Math 2450: Vectors Formula Reference Sheet

What is a vector? A vector is a quantity that has both magnitude and direction. Vectors are represented by a directed line segment (or arrow) with an initial point P and terminal point Q, which is written as $\mathbf{P Q}$ or $\overrightarrow{P Q}$. Be careful, order does matter in the expression of a vector, as QP is a vector with initial point Q and terminal point P.
Why do we use vectors? Vectors are used to represent force, velocity, acceleration, and momentum. Vectors in \mathbb{R}^{3} are used to describe motion in space more efficiently.

Standard Components of a Vector

In \mathbb{R}^{3} : If $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ are points in a coordinate plane, then

$$
P_{1} P_{2}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle \text { and } P_{2} P_{1}=\left\langle x_{1}-x_{2}, y_{1}-y_{2}, z_{1}-z_{2}\right\rangle
$$

Note: Order does matter: It is the terminal point coordinate minus the corresponding initial point coordinate.

Standard Representation of a Vector

Vectors may be expressed as a linear combination of standard basis vectors:
In \mathbb{R}^{3} : Standard basis vectors: $\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle, \mathbf{k}=\langle 0,0,1\rangle$
$\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=v_{1}\langle 1,0,0\rangle+v_{2}\langle 0,1,0\rangle+v_{3}\langle 0,0,1\rangle=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$

Note: The v_{1} must always be attached with the \mathbf{i}, v_{2} with the \mathbf{j}, and v_{3} with the \mathbf{k}.

	Vector Operations	Properties	
Addition:	$\langle a, b\rangle+\langle c, d\rangle=\langle a+c, b+d\rangle$	$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$	$(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
Subtraction:	$\langle a, b\rangle-\langle c, d\rangle=\langle a-c, b-d\rangle$	$\mathbf{u}+\mathbf{0}=\mathbf{u}$	$\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
Scalar Multiple:	$k \cdot\langle a, b\rangle=\langle k \cdot a, k \cdot b\rangle$	$s(\mathbf{u}+\mathbf{v})=s \mathbf{u}+s \mathbf{v}$	$(s+t) \mathbf{u}=s \mathbf{u}+t \mathbf{u}$
		$(s t) \mathbf{u}=s(t \mathbf{u})$	

Note: Vector operations are similar in $\mathbb{R}^{3} . s, t$ are scalars and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors in the plane.
Two vectors are parallel if they are scalar multiples of one another.

Magnitude of a Vector

The magnitude of a vector is its length and is denoted by $\|\mathbf{P Q}\|$.

Note: The magnitude is a value (scalar) and is not an absolute value! For example: Given $\mathbf{w}=\langle-1,2,-3\rangle$: the magnitude of $\mathbf{w},\|\mathbf{w}\|=\sqrt{(-1)^{2}+(2)^{2}+(-3)^{2}}=\sqrt{1+4+9}=\sqrt{14}$ whereas the absolute value of $\mathbf{w},|\mathbf{w}|=|\langle-1,2,-3\rangle|=\langle |-1|,|2|,|-3|\rangle=\langle 1,2,3\rangle$.
A unit vector \mathbf{u} has a magnitude of 1 and is in the direction of a given vector $\mathbf{v}: \mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}$

$$
\begin{array}{ccc}
\hline \text { Equation of a Sphere } \\
-a)^{2}+(y-b)^{2}+(z-c)^{2} & =r^{3} & \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=z^{2}
\end{array} \quad \frac{\text { Equation of a Cone }}{\text { Equation of a Paraboloid }}
$$

is a sphere with center (a, b, c) radius r.

Distances Between Points in \mathbb{R}^{3}

The distance $\left|P_{1} P_{2}\right|$ between $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

$$
\text { Given vectors } \mathbf{v}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \text { and } \mathbf{w}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}
$$

Dot Product

The dot product ($\mathbf{v} \cdot \mathbf{w}$) is given by

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

Properties

$$
\begin{array}{rl}
\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2} & c(\overline{\mathbf{v} \cdot \mathbf{w})=(c \mathbf{v})} \cdot \mathbf{w}=\mathbf{v} \cdot(c \mathbf{w}) \\
\mathbf{0} \cdot \mathbf{v}=0 & \mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} \\
\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v} &
\end{array}
$$

Note: The dot product is also known as the inner product. The result of a dot product of vectors is a scalar, not a vector. The dot product is used to calculate the angle between 3-dimensional vectors. An important application of the dot product and projections is in the calculation of Work:

$$
\mathbf{W}=\mathbf{F} \cdot \mathbf{P Q} .
$$

Angle Between Two Vectors

If θ is the angle between the nonzero vectors \mathbf{v} and \mathbf{w}, then $\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \cdot\|\mathbf{w}\|}$.
We can now define a Geometrical Formula for the Dot Product:

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
$$

where $\theta \in[0, \pi]$ is the angle between \mathbf{v} and \mathbf{w}.
Note: Two vectors \mathbf{v} and \mathbf{w} are orthogonal (or perpendicular) if $\mathbf{v} \cdot \mathbf{w}=0$.

