Math 2450: Vectors Formula Reference Sheet

What is a vector? A vector is a quantity that has both magnitude and direction. Vectors are represented by a directed line segment (or arrow) with an initial point P and terminal point Q, which is written as **PQ** or \overrightarrow{PQ} . Be careful, order does matter in the expression of a vector, as **QP** is a vector with initial point Q and terminal point P.

Why do we use vectors? Vectors are used to represent force, velocity, acceleration, and momentum. Vectors in \mathbb{R}^3 are used to describe motion in space more efficiently.

<u>Standard Components of a Vector</u> <u>**In** \mathbb{R}^3 : If $P_1(x_1, y_1, \overline{z_1})$ and $P_2(x_2, y_2, z_2)$ are points in a coordinate plane, then $P_1P_2 = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ and $P_2P_1 = \langle x_1 - x_2, y_1 - y_2, z_1 - z_2 \rangle$ </u>

Note: Order **does** matter: It is the terminal point coordinate minus the corresponding initial point coordinate.

Standard Representation of a Vector

Vectors may be expressed as a linear combination of standard basis vectors:

In \mathbb{R}^3 : Standard basis vectors: $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, $\mathbf{k} = \langle 0, 0, 1 \rangle$

 $\mathbf{v} = \langle v_1, v_2, v_3 \rangle = v_1 \langle 1, 0, 0 \rangle + v_2 \langle 0, 1, 0 \rangle + v_3 \langle 0, 0, 1 \rangle = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$

Note: The v_1 must always be attached with the **i**, v_2 with the **j**, and v_3 with the **k**.

	Vector Operations	Properties	
Addition:	$\overline{\langle a,b\rangle + \langle c,d\rangle = \langle a+c,b+d\rangle}$	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
Subtraction:	$\langle a,b\rangle-\langle c,d\rangle=\langle a-c,b-d\rangle$	$\mathbf{u} + 0 = \mathbf{u}$	$\mathbf{u} + (\mathbf{-u}) = 0$
Scalar Multiple:	$k\cdot \langle a,b angle = \langle k\cdot a,k\cdot b angle$	$s(\mathbf{u} + \mathbf{v}) = s\mathbf{u} + s\mathbf{v}$	$(s+t)\mathbf{u} = s\mathbf{u} + t\mathbf{u}$
		$(st)\mathbf{u} = s(t\mathbf{u})$	

Note: Vector operations are similar in \mathbb{R}^3 . s, t are scalars and $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors in the plane. Two vectors are **parallel** if they are scalar multiples of one another.

Magnitude of a Vector

The magnitude of a vector is its length and is denoted by $\|\mathbf{PQ}\|$.

<u>In</u> \mathbb{R}^3 : $\mathbf{v} = \langle v_1, v_2, v_3 \rangle, \|\mathbf{v}\| = \sqrt{(v_1)^2 + (v_2)^2 + (v_3)^2}$

Note: The magnitude is a value (scalar) and is **not** an absolute value! For example: Given $\mathbf{w} = \langle -1, 2, -3 \rangle$: the magnitude of \mathbf{w} , $\|\mathbf{w}\| = \sqrt{(-1)^2 + (2)^2 + (-3)^2} = \sqrt{1+4+9} = \sqrt{14}$ whereas the absolute value of \mathbf{w} , $\|\mathbf{w}\| = |\langle -1, 2, -3 \rangle| = \langle |-1|, |2|, |-3| \rangle = \langle 1, 2, 3 \rangle$. A **unit vector u** has a magnitude of 1 and is in the direction of a given vector \mathbf{v} : $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$

Equation of a Sphere	Equation of a Cone	Equation of a Paraboloid		
$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{3}$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z$		
is a sphere with center (a, b, c) radius r .				
Distances Between Points in \mathbb{R}^3				
The distance $ P_1P_2 $ between $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is				
$ P_1P_2 = \sqrt{(x_2)}$	$(-x_1)^2 + (y_2 - y_1)^2 + (z_2 - y_1)^2$	$\overline{z_1)^2}$		

