methods

of Kompaneets–Zel’dovich–Barenblatt. With the finite speed of propagation(the

localization property) being defined as: If u(x0,0) > 0 on |x + x0| ≤ δ = constant and

u(x0,0) ≡ 0 for |x + x0| > δ. Then, u(s,t)=0 for |s−x0| � δ and 0 ≤ t ≤ T.
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Einstein’s paradigm in one
dimension

Let u(x, t) be the observed density function at x ∈ R and time t .Let τ be the time

interval of particles’ ”free jumps”(jumps of particles without ”collision”) with length

∆ ∈R. Let us define ϕ(∆) as the frequency of ”free jumps” with following assumptions.

• Symmetric constraint :
ϕ(∆) = ϕ(−∆) (1)

• ” Completeness ” of the universe of all possible free jumps:∫
R

ϕ(∆)d∆ = 1 (2)

• Expectation of free jumps: ∫
∞

−∞

∆ϕ(∆)d∆ = 0 (3)

• Einstein Conservation Law

u(x, t +τ) =

∫
∞

−∞

u(x +∆, t)ϕ(∆)d∆ (4)

All Resulting in the derivation of the classical heat equation:

L0u = τ
∂u
∂t
−D0

∂2u
∂x2 = 0; D0 =

∫
∞

−∞
∆2ϕ(∆)d∆

2
(5)

One Dimensional Model
For our project, the situation where τ is non-constant is of interest. A non-constant τ

does not necessarily guarantee an infinite speed of propagation.

We will use,

τ =
1−α

uα
(6)

Here 0 < α < 1.

Let u > 0 be a classical solution of the following system.

L0u =
∂u1−α

∂t
−
∂2u
∂x2 = 0 in the domain 0 < x < 2L, 0 < t <∞, (7)

u(x,0) = u0(x) > 0 for 0 < x <
L
2
, (8)

u(x,0) = 0 for
L
2
≤ x < 2L, (9)

∂u
∂x

(0, t) =
∂u
∂x

(2L, t) = 0 for 0 < t <∞. (10)

Let `n = L−2−n and In = {x : 2L > x > `n} and Jn = In \ In+1.

In the layers Jn−1 and Jn−2 introduce auxiliary points ξn ∈ Jn−1 and cn ∈ Jn−2.

Thus, cn < ξn.

x
L
2

`n−3`n−2

cn

`n−1

ξn

`n

`n+1 L 2L

Goal: Prove that u preserves the Strong Maximum Principle.

Generalization of Weak Maximum
Principle

Lemma 1

Assume for some generic w(x,t) on ΩT = Ω× [0,T]

a(x, t)
∂w
∂t
−
∂2w
∂x2 < 0. (11)

If a(x, t) ≥ 0 then w(x, t) ≤max
Γ(ΩT)

w(x, t)

Lemma 2

Let u(x, t) be a solution of the inequality

u−α
∂u
∂t
−
∂2u
∂x2 ≤ 0 (12)

with 0 < α < 1.

If u(x, t) ≥ 0 then u(x, t) ≤max
Γ(ΩT)

u(x, t)

Iterative Procedure
The following lemma can be obtained by integrating (7) with respect to τ.

Lemma 3

The function

v(x) =

∫ T

0
u(x,τ)dτ (13)

satisfies the maximum principle such that

v(cn) ≥ v(ξn), for any cn ≤ ξn. (14)

The next lemma can be obtained through integrating (7) with respect to τ again,

integrating with respect to x over In−1, and then applying the MVT.

Lemma 4

If u(x, t) is the solution to the IBVP, (7) - (10),

then

∫
In

u1−α(x,T)dx ≤ 2n+1
∫ T

0
u(`n−1,τ)dτ (15)

Subsequently through the integral MVT,

Lemma 5 ∫
In

u1−α(x,T)dx ≤ 22n
∫ T

0

∫
In−2

u(x,τ)dxdτ (16)

The following theorem can be achieved through the use of the MVT, the maximum

principle of v(x), and Hölder’s Inequality.

Theorem 6

Assume that u0(x) in (8) is such that

u(x, t) ≤ 1. (17)

Let

Ĩn , max
0<τ<T

∫
In

u1−α(x,τ)dx. (18)

Then

Ĩn ≤ 23n−2C(α)T Ĩ1+ε
n−3. (19)

Here
ε =

α
1−α

and C(α) = (2L)
1−2α
1−α in case when α <

1
2
, (20)

and

ε = 1 and C(α) = 1 in case when α ≥
1
2
. (21)

Localization Property
Finally, via the Ladyženskaja iterative Lemma (see Ladyženskaja, Solonnikov, and

Ural’ceva, 1968, Chap. II §5), the following theorem is established.

Theorem 7

Assume the solution u(x,t) is s.t.

Ĩ0 ≤ (C(α))−
1
ε 8−

1
ε2 T−1 (22)

Then,

Ĩn(T)→ 0 as n→∞ (23)

So,

Ĩn = max
0<τ<T

∫
In

u1−α(x,τ)dx→ 0 (24)

Thus,

Ĩn→ 0⇒ u1−α(x, t) ≡ 0; t ∈ [0,T],x ∈ [L,2L] (25)

Constants above,ε > 0 and C(α), are the same as in Theorem 7.
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