Math 1452: Integrating Powers of Trig Functions

A common integral type has the integrand as a power of complementary trig functions, such as the examples below:

$$
\int \sin ^{2}(x) \cos ^{2}(x) d x, \quad \int \sec ^{4}(x) \tan ^{3}(x) d x, \quad \int \csc ^{3}(x) \cot (x) d x
$$

Each of these integrals can be solved using the integral techniques from Calculus I, using u substitution and trig identities. Our goal is to factor out one of the following expressions:
with the remaining trig functions in our integrand having an even power. We will look at each pair of complementary trig functions separately.

Powers of $\sin (\mathrm{x})$ and $\cos (\mathrm{x})$. These simplifications will depend on if the powers of $\sin (x)$ and $\cos (x)$ are even or odd and will rely on the trig identity $\sin ^{2}(x)+\cos ^{2}(x)=1$.
i. If $\cos (x)$ has odd power:
ii. If $\sin (x)$ has odd power:
iii. If both of the powers are even:

Powers of $\sec (\mathbf{x})$ and $\boldsymbol{\operatorname { t a n }}(\mathbf{x})$. These simplifications will depend on if the powers of $\sec (x)$ and $\tan (x)$ are even or odd and will rely on the trig identity $\tan ^{2}(x)+1=\sec ^{2}(x)$.
a. If $\sec (x)$ has even power:
b. If $\tan (x)$ has odd power:
c. If $\tan (x)$ has even power:

Powers of $\cot (\mathbf{x})$ and $\csc (\mathbf{x})$. These simplifications work in the exact same manner as the box above after replacing $\sec (x)$ with $\csc (x)$ and replacing $\tan (x)$ with $\cot (x)$, making sure to now use the trig identity $1+\cot ^{2}(x)=\csc ^{2}(x)$.

Example 1. Evaluate the integral $\int \sin ^{3}(x) \cos ^{4}(x) d x$.

Example 2. Evaluate the integral $\int \sec ^{4}(x) \tan ^{3}(x) d x$.

Example 3. Evaluate the integral $\int \csc ^{3}(x) \cot (x) d x$

There are The some examples of how to apply these integration techniques. The best way to improve your skills at integration is to continue practic- ing. More examples using these integration techniques can be found here: https://tutorial.math.lamar.edu/Classes/CalcII/IntegralsWithTrig.aspx