Given vectors $\mathbf{v} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{w} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$				
Dot ProductPropertiesThe dot product $(\mathbf{v} \cdot \mathbf{w})$ is given by $\mathbf{v} \cdot \mathbf{v} = \ \mathbf{v}\ ^2$ $c(\mathbf{v} \cdot \mathbf{w}) = (c\mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (c\mathbf{w})$ $\mathbf{v} \cdot \mathbf{w} = a_1b_1 + a_2b_2 + a_3b_3$ $0 \cdot \mathbf{v} = 0$ $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$ $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$				
Note: The dot product is also known as the inner product. The result of a dot product of vectors is a scalar, not a vector. The dot product is used to calculate the angle between 3-dimensional vectors. An important application of the dot product and projections is in the calculation of Work: $\mathbf{W} = \mathbf{F} \cdot \mathbf{PQ}.$				
Angle Between Two Vectors				
If θ is the angle between the nonzero vectors \mathbf{v} and \mathbf{w} , then $\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\ \mathbf{v}\ \cdot \ \mathbf{w}\ }$.				
We can now define a Geometrical Formula for the Dot Product:				
$\mathbf{v} \cdot \mathbf{w} = \ \mathbf{v}\ \ \mathbf{w}\ \cos\theta$				
where $\theta \in [0, \pi]$ is the angle between v and w .				
Note: Two vectors \mathbf{v} and \mathbf{w} are orthogonal (or perpendicular) if $\mathbf{v} \cdot \mathbf{w} = 0$.				
Projections				
If v and w are nonzero vectors, then the vector projection of v in the direction of w (a vector) is				
$proj_{\mathbf{w}}\mathbf{v} = \frac{\mathbf{v}\cdot\mathbf{w}}{\mathbf{w}}\mathbf{w}$				
scalar projection of \mathbf{v} onto \mathbf{w} (a number) is				
$comp_{\mathbf{w}}\mathbf{v} = \frac{\mathbf{v}\cdot\mathbf{w}}{ \mathbf{l} _{\mathbf{w}}\cdot\mathbf{l} }$				
Cross Product				
If $\mathbf{v} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{w} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, the cross product , written $\mathbf{v} \times \mathbf{w}$, is the vector				
$\mathbf{v} \times \mathbf{w} = (a_2b_3 - a_3b_2)\mathbf{i} + (a_3b_1 - a_1b_3)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$				
i j k				
The definition is found by using the determinant $\mathbf{v} \times \mathbf{w} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$				
Note: The result of taking the cross product (or outer product) of two vectors is a vector.				
An important application of the cross product is the calculation of torque: $\mathbf{T} = \mathbf{P}\mathbf{Q} \times \mathbf{F}$				
Properties of Cross Product				
If u , v , w are vectors in \mathbb{R}^3 and <i>s</i> , <i>t</i> are scalars, then the following properties can be derived:				
$(s\mathbf{v}) \times (t\mathbf{w}) = st(\mathbf{v} \times \mathbf{w}) \qquad \mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$				
$\mathbf{v} \times \mathbf{w} = -(\mathbf{w} \times \mathbf{v})$ $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$				
$\mathbf{v} \times \mathbf{v} = 0$ $\mathbf{v} \times 0 = 0 \times \mathbf{v} = 0$				
$\ \mathbf{v} imes \mathbf{w}\ ^2 = \ \mathbf{v}\ ^2 \ \mathbf{w}\ ^2 - (\mathbf{v} \cdot \mathbf{w})^2 \qquad \mathbf{a} imes (\mathbf{b} imes \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$				

