Math 2450: Potential Functions

We saw (in a previous resource) that if we know the vector field \mathbf{F} is conservative, then $\int_C \mathbf{F} \cdot d\mathbf{R}$ is independent of path. This fact allows us to more easily calculate the line integral as long as we may find a potential function for \mathbf{F} . Therefore, we have two tasks to tackle:

- 1. Determining whether or not a vector field is conservative
- 2. Given that \mathbf{F} is a conservative vector field, determining a potential function for the vector field

Determining that a Vector Field is Conservative

Given $\mathbf{F}(x, y, z) = f(x, y, z)\mathbf{i} + g(x, y, z)\mathbf{j} + h(x, y, z)\mathbf{k}$:

- 1. Identify f(x, y, z), g(x, y, z), and h(x, y, z) in **F**
- 2. Calculate $curl \mathbf{F}$

(a) curl $\mathbf{F} = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \times \langle f, g, h \rangle$

3. If $curl \mathbf{F} = 0$, then the vector field \mathbf{F} is conservative

Determining a Potential Function for a Conservative Vector Field

We must find a potential function f such that $\nabla f = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k} = \mathbf{F}$. For $\mathbf{F}(x, y, z) = u(x, y, z)\mathbf{i} + v(x, y, z)\mathbf{j} + w(x, y, z)\mathbf{k}$:

Steps	Example
Identify the equations: $\frac{\partial f}{\partial x} = u(x, y, z)$ $\frac{\partial f}{\partial y} = v(x, y, z)$ $\frac{\partial f}{\partial z} = w(x, y, z)$	Find a scalar potential function for $\mathbf{F} = (20x^3z + 2y^2)\mathbf{i} + (4xy)\mathbf{j} + (5x^4 + 3z^2)\mathbf{k}$ $\frac{\partial f}{\partial x} = 20x^3z + 2y^2 \frac{\partial f}{\partial y} = 4xy \frac{\partial f}{\partial z} = 5x^4 + 3z^2$
Integrate $\frac{\partial f}{\partial x} = u$ with respect to x to get a function of the form: $f(x, y, z) = \int u dx + g(y, z)$	$f(x, y, z) = \int 20x^3z + 2y^2dx = 5x^4z + 2xy^2 + g(y, z)$
Take the partial derivative of $f(x, y, z) = \int u dx + g(y, z)$ with respect to y a.) Set $\frac{\partial}{\partial y} [\int u dx + g(y, z)] = v$	$\frac{\partial}{\partial y}[5x^4z + 2xy^2 + g(y, z)] = 4xy + \frac{\partial g}{\partial y}$ $4xy + \frac{\partial g}{\partial y} = 4xy$
b.) Solve for $\frac{\partial g}{\partial y}$	Therefore, we see $\frac{\partial g}{\partial y} = 0$ and $g(y, z) = h(z)$ So now we have: $f = 5x^4z + 2xy^2 + h(z)$
Take the partial derivative of $f = 5x^4z + 2xy^2 + h(z)$ with respect to z	$\frac{\partial}{\partial z}[5x^4z + 2xy^2 + h(z)] = 5x^4 + h'(z)$
a) Set $\frac{\partial}{\partial z} [5x^4z + 2xy^2 + h(z)] = w$	$5x^4 + h'(z) = 5x^4 + 3z^2$
b) Solve for $h'(z)$	Therefore, we see $h'(z) = 3z^2 \implies h(z) = z^3 + C$ Scalar potential function for F: $F(x, y, z) = 5x^4z + 2xy^2 + z^3 + C$