Math 2450: Applications of Multiple Integrals

We have explored how to properly set up multiple integrals over a specified domain, evaluate the integrals, and change the order of integration. Now we can apply those skills to calculate averages, areas between curves, surface areas, and volumes enclosed by a surface.

Calculating Area of a Region

The area of the region D in the $x y$-plane is given by

$$
A=\iint_{D} d A
$$

Note: This reduces to the single integral case from Calc I after we evaluate the first integral.
Using a double integral gives us the ability to change order of integration if necessary.
Calculating Volume of a Bounded Solid
When $f(x, y) \geq 0$ and continuous on a region
D the volume of a solid bounded above by $z=f(x, y)$ and below by D in the $x y$-plane is given by
$V=\iint_{D} f(x, y) d A$

Calculating Volume of a Solid

The volume of the solid region E is given by

$$
V=\iiint_{E} d V
$$

Note: This reduces to the double integral formula (diagonal) after we evaluate the first integral.

Calculating the Total Mass of a Solid

 $f(x, y, z)$ is the density of a solid object D at a given point (x, y, z). The the total mass of the solid is given by$$
\iiint_{D} f(x, y, z) d V
$$

Average Values		
The average value of the continuous function f over R is given by:		
One Variable	Two Variables	

Surface Area

Assume that the function $f(x, y)$ has continuous partial derivatives f_{x} and f_{y} in a region R of the $x y$-plane. Then the portion of the surface $z=f(x, y)$ that lies over R has surface area

$$
S=\iint_{R} \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} d A
$$

We also have the case when the surface $y=f(x, z)$ is projected onto the region Q in the

$$
\begin{aligned}
& x z \text {-plane. The formula for surface area becomes } \\
& S=\iint_{Q} \sqrt{\left[f_{x}(x, z)\right]^{2}+\left[f_{z}(x, z)\right]^{2}+1} d x d z
\end{aligned}
$$

And similarly, for projection onto the region T in the $y z$-plane would have surface area

$$
S=\iint_{T} \sqrt{\left[f_{y}(y, z)\right]^{2}+\left[f_{z}(y, z)\right]^{2}+1} d y d z
$$

Parametric Definition of Surface Area

Let S be a surface defined parametrically by $\mathbf{R}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}$ on the region D in the $u v$-plane, and assume that S is smooth in the sense that \mathbf{R}_{u} and \mathbf{R}_{v} are continuous with $\mathbf{R}_{u} \times \mathbf{R}_{v} \neq 0$ on D. Then the surface area, S, is defined by

$$
S=\iint_{D}\left\|\mathbf{R}_{u} \times \mathbf{R}_{v}\right\| d u d v
$$

The quantity $\left\|\mathbf{R}_{u} \times \mathbf{R}_{v}\right\|$ is called the fundamental cross product.

