Math 2450: Applications of Multiple Integrals

We have explored how to properly set up multiple integrals over a specified domain, evaluate the integrals, and change the order of integration. Now we can apply those skills to calculate averages, areas between curves, surface areas, and volumes enclosed by a surface.

Calculating Area of a Region	Calculating Volume of a Solid
The area of the region D in the xy -plane is	The volume of the solid region E is given by
given by	
$A = \iint_D dA$	$V = \int \!\!\!\int \!\!\!\int_E \ dV$
Note: This reduces to the single integral case	Note: This reduces to the double integral
from Calc I after we evaluate the first integral.	formula (diagonal) after we evaluate the first
Using a double integral gives us the ability	integral.
to change order of integration if necessary.	
Calculating Volume of a Bounded Solid	Calculating the Total Mass of a Solid
When $f(x, y) \ge 0$ and continuous on a region	f(x, y, z) is the density of a solid object D
D the volume of a solid bounded above by	at a given point (x, y, z) . The the total mass
z = f(x, y) and below by D in the xy-plane is	of the solid is given by
given by	
$V = \iint_D f(x, y) dA$	$\iint_D f(x, y, z) dV$

Average Values

The average value of the continuous function f over R is given by:			
	One Variable	Two Variables	Three Variables
	$rac{1}{length \ of \ segment \ R} \int_R f(x) dx$	$\frac{1}{area \ of \ region \ R} \iint_R f(x,y) dA$	$\frac{1}{volume \ of \ solid \ R} \iint_R f(x, y, z) dV$

Surface Area

Assume that the function f(x, y) has continuous partial derivatives f_x and f_y in a region R of the xy-plane. Then the portion of the surface z = f(x, y) that lies over R has surface area $S = \iint_R \sqrt{[f_x(x, y)]^2 + [f_y(x, y)]^2 + 1} \, dA$

We also have the case when the surface y = f(x, z) is projected onto the region Q in the xz-plane. The formula for surface area becomes

$$S = \iint_Q \sqrt{[f_x(x,z)]^2 + [f_z(x,z)]^2 + 1} \, dx \, dz$$

And similarly, for projection onto the region T in the yz-plane would have surface area $S = \iint_T \sqrt{[f_y(y,z)]^2 + [f_z(y,z)]^2 + 1} \, dy \, dz$

Parametric Definition of Surface Area

Let S be a surface defined parametrically by $\mathbf{R}(u, v) = x(u, v)\mathbf{i} + y(u, v)\mathbf{j} + z(u, v)\mathbf{k}$ on the region D in the uv-plane, and assume that S is smooth in the sense that \mathbf{R}_u and \mathbf{R}_v are continuous with $\mathbf{R}_u \times \mathbf{R}_v \neq 0$ on D. Then the surface area, S, is defined by $S = \iint_D \|\mathbf{R}_u \times \mathbf{R}_v\| du dv$

The quantity $\|\mathbf{R}_u \times \mathbf{R}_v\|$ is called the fundamental cross product.