
Math 1452: Sequences vs. Series

What is a sequence? A sequence is a function from the positive integers to the real numbers,
written with function notation as a(n), with n as the independent variable. Consider the example
a(n) = 1

n . We evaluate this function on the first few positive integers below.

n 1 2 3 4 5 6 7 8 9 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

a(n) 1 1
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1
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1
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7

1
8

1
9 . . .

Typically, we will omit the parenthesis in a(n) and instead write the general term an, listing the
sequence as {an}∞n=1 = {a1, a2, a3, . . . }, or in the same example as above, listing the sequence as{
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}
In this way, we represent an as a list of outputs from the function, starting with input 1 and in-
creasing one integer at a time.

What is a series? A series is a mathematical summation. We have seen these summations
before in Calculus I to define an integral, so you may remember the notation for an infinite series
as

∑∞
n=1 an = a1 + a2 + a3 + . . . . The term an is a placeholder for some algebraic expression

involving n, and this is called the general term of the series. Again, let’s consider the example
an = 1

n and look at the series
∑∞

n=1
1
n .
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What do we do with sequences and series? One of the main objectives of sequences and
series is determining their convergence.

• Sequence convergence occurs when lim
n→∞

an exists and is finite. Evaluating this limit will use

the same limit strategies that we learned in Calculus I.

• Series convergence occurs when
∑∞

n=1 an < ∞. To evaluate this summation, we look at the
nth partial sum Sn =

∑n
k=1 ak = a1 + a2 + · · ·+ an and evaluate lim

n→∞
Sn. If the limit exists,

then that is also the value the infinite series converges to.

What new tools do we have to determine convergence? One strategy we will use to
determine convergence is the tower of power, which compares common expressions and how their
growth relates to one another. In the box below, p > 1 is some power and c > 1 is some constant.

Slower Growth ln(n) →
√
n → n → np → cn → n! → nn Faster Growth

With the tower of power, expressions an in which the denominator is higher on the tower of power
than the numerator have lim

n→∞
an = 0. In these cases, the denominator has faster growth than

the numerator, and when the value of n is large enough, the limit will evaluate to 1
∞ = 0. Some

examples of this are below:

lim
n→∞

ln(n)√
n

= 0 lim
n→∞

n

en
= 0 lim

n→∞

ln(n)

np
= 0 lim

n→∞

n!

nn
= 0

Let’s look at some examples determining convergence of sequences and series.



Example 1. Determine if the sequence {an}∞n=1 with an = 1
2n converges or diverges.

To determine if this sequence converges, we evaluate

lim
n→∞

an = lim
n→∞

1

2n
=

1

2∞
= 0.

In the expression 1
2n , the denominator grows faster than the numerator and therefore the limit

evaluates to 1
∞ = 0. Since this limit exists and is finite, the sequence converges to 0.

Example 2. Determine if the series
∑∞

n=1 an with an = 1
2n converges or diverges.

To determine if this series converges, we write out the first few partial sums Sk for k = 1, 2, 3 . . . .
S1 =

1

2

S2 =
1

2
+

1

4
=

3

4

S3 =
1

2
+

1

4
+

1

8
=

7

8

S4 =
1

2
+

1

4
+

1

8
+

1

16
=

15

16

From this pattern, we can see the general formula Sk = 2k−1
2k

. To determine if the series converges,

we evaluate the limit

lim
k→∞

Sk = lim
k→∞

2k − 1

2k
= lim

k→∞

2k

2k
− 1

2k
= lim

k→∞
1− lim

k→∞

1

2k
= 1− 0 = 1

Again, in the expression 1
2k
, the denominator grows faster than the numerator and therefore the

limit lim
k→∞

1
2k

evaluates to 1
∞ = 0. Since this limit exists and is finite, the series converges.

Example 3. Determine if the sequence {an}∞n=1 with an = ln(n)
n2 converges or diverges.

To determine if this sequence converges, we evaluate

lim
n→∞

an = lim
n→∞

ln(n)

n2
= 0.

In the expression ln(n)
n2 , the denominator grows faster than the numerator and therefore the limit

evaluates to 1
∞ = 0. Since this limit exists and is finite, the sequence converges to 0.

Example 4. Determine if the series
∑∞

n=1 an with an = ln(n)
n2 converges or diverges.

To determine if this series converges, we write out the first few partial sums Sk for k = 1, 2, 3 . . . .

S1 =
ln(1)

12
=

0

1
= 0

S2 = 0 +
ln(2)

4
=

ln(2)

4

S3 = 0 +
ln(2)

4
+

ln(3)

9
=

9 ln(2) + 4 ln(3)

36

S4 = 0 +
ln(2)

4
+

ln(3)

9
+

ln(4)

16
=

36 ln(2) + 16 ln(9) + 9 ln(4)

144

At this point, there is not a clear pattern to write a general formula Sk. Therefore we will need
to use some additional strategies described in Sections 8.2-8.6 of the textbook, as well as in the
“Infinite Series Tests” worksheet found in the same place you accessed this worksheet.