Projections

If \mathbf{v} and \mathbf{w} are nonzero vectors, then the vector projection of \mathbf{v} in the direction of \mathbf{w} (a vector) is

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}
$$

scalar projection of \mathbf{v} onto \mathbf{w} (a number) is

$$
\operatorname{com}_{\mathbf{w}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|}
$$

Cross Product

If $\mathbf{v}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{w}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$, the cross product, written $\mathbf{v} \times \mathbf{w}$, is the vector

$$
\mathbf{v} \times \mathbf{w}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
$$

The definition is found by using the determinant $\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$
Note: The result of taking the cross product (or outer product) of two vectors is a vector.
An important application of the cross product is the calculation of torque: $\mathbf{T}=\mathbf{P Q} \times \mathbf{F}$

Properties of Cross Product

If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors in \mathbb{R}^{3} and s, t are scalars, then the following properties can be derived:

$$
\begin{array}{rlrl}
(s \mathbf{v}) \times(t \mathbf{w})=s t(\mathbf{v} \times \mathbf{w}) & \mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w}) \\
\mathbf{v} \times \mathbf{w}=-(\mathbf{w} \times \mathbf{v}) & (\mathbf{u}+\mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w})+(\mathbf{v} \times \mathbf{w}) \\
\mathbf{v} \times \mathbf{v}=0 & \mathbf{v} \times \mathbf{0}=\mathbf{0} \times \mathbf{v}=\mathbf{0} \\
\|\mathbf{v} \times \mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}\|\mathbf{w}\|^{2}-(\mathbf{v} \cdot \mathbf{w})^{2} & & \mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{c} \cdot \mathbf{a}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{a}) \mathbf{c}
\end{array}
$$

Geometric Interpretation of Cross Product

- If \mathbf{v} and \mathbf{w} are nonzero vectors in \mathbb{R}^{3} that are not multiples of one another, then $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w}.
- If \mathbf{v} and \mathbf{w} are nonzero vectors in \mathbb{R}^{3} with θ the angle between \mathbf{v} and $\mathbf{w}(0 \leq \theta \leq \pi)$, then $\|\mathbf{v} \times \mathbf{w}\|=\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$
\circ Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be nonzero vectors that do not all lie in the same plane. Then,
- Area of a parallelogram: $A=\|\mathbf{u} \times \mathbf{v}\|$
- Area of a triangle: $A=\frac{1}{2}\|\mathbf{u} \times \mathbf{v}\|$
- Volume of a parallelepiped: $V=|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$

Limit of a Vector Function

Suppose the components f_{1}, f_{2}, f_{3} of the vector function

$$
\mathbf{F}(t)=f_{1}(t) \mathbf{i}+f_{2}(t) \mathbf{j}+f_{3}(t) \mathbf{k}
$$

all have finite limits as $t \rightarrow t_{0}$, where t_{0} is any number or ∞ or $-\infty$. Then the limit of $\mathbf{F}(t)$
as $t \rightarrow t_{0}$ is the vector

$$
\lim _{t \rightarrow t_{0}} \mathbf{F}(t)=\left[\lim _{t \rightarrow t_{0}} f_{1}(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow t_{0}} f_{2}(t)\right] \mathbf{j}+\left[\lim _{t \rightarrow t_{0}} f_{3}(t)\right] \mathbf{k}
$$

Note: The limit definition of a vector function satisfies all limit rules [limit of a sum, difference scalar multiple, and product (cross product and/or dot product)].

Derivative of a Vector Function

The vector function $\mathbf{F}(\mathrm{t})=f_{1}(t) \mathbf{i}+f_{2}(t) \mathbf{j}+f_{3}(t) \mathbf{k}$ is differentiable whenever to component functions f_{1}, f_{2}, f_{3} are differentiable, and in this case

$$
\mathbf{F}^{\prime}(t)=f_{1}^{\prime}(t) \mathbf{i}+f_{2}^{\prime}(t) \mathbf{j}+f_{3}^{\prime}(t) \mathbf{k}
$$

Vector Motion

An object that moves in such a way that its position at time t is given by the vector function $\mathbf{R}(\mathrm{t})$
is said to have

Position vector, $\mathbf{R}(\mathrm{t})$ and velocity, $\mathbf{V}=\frac{d \mathbf{R}}{d t}$
At any time $t, \quad \circ$ the speed is $\|\mathbf{V}\|$, the magnitude of velocity, - the direction of motion is the unit vector $\frac{\mathbf{V}}{\|\mathbf{V}\|}$, and - the acceleration vector is the derivative of the velocity:

$$
\mathbf{A}=\frac{d \mathbf{V}}{d t}=\frac{d^{2} \mathbf{R}}{d t^{2}}
$$

Vector Integrals

Let $\mathbf{F}(\mathrm{t})=f_{1}(t) \mathbf{i}+f_{2}(t) \mathbf{j}+f_{3}(t) \mathbf{k}$, where f_{1}, f_{2}, f_{3} are continuous on the closed interval $a \leq t \leq b$. Then the indefinite integral of $\mathbf{F}(\mathrm{t})$ is the vector function

$$
\int \mathbf{F}(t) d t=\left[\int f_{1}(t) d t\right] \mathbf{i}+\left[\int f_{2}(t) d t\right] \mathbf{j}+\left[\int f_{3}(t) d t\right] \mathbf{k}+\mathbf{C}
$$

where $\mathbf{C}=C_{1} \mathbf{i}+C_{2} \mathbf{j}+C_{3} \mathbf{k}$ is an arbitrary constant vector. The definite integral of $\mathbf{F}(\mathrm{t})$ on $a \leq t \leq b$ is the vector
$\int_{a}^{b} \mathbf{F}(t) d t=\left[\int_{a}^{b} f_{1}(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} f_{2}(t) d t\right] \mathbf{j}+\left[\int_{a}^{b} f_{3}(t) d t\right] \mathbf{k}+\mathbf{C}$

