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▪ Lyme disease #1 vector-borne disease in the United States. 

▪ Spreading north to Canada

▪ Ixodes scapularis (black legged-tick) infected with Borrelia burgdorferi.

▪ I. scapularis feeds on white-footed mouse, understanding this interaction is critical because the 

mice are competent. 

▪ The cycle of infection is driven by larvae feeding on infected mice molting into infected nymphs 

then transmitting the disease to another susceptible host such as a mouse or human. 
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CTMC Model

Future Work

▪ Periodicity mimics seasonality

• Tick birth, feeding activity for all tick stages, death of all species 

▪ Below are example equations for larval stage

▪ Continuous-time Markov chain (CTMC) is a stochastic model, probability a given event will occur. 

▪ The CTMC model and ODE  model share parameters, but their dynamics are different. 

▪ The CTMC is probabilistic; therefore, there are times the infection will die out or the spread of the 

infection happens faster than the deterministic ODE model. 

▪ The probabilistic method is best for the introduction of a disease into a new area. 

Figure: LOW INFECTION
The infection dying out, there is an outbreak. 

Figure: LOW INFECTION
The infection persists. Near day 1500 the mouse 

infection begins to appear.  

▪ Add mast cycles. 

▪ This addition of fluctuation changes the amount of food available to the mouse population.

▪ Add branching process approximation of the CTMC model that provides an analytical 

approximation of the probability of an outbreak that is dependent on the time infection is 

introduced and number of infected nymphs and mice. 

▪ Investigating the 100-stage ODE further with an in-depth elasticity analysis.

▪ We believe 100-stage ODE solution has potential to mimic the tick dynamics more thoroughly 

than DDE solution.

Figure: HIGH INFECTION
CTMC paths with ODE approximation. 

▪ The ODE is the average of the CTMC, but lacks variability seen in nature. 

▪ Disease extinction: run 1000 simulations with (𝑁𝐼(0) =10) and count times all the infected states = 0. 

▪ 450 simulations had the disease die out.  Approximate probability of disease extinction 0.45.

𝑹𝟎

▪ Most impact: 𝐴𝑎𝑚𝑎𝑥 maximum death rate of the adult stage, 𝐴𝑛𝑚𝑎𝑥 maximum death rate of the 

nymph stage, 𝐴𝑏the maximum number of eggs deposited, and the 𝛽𝑇𝑀 transmission rate from tick 

to mouse. 

▪ Value changes related to parameters controlling reproduction, 𝐴𝑎𝑚𝑎𝑥 and 𝐴𝑏.

▪ Modification of infection transmission have high 𝑅0 impact such as  𝐴𝑛𝑚𝑎𝑥 and 𝛽𝑇𝑀.

▪ Least impact: 𝐴𝑙 the maximum feeding transition rate of larvae, 𝐴𝑎𝑚𝑖𝑛 the minimum death rate of 

adults, and 𝑎2 half the maximum number of nymphs per square kilometer. 

The basic reproduction number is a well-known threshold in epidemic models, denoted as 𝑅0. 

Biologically, this threshold is defined as the number of secondary infections caused by one infectious 

individual in an entirely  susceptible population. If 𝑅0 exceeds unity, then the number of infections will 

grow over time, but if it is less than unity, the number will decline. Hence, the magnitude of 𝑅0 provides 

knowledge about the growth rate of infectious individuals at the start of an epidemic.

The link to complete reference list: https://bit.ly/37apMuC

Contact us if there are questions about the code.

The basic reproduction number as a threshold for the n-stage ODE model is also a threshold for 

the n-stage CTMC model. If the basic reproduction number R0 < 1, the ODE model predicts that no major 

outbreak will occur. However, if R0 > 1, the ODE always predicts a disease outbreak, but in the CTMC 

model this is not always the case. In the CTMC model, there is a positive probability p of a disease 

outbreak and a probability of 1 − p of no disease outbreak.

▪ Identify all the infected and noninfected states and the stable disease-free solution (DFS). 

▪ Linearize the differential equations for the infected states (vector X) about the DFS:

ሶ𝑋 = 𝐽 𝑥 𝑋 = 𝐹 𝑡 − 𝑉 𝑡 𝑋, 𝑤ℎ𝑒𝑟𝑒 𝐽 𝑖𝑠 𝑡ℎ𝑒 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑡 𝐷𝐹𝑆

▪ Find the fundamental matrix solution 𝑌 𝑡 = Φ 𝑡, 𝜆 pf the linear matrix system:

ሶ𝑌 =
𝐹 𝑡

𝜆
− 𝑉 𝑡 𝑌, 𝑌 0 = 𝐼𝑑

▪ 𝑅0 = 𝜆 if 𝜌 Φ 𝜔, 𝜆 = 1, where 𝜔 is the period and 𝜌 is the spectral radius function.

▪ We get 𝑅0 ≈ 3.339.

To determine the relative importance of each parameter, we conduct a sensitivity analysis to 

see which parameter has the largest effect on R0. We do this using the elasticity index of R0 with 

respect to each parameter, as described in [22]. For a parameter p, the elasticity index is defined as

𝑟𝑝
𝑅 =

𝜕𝑅

𝜕𝑝

𝑝

𝑅

For our study, we take R to be R0. In this case, we find the R0 using parameters from Table 3, and

calculate it when each individual parameter is increased by 10% and again when each parameter is

decreased by 10%. This simplifies our approximation to:

𝑟𝑝
𝑅0 ≈

∆𝑅0
0.1𝑅0

Figure: Elasticity analysis parameter decreased by 10%

Figure: Elasticity analysis with parameter increased by 10%. 

Figure: DDE Solution
DDE model converging to periodic 
solution. Converges around 1500 

days.

See the compartmental diagram for equations of ODE.

Figure: Compartmental Diagram of ODE

Figure: Sample of general form events (total events 21)
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Figure: Tick Birth
Peak birth occurs in middle of spring.

Figure: Larva and Nymph Feeding Rate
Larva peak in summer. Nymphs peak during 

the spring.

Figure: ODE n=2
Converges to periodic solution slower 

than DDE solution. Smaller population of 
nymphs than DDE solution. Converge 

around 3000 days.

Figure: ODE n=100
Converges to periodic solution quicker 

than ODE n=2 due to faster 
𝑛

𝜏
transition. 

This solution more closely mimics the 
DDE solution. Converges around 2000 

days.
Figure: Death Rates

All species have peak death in the winter. 
Larva and nymph experience second peak 

during summer.

Figure: Adult Feeding
Adults peak during the fall.

Figure: Compartmental diagram for ODE

See DDE compartmental diagram for mouse equations.
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