Math 2450: Unit Tangent, Principal Unit Normal Vectors, and Curvature Reference Sheet

Unit Tangent Vector and Principal Unit Normal Vector

If $\mathbf{R}(t)$ is a vector function that defines a smooth graph, then at each point a **unit tangent** is $\mathbf{T}(t) = \frac{\mathbf{R}'(t)}{\|\mathbf{R}'(t)\|}$

and the **principal unit normal** vector is

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

Note: These are unit vectors that change direction depending on where you are on the curve.

Arc Length Function

Let C be a piecewise-smooth curve that is the graph of the vector described parametrically by $\mathbf{R}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, and let $P_0 = P(t_0)$ be a particular point on C (called the **base point**). Then the length of C from the base point P_0 to the variable point P(t) is given by the **arc length function** s(t) defined by

$$s(t) = \int_{t_0}^t \|\mathbf{R}'(u)\| \, du = \int_{t_0}^t \sqrt{(\frac{dx}{du})^2 + (\frac{dy}{du})^2 + (\frac{dz}{du})^2} \, du$$

Note: The function s(t) measures the distance along the curve C from $P(t_0)$ to P(t) when $t > t_0$ OR from P(t) to $P(t_0)$ when $t < t_0$. This interpretation of arc length is best for describing a curve's geometric features.

Speed (As the Derivative of Arc Length)

Suppose an object moves along a smooth curve C that is the graph of the position function $\mathbf{R}(t) = \langle x(t), y(t), z(t) \rangle$, where $\mathbf{R}'(t)$ is continuous on the interval $[t_1, t_2]$. Then the object

has **speed**

$$\frac{ds}{dt} = \|\mathbf{V}(t)\| = \|\mathbf{R}'(t)\| \quad \text{for} \quad t_1 \le t \le t_2$$

T and N Expressed in Terms of Arc Length

If $\mathbf{R}(t)$ has a piecewise-smooth graph and is represented as $\mathbf{R}(s)$ in terms of the arc length parameters, then the unit tangent vector \mathbf{T} and the principal unit normal vector \mathbf{N} satisfy $\mathbf{T} = \frac{d\mathbf{R}}{ds}$ and $\mathbf{N} = \frac{1}{k} \frac{d\mathbf{T}}{ds}$

where $k = \left\| \frac{d\mathbf{T}}{ds} \right\|$ is a scalar function of s.

Туре	Given Information	Formula
Arc Length Parameter	$\mathbf{R}(s)$	$\left\ \frac{d\mathbf{T}}{ds} \right\ $
Two-Derivatives Form	$\mathbf{R}(t)$	$\frac{\ \mathbf{T}'(t)\ }{\ \mathbf{R}'(t)\ }$
Cross-Derivative Form	$\mathbf{R}(t)$	$\frac{\ \mathbf{R}' \times \mathbf{R}''\ }{\ \mathbf{R}'\ ^3}$
Functional Form	y = f(x)	$\frac{ f''(x) }{(1+[f'(x)]^2)^{\frac{3}{2}}}$
Parametric Form	x = x(t), y = y(t)	$\frac{ x'y''-y'x'' }{[(x')^2+(y')^2]^{\frac{3}{2}}}$
Polar Form	$r = f(\theta)$	$\frac{\left r^{2}+2(r')^{2}-rr''\right }{(r^{2}+(r')^{2})^{\frac{3}{2}}}$

Curvature Formulas