• If \mathbf{v} and \mathbf{w} are nonzero vectors in \mathbb{R}^3 that are not multiples of one another, then $\mathbf{v} \times \mathbf{w}$ is orthogonal to both \mathbf{v} and \mathbf{w} . • If \mathbf{v} and \mathbf{w} are nonzero vectors in \mathbb{R}^3 with θ the angle between \mathbf{v} and \mathbf{w} $(0 \le \theta \le \pi)$, then $\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$ • Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be nonzero vectors that do not all lie in the same plane. Then, • Area of a parallelogram: $A = \|\mathbf{u} \times \mathbf{v}\|$ • Area of a triangle: $A = \frac{1}{2} \|\mathbf{u} \times \mathbf{v}\|$ • Volume of a parallelepiped: $V = |(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|$ **Limit of a Vector Function** Suppose the components f_1, f_2, f_3 of the vector function $\mathbf{F}(t) = f_1(t)\mathbf{i} + f_2(t)\mathbf{j} + f_3(t)\mathbf{k}$ all have finite limits as $t \to t_0$, where t_0 is any number or ∞ or $-\infty$. Then the limit of $\mathbf{F}(t)$ $\lim_{t \to t_0} \mathbf{F}(t) = \begin{bmatrix}\lim_{t \to t_0} f_1(t)\end{bmatrix}\mathbf{i} + \begin{bmatrix}\lim_{t \to t_0} f_2(t)\end{bmatrix}\mathbf{j} + \begin{bmatrix}\lim_{t \to t_0} f_3(t)\end{bmatrix}\mathbf{k}$

Geometric Interpretation of Cross Product

Note: The limit definition of a vector function satisfies all limit rules [limit of a sum, difference scalar multiple, and product (cross product and/or dot product)].

Derivative of a Vector Function

The vector function $\mathbf{F}(t) = f_1(t)\mathbf{i} + f_2(t)\mathbf{j} + f_3(t)\mathbf{k}$ is **differentiable** whenever to component functions f_1, f_2, f_3 are differentiable, and in this case

$$\mathbf{F}'(t) = f_1'(t)\mathbf{i} + f_2'(t)\mathbf{j} + f_3'(t)\mathbf{k}$$

<u>Vector Motion</u>

An object that moves in such a way that its position at time t is given by the vector function $\mathbf{R}(t)$ is said to have

Position vector, $\mathbf{R}(t)$ and velocity, $\mathbf{V} = \frac{d\mathbf{R}}{dt}$

At any time t, \circ the **speed** is $||\mathbf{V}||$, the magnitude of velocity,

• the direction of motion is the unit vector $\frac{\mathbf{V}}{||\mathbf{V}||}$, and

• the acceleration vector is the derivative of the velocity:

$$\mathbf{A} = \frac{d\mathbf{V}}{dt} = \frac{d^2\mathbf{R}}{dt^2}$$

Vector Integrals

Let $\mathbf{F}(t) = f_1(t)\mathbf{i} + f_2(t)\mathbf{j} + f_3(t)\mathbf{k}$, where f_1, f_2, f_3 are continuous on the closed interval $a \le t \le b$. Then the **indefinite integral** of $\mathbf{F}(t)$ is the vector function

$$\int \mathbf{F}(t)dt = \left[\int f_1(t)dt\right]\mathbf{i} + \left[\int f_2(t)dt\right]\mathbf{j} + \left[\int f_3(t)dt\right]\mathbf{k} + \mathbf{C}$$

where $\mathbf{C} = C_1 \mathbf{i} + C_2 \mathbf{j} + C_3 \mathbf{k}$ is an arbitrary constant vector. The **definite integral** of $\mathbf{F}(t)$ on $a \le t \le b$ is the vector

$$\int_a^b \mathbf{F}(t)dt = \left[\int_a^b f_1(t)dt\right]\mathbf{i} + \left[\int_a^b f_2(t)dt\right]\mathbf{j} + \left[\int_a^b f_3(t)dt\right]\mathbf{k} + \mathbf{C}$